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Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple
and still result in good closed-loop behavior. The starting point has been the IMC-PID tuning
rules that have achieved widespread industrial acceptance. The rule for the integral term has
been modified to improve disturbance rejection for integrating processes. Furthermore, rather
than deriving separate rules for each transfer function model, there is a just a single tuning rule
for on a first-order or second-order time delay model. Simple analytic rules for model reduction
are presented to obtain a model in this form, including the “half rule” for obtaining the effective
time delay.

1 Introduction

Although the proportional-integral-derivative (PID) controller has only three parameters, it is not
easy, without a systematic procedure, to find good values (settings) for them. In fact, a visit to a
process plant will usually show that a large number of the PID controllers are poorly tuned. The
tuning rules presented in this paper have developed mainly as a result of teaching this material,
where there are several objectives:

1. The tuning rules should be well motivated, and preferably model-based and analytically derived.
2. They should be simple and easy to memorize.

3. They should work well on a wide range of processes.

In this paper a simple two-step procedure that satisfies these objectives is presented:

Step 1. Obtain a first- or second-order plus delay model. The effective delay in this model may be
obtained using the proposed half-rule.

*Originally presented at the ATIChE Annual meeting, Reno, NV, USA, Nov. 2001, with the title “Probably the
best simple PID tuning rules in the world”
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Step 2. Derive model-based controller settings. Pl-settings result if we start from a first-order
model, whereas PID-settings result from a second-order model.

There has been previous work along these lines, including the classical paper by Ziegler and
Nichols (1942), the IMC PID-tuning paper by Rivera, Morari and Skogestad (1986) and the closely
related direct synthesis tuning rules in the book by Smith and Corripio (1985). The Ziegler-Nichols
settings result in a very good disturbance response for integrating processes, but are otherwise known
to result in rather aggressive settings (Tyreus and Luyben 1992) (Astrom and Hagglund 1995), and
also give poor performance for processes with a dominant delay. On the other hand, the analytically
derived IMC-settings of Rivera et al. (1986) are known to result in poor disturbance response for
integrating processes (e.g., Chien and Fruehauf (1990), Horn et al. (1996)), but are robust and
generally give very good responses for setpoint changes. The single tuning rule presented in this
paper works well for both integrating and pure time delay processes, and for both setpoints and load
disturbances.
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Figure 1: Block diagram of feedback control system.

In this paper we consider an input (“load”) disturbance (g4 = g).

Notation. The notation is summarized in Figure 1. where u is the manipulated input (controller
output), d the disturbance, y the controlled output, and y, the setpoint (reference) for the controlled
output. g(s) = ﬁ—z denotes the process transfer function and ¢(s) is the feedback part of the controller.
The A used to indicate deviation variables is deleted in the following. The Laplace variable s is
often omitted to simplify notation. The settings given in this paper are for the series (cascade,
“interacting”) form PID controller:

T1s + 1
TIS

K,
Series PID :  ¢(s) = K, - < ) (rps+ 1) = == (r7ps® + (71 + 7p)s + 1) (1)
TIS
where K. is the controller gain, 7; the integral time, and 7 the derivative time. The reason for using
the series form is that the PID rules with derivative action are then much simpler. The corresponding
settings for the ideal (parallel form) PID controller are easily obtained using (36).
Simulations. The following series form PID controller is used in all simulations and evaluations

of performance:
TS + 1) < s+ 1 >
=K, s(s) — 2
u(s) ( )\ = () (2)

with 77 = arp and a = 0.01 (the robustness margins have been computed with o = 0). Note that
we in order to avoid “derivative kick” do not differentiate the setpoint in (2). The value o = 0.01
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was chosen in order to not bias the results, but in practice (and especially for noisy processes) a
larger value of a in the range 0.1-0.2 is normally used. In most cases we use Pl-control, i.e. 7p =0,
and the above implementation issues and differences between series and ideal form do not apply. In
the time domain the PI-controller becomes

a(t) = o+ K ((us(0) = 1) + = [ (ua(7) = u(r))ir) ®)

Tr J0

where we have used b = 1 for the proportional setpoint weight.

2 Model approximation (Step 1)

k=Ay () /Au

Time
Figure 2: Step response of first-order plus time delay system, ¢(s) = ke % /(r5 + 1).

The first step in the proposed design procedure is to obtain from the original model go(s) an
approximate first- or second-order time delay model g(s) in the form

k 6705 . K —0s
(118 + 1) (128 + 1)

(4)

9(s) = TGl (nst )"

Thus, we need to estimate the following model information (see Figure 2):
e Plant gain, k
e Dominant lag time constant, 7
e (Effective) time delay (dead time), 6

e Optional: Second-order lag time constant, 75 (for dominant second-order process for which
Ty > B, approximately)

If the response is lag-dominant, i.e. if ; > 86 approximately, then the individual values of the time
constant 77 and the gain k£ may be difficult to obtain, but at the same time are not very important for

3



controller design. Lag-dominant processes may instead be approximated by an integrating process,
using

k k k'
N— = — (5)
ns+1  7s s

which is exact when 71 — oo or 1/7 &~ 0. In this case we need to obtain the value for the
e Slope, ¥ ¥ k/7

The problem of obtaining the effective delay 6 (as well as the other model parameters) can be
set, up as a parameter estimation problem, for example, by making an least squares approximation
of the open-loop step response. However, our goal is to use the resulting effective delay to obtain
controller settings, so a better approach would be to find the approximation which for a given tuning
method results in the best closed-loop response (here “best” could, for example, by to minimize
the integrated absolute error (IAE)) with a specified value for the sensitivity peak, M;). However,
our main objective is not “optimality” but “simplicity”, so we propose a much simpler approach as
outlined next.

2.1 Approximation of effective delay using the half rule

We first consider the control-relevant approximation of the fast dynamic modes (high-frequency plant
dynamics) by use of an effective delay. To derive these approximations, consider the following two
first-order Taylor approximations of a time delay transfer function:

_os 1 1

—0s
e ~1—0s and e = — =
e’ 1+4+0s

(6)

From (6) we see that an “inverse response time constant” 7" (negative numerator time constant)
may be approximated as a time delay:

(=Ti™s +1) m e (7)

This is reasonable since an inverse response has a deteriorating effect on control similar to that of a
time delay (e.g., (Skogestad and Postlethwaite 1996)). Similarly, from (6) a (small) lag time constant
To may be approximated as a time delay:

1
e 0? (8)
ToS + 1
Furthermore, since
_Tinvs 1 . .
0 + —0ps ~ 67005 . 67T6n"s e — 67(90+T6nv+7’0)s _ 6795
ToS + 1

it follows that the effective delay 6 can be taken as the sum of the original delay 6,, and the contri-
bution from the various approximated terms. In addition, for digital implementation with sampling
period h, the contribution to the effective delay is approximately h/2 (which is the average time it
takes for the controller to respond to a change).

In terms of control, the lag-approximation (8) is conservative, since the effect of a delay on control
performance is worse than that of a lag of equal magnitude (e.g., (Skogestad and Postlethwaite 1996)).
In particular, this applies when approximating the largest of the neglected lags. Thus, to be less
conservative it is recommended to use the simple half rule:
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e Half rule: The largest neglected (denominator) time constant (lag) is distributed evenly to
the effective delay and the smallest retained time constant.

In summary, let the original model be in the form

I1,(=Tj" +1)
IT;(Ti0s + 1)

e los (9)

where the lags 7,y are ordered according to their magnitude, and T;f}" > () denote the inverse response
(negative numerator) time constants. Then, according to the half-rule, to obtain a first-order model
e % /(m1s+1), we use

T: T . h
7'1:7'10+ﬂ; 9:90+ﬂ+27}0+27§8v+— (10)
2 2 & : 2
and, to obtain a second-order model (4), we use
T T . h
T = Ti0, 7'2:7'204‘%; 9:904-%4‘27}04‘271;8\,4'5 (11)
i>4 j

where h is the sampling period (for cases with digital implementation).
The main basis for the empirical half-rule is to maintain the robustness of the proposed PI- and
PID-tuning rules, as is justified by the examples later.

Example E1. The process
1

0(5) = 3025 1 1)

is approzimated as a first-order time delay process, g(s) = ke™%*1/(risd+1), with k = 1,0 = 0.2/2 =
0.1 and T =1+0.2/2=1.1.

2.2 Approximation of positive numerator time constants

We next consider how to get a model in the form (9), if we have positive numerator time constants
in the original model go(s). It is proposed to cancel the numerator term (Tys + 1) against a “neigh-
bouring” denominator term (79s+ 1) (where both T and 7 are positive and real) using the following
approximations:

( TO/TO for TO Z ) Z 0 (RUIG Tl)
T T0/9 for TO Z 0 2 T0 (Rule Tla)
o5 + 1 ~{ 1 for 6 > Ty > 7 (Rule T1b) (12)
Tos + 1 To/ 7o for 7 > Ty > 50 (Rule T2)
\ % for 7 def min(7g, 56) > To  (Rule T3)

Here 6 is the (final) effective delay, which exact value depends on the subsequent approximation of
the time constants (half rule), so one may need to guess # and iterate. If there is more than one
positive numerator time constant, then one should approximate one Tj at a time, starting with the
largest Tj.

We normally select 7y as the closest larger denominator time constant (7o > T,) and use Rules
T2 or T3. The exception is if there exists no larger 7y, or if there is smaller denominator time
constant “close to” T, in which case we select 75 as the closest smaller denominator time constant,



(1o < Tp) and use rules T1, Tla or T1b. To define “close to” more precisely, let 7o, (large) and 7o,
(small) denote the two neighboring denominator constants to Ty. Then, we select 7o = 7, (small) if
To/Tob < Toa/To and Ty /7o, < 1.6 (both conditions must be satisfied).

Derivations of the above rules and additional examples are given in the Appendix.

Example E3. For the process (Example 4 in (Astrom et al. 1998))
2(15s+ 1)

205 +1)(s+1)(0.15s 4+ 1)2

we first introduce from Rule T2 the approzimation

1
s+l 198 g
205+ 1 20s

(13)

gg(S) = (

(Rule T2 applies since Ty = 15 is larger than 50, where 0 is computed below). Using the half rule,
the process may then be approximated as a first-order time delay model with

0.1 0.1
k=2-0.75 = 1.5 9:0.1+7:0.15; 7‘1:1—}—7:1.05
or as a second-order time delay model with
0.1 0.1
k = 1.5; 0:7:0.05; mn=1; 7'2:0.1+7:0.15

3 Derivation of PID tuning rules (Step 2)

3.1 Direct synthesis (IMC tuning) for setpoints

Next, we derive Pl-settings or PID-settings using the method of direct synthesis for setpoints (Smith
and Corripio 1985), or equivalently the Internal Model Control approach for setpoints (Rivera et
al. 1986). For the system in Figure 1, the closed-loop setpoint response is

y  g(s)e(s)
b (el + 1 (1)

where we have assumed that the measurement of the output y is perfect. The idea of direct synthesis
is to specify the desired closed-loop response and solve for the corresponding controller. From (14)

we get
1 1

c(s) = (15)

1
g(s) (y/ys)desired -
We here consider the second-order time delay model g(s) in (4), and specify that we, following the
delay, desire a simple first-order response with time constant 7, (Smith and Corripio 1985) (Rivera

et al. 1986):
<2> = L e ¥ (16)
Ys desired TeS + 1

We have kept the delay 6 in the “desired” response because it is unavoidable. Substituting (16) and
(4) into (15) gives a “Smith Predictor” controller (Smith 1957):

(s + 1) (s + 1) 1

o(s) = k (Tes + 1 — e 0s) (17)




T. is the desired closed-loop time constant, and is the sole tuning parameter for the controller. Our
objective is to derive PID settings, and to this effect we introduce in (17) a first-order Taylor series
approximation of the delay, e % ~ 1 — fs. This gives

(s +1)(ms+1) 1

= 1
() k (7. +0)s (18)
which is a series form PID-controller (1) with (Smith and Corripio 1985) (Rivera et al. 1986)
1 n 1 1
KCZETC—FQ:ETC—FH; TT="T1;, TpD=T2 (19)

3.2 Modifying the integral time for improved disturbance rejection

The PID-settings in (19) were derived by considering the setpoint response, and the result was that we
should effectively cancel the first order dynamics of the process by selecting the integral time 7, = 7.
This is a robust setting which results in very good responses to setpoints and to disturbances entering
directly at the process output. However, it is well known that for lag dominant processes with 7 > 6
(e.g. an integrating processes), the choice 77 = 71 results in a long settling time for input (“load”)
disturbances (Chien and Fruehauf 1990). To improve the load disturbance response we need to reduce
the integral time, but not by too much, because otherwise we get slow oscillations caused by having
almost have two integrators in series (one from the controller and almost one from the slow lag
dynamics in the process). This is illustrated in Figure 3, where we for the process

e /(rs+1) with 7, =30,0 =1
consider Pl-control with K, = 15 and four different values of the integral time:

e 71 =11 =30 (“IMC-rule”, see (19)): Excellent setpoint response, but slow settling for a load
disturbance.

e 7 = 80 = 8 (SIMC-rule, see below): Faster settling for a load disturbance.
e 77 = 4: Even faster settling, but the setpoint response (and robustness) is poorer.
e 77 = 2: Poor response with “slow” oscillations.

A good trade-off between disturbance response and robustness is obtained by selecting the integral
time such that we just avoid the slow oscillations, which corresponds to 7; = 86 in the above example.
Let us analyze this in more detail. First, note that these “slow” oscillations are not caused by the delay
0 (and occur at a lower frequency than the “usual fast” oscillations which occur at about frequency
1/6). Because of this, we neglect the delay in the model when we analyze the slow oscillations. The
process model then becomes

e s ~k 1 N k k'
7'13—1—1N 7'15+1N7'15_5

g(s) =k

where the second approximation applies since the resulting frequency of oscillations wy is such that
(T1wp)? is much larger than 1'. With a PI controller ¢ = K, (1 + %s) the closed-loop characetristic

polynomial 1 + gc then becomes
1

2
k’Kcs +71s+1

From (20) and (22) we get 70 = 77/2, S0 woT1 = %07'1 = 2%. Here 71 > 71 and it follows that wor > 1.
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Figure 3: Effect of changing the integral time 7; for Pl-control of “almost integrating” process

g(s) = e °/(30s + 1) with K, = 15.
Unit setpoint change at ¢ = 0; Load disturbance of magnitude 10 at ¢t = 20.

which is in standard second-order form, 7¢s? + 275(s + 1, with

[T 1 m—
T0 — ]{}’—IK’ <:§ k,KCT[ (20)

Oscillations occur for ¢ < 1. Of course, some oscillations may be tolerated, but a robust choice is to
have ( =1 (see also Marlin (1995) page 588), or equivalently

K.y = 4/K' (21)

Inserting the recommended value for K. from (19) then gives the following modified integral time
for processes where the choice 77 = 7 is too large:

1 = 4(1, + 0) (22)

3.3 SIMC-PID tuning rules

To summarize, the recommended SIMC PID settings® for the second-order time delay process in (4)

are3 | -
1
=== 23
kt.+0 K 7.+0 (23)
T = min{ﬁ, 4(Tc —+ 9)} (24)
™D = To (25)

2Here SIMC means “Simple control” or “Skogestad IMC”.
3The derivative time in (25) is for the series form PID-controller in (1).



Process g(s) K, 7 T
—fa

First-order ey %T:j—a min{ry,4(1. + 0)} | -
Second-order, eq.(4) | k (ns+81;?:2s+1) R min{r,4(7. +0)} | ™

Pure time delay ke 0 0 0 ) -
Integrating® k’% & (Tcie) 4(1. + ) -
Integrating with lag ’s(j:il) L (Tcie) 4(1. 4 0) T
Double integrating® k”i;s o7 4(7671%)2 4 (1. +6) 4 (1. +0)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7. as a tuning parameter).
(1) The pure time delay process is a special case of a first-order process with 7 = 0.

(2) The integrating process is a special case of a first-order process with 7, — 0.

(3) For the double integrating process, integral action has been added according to eq.(27).
(4)
(*)

*

The derivative time is for the series form PID controller in eq.(1).

Pure integral controller ¢(s) = % with K % IT(—I = k(T1+0).

Here the desired first-order closed-loop response time 7. is the only tuning parameter. Note that the
same rules are used both for PI- and PID-settings, but the actual settings will differ. To get a PI-
controller we start from a first-order model (with 7, = 0), and to get a PID-controller we start from
a second-order model. PID-control (with derivative action) is primarily recommended for processes
with dominant second order dynamics (with 7 > 6, approximately), and we note that the derivative
time is then selected so as to cancel the second-largest process time constant.

In Table 1 we summarize the resulting tunings for a few special cases, including the pure time
delay process, integrating process, and double integrating process. For the double integrating process,
we let let 79 — oo and introduce k" = k'/7» and find (after some algebra) that the PID-controller
for the integrating process with lag approaches a PD-controller with

1 1

Ko=— ———;
k" A(1. 4+ 0)?

p = 4(7. + 0) (26)

This controller gives good setpoint responses for the double integrating process, but results in steady-
state offset for load disturbances occuring at the input. To remove this offset, we need to reintroduce
integral action, and as before propose to use

1 =4(1, + 0) (27)
It should be noted that derivative action is required to stabilize a double integrating process if we

have integral action in the controller.

3.4 Recommended choice for tuning parameter 7.

The value of the desired closed-loop time constant 7, can be chosen freely, but from (23) we must have
—0 < 1. < oo to get a positive and nonzero controller gain. The optimal value of 7. is determined
by a trade-off between:

1. Fast speed of response and good disturbance rejection (favored by a small value of 7.)

2. Stability, robustness and small input variation (favored by a large value of 7).
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A good trade-off is obtained by choosing 7. equal to the time delay:
SIMC — rule for fast response with good robustness : 7, =6 (28)

This gives a reasonably fast response with moderate input usage and good robustness margins, and
for the second-order time delay process in (4) results in the following SIMC-PID settings which may
be easily memorized (7, = 6):

057 051
Ko=——=—- 2
k6 k' 0 (29)
T = min{ﬁ, 89} (30)
D =T, (31)

The corresponding settings for the ideal PID-controller are given in (37)-(38).

4 Evaluation of the proposed tuning rules

In this section we evaluate the proposed SIMC PID tuning rules in (23)-(31) with the choice 7. = 6.
We first consider processes that already are in the second-order plus delay form in (4). Afterwards
we consider more complicated processes which must first be approximated as second-order plus delay
processes (Step 1), before applying the tuning rules (Step 2).

4.1 First- or second-order time delay processes
4.1.1 Robustness

The robustness margins with the SIMC PID-settings in (29)-(31), when applied to first- or second-
order time delay processes, are always between the values given by the two columns in Table 2.

For processes with 71 < 86, for which we use 77 = 71 (left column), the system always has a gain
margin GM=3.14 and phase margin PM=61.4°, which is much better than than the typical minimum
requirements GM> 1.7 and PM> 30° (Seborg et al. 1989). The sensitivity and complementary
sensitivity peaks are My = 1.59 and M; = 1.00 (here small values are desired with a typical upper
bound of 2). The maximum allowed time delay error is A§/§ = PM [rad]/(w. - ), which in this
case gives Af/f = 2.14 (i.e., the system goes unstable if the time delay is increased from 6 to
(1+2.14)0 = 3.140).

As expected, the robustness margins are somewhat poorer for lag-dominant processes with tau; >
860, where we in order to improve the disturbance response use 7; = 86. Specifically, for the extreme
case of an integrating process (right column) the suggested settings give GM=2.96, PM=46.9°,
M, =1.70 and M; = 1.30, and the maximum allowed time delay error is Af = 1.596.

Of the robustness measures listed above, we will in the following concentrate on M,, which is the
peak value as a function of frequency of the sensitivity function S = 1/(1+ gc). Notice that M < 1.7
guarantees GM> 2.43 and PM> 34.2° (Rivera et al. 1986).

4.1.2 Performance

To evaluate the closed-loop performance, we consider a unit step setpoint change (y; = 1) and a unit
step input (load) disturbance (¢4 = ¢ and d = 1), and for each of the two consider the input and
output performance:
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Process ¢(s) TlfHe s %'e*os
Controller gain, K. fan ey
Integral time, 77 T 86
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4¢ 46.9°
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M; || 1.00 1.30
Phase crossover frequency, wigg * 6 1.57 1.49
Gain crossover frequency, w, - 0 0.50 0.51
Allowed time delay error, A#/0 2.14 1.59

Table 2: Robustness margins for first-order and integrating time delay process using the SIMC-
settings in (29) and (30) (7. = 6). The same margins apply to a second-order process (4) if we choose
Tp = T» in (31).

Output perfomance. To evaluate the output control performance we compute the integrated ab-
solute error (TAE) of the control error e = y — ys,.

[AE = /°° le(t)|dt
0

which should be as small as possible.

Input performance. To evaluate the manipulated input usage we compute the total variation
(TV) of the input u(t), which is sum of all its moves up and down. TV is a bit difficult to
define compactly for a continuous process, but if we discretize the input signal as a sequence,
[wr, ug, ..., u;, .. .], then

TV = Z |ui+1 — UZ|

i=1
which should be as small as possible. The total variation is a good measure of the “smoothness”
of a signal.

In Table 3 we summarize the results with the choice 7. = 6 for the following five first-order time
delay processes:

Case 1. Pure time delay process

Case 2. Integrating process

Case 3. Integrating process with lag 7 = 460
Case 4. Double integrating process

Case 5. First-order process with 7 = 46

Note that the robustness margins fall within the limits given in Table 2, except for the double
integrating process in case 4 where we from (27) have added integral action.

Setpoint change. The simulated time responses for the five cases are shown in Figure 4. The
setpoint responses are nice and smooth. For a unit setpoint change, the minimum achievable IAE-
value for these time delay processes is IAE = 6 (e.g. using a Smith Predictor controller (17) with
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Setpoint™ Load disturbance
Case | g(s) K, r r M, |TAE(y) | TV(w) |IAE(y) |TV(u) | f2E_®
1 ke=0s 0 *) - 1.59 [ 2.17 6 | 1.081 217 k9 [1.08 | 1.59
2 ke 0.2 86 - 1.70 || 3.92 60 | 1.22> | 16 kK'0> | 155 |3.27
3 k'ﬁ"ﬂ) 0. 2 80 T, =460 || 1.70 || 5.28 0 | 1.235; | 16 K'6* | 1.59 | 5.41
4 ke 00625 . 5 |86 86 1.96 || 7.92 0 | 0.2054757 | 128 k"6% | 2.34 | 5.49
e~ fs ST _
5 kit 820 — 2| 7 =40 | - 1.59 || 2170 | 4.114 2 kO 1.08 | 241

Table 3: SIMC settings and performance summary for five different time delay processes (7. = ).
(1) The TAE and TV-values for PID control are without derivative action on the setpoint.

(2) TAEmin is for the TAE-optimal PI/PID-controller of the same kind.

(3) The derivative time is for the series form PID controller in eq.(1).
(*)

*) Pure integral controller c(s) = £L with K; = IT(—I =42

tau. = 0). From Table 3 we see that with the proposed settings the actual TAE-setpoint-value varies
between 2.176 (for the first-order process) to 7.926 (for the more difficult double integrating process).

To avoid “derivative kick” on the input, we have chosen to follow industry practice and not
differentiate the setpoint, see (2). This is the reason for the difference in the setpoint responses
between cases 2 and 3, and also the reason for the somewhat sluggish setpoint response for the
double integrating process in case 4. Note also that the setpoint response can always be modified by
introducing a “feedforward” filter on the setpoint.

Load disturbance. The load disturbance responses are also nice and smooth, although a bit
sluggish for the integrating and double integrating processes. In the last column in Table 3 we
compare the achieved TAE-value with that for the IAE-optimal controller of the same kind (PT or
series-PID). The ratio varies from 1.59 for the pure time delay process to 5.49 for the more difficult
double integrating process.

However, lower TAE-values generally come at the expense of poorer robustness (larger value of
M;), more excessive input usage (larger value of TV), or a more complicated controller. For example,
for the integrating process, the TAE-optimal PI-controller (K, = %3%- %, 77 = 4.16) reduces TAE(load)
by a factor 3.27, but the input variation increases from TV=1.55 to TV=3.79, and the sensitivity
peak increases from M; = 1.70 to My, = 3.71. The TAE-optimal PID-controller (K, = 0;30 : %,
71 = 1.260, 7p = 0.760) reduces TAE(load) by a factor 8.2 (to TAE = 1.95k'6?), but this controller
has M, = 4.1 and TV (load)=>5.34. The lowest achievable IAE-value for the integrating process is for
an ideal Smith Predictor controller (17) with 7. = 0, which reduces IAE(load) by a factor 32 (to IAE
= 0.5k'6%). However, this controller is unrealizable with infinite input usage and requires a perfect
model.

Input usage. As seen from the simulations in the lower part of Figure 4 the input usage with the
proposed settings is very smooth in all cases. To have no steady-state offset for a load disturbance,
the minimum achievable value is TV (load)=1 (smooth input change with no overshoot), and we find
that the achieved value ranges from 1.08 (first-order process), through 1.55 (integrating process) and
up to 2.34 (double integrating process).
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Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7. = 0).
Unit setpoint change at ¢ = 0; Unit load disturbance at ¢ = 20.

Simulations are without derivative action on the setpoint.

Parameter values: # =1,k =1,k =1,k" = 1.

4.2 More complex processes: Obtaining the effective delay

We here consider some cases where we must first (step 1) approximate the model as a first- or
second-order plus delay process, before (step 2) applying the proposed tuning rules.

In Table 4 we summarize for fifteen different processes (E1-E15), the model approximation (step
1), the SIMC-settings with 7. = # (step 2) and the resulting M;-value, setpoint and load disturbance
performance (IAE and TV). For most of the processes, both PI- and PID-settings are given. For some
processes (E1, E12, E13, E14, E15) only first-order approximations are derived, and only PI-settings
are given. The model approximations for cases E2, E3, E6 and E13 are studied separately; see (41),
(13), (42) and (43). Processes E1 and E3-E8 have been studied by Astrom and coworkers (Astrom et
al. 1998) (Hagglund and Astrom 2001), and in all cases the SIMC Pl-settings and TAE-load-values in
Table 4 are very similar to those obtained by Astrom and coworkers for similar values of M. Process
E11 has been studied by Schei (1994).

The peak sensitivity (M) for the 25 cases ranges from 1.23 to 2, with an average value of 1.66.
This confirms that the simple approximation rules (including the half rule for the effective delay)
are able to maintain the original robustness where M, ranges from 1.59 to 1.70 (see Table 2) . The
poorest robustness with M; = 2 is obtained for the two inverse response processes in E14 and E15.
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For these two processes, we also find that the input usage is large, with TV for a load disturbance
larger than 3, whereas it for all other cases is less than 2 (the minimum value is 1). The inverse
responses processes E14 and E15 are rather unusual in that the process gain remains finite (at 1) at
high frequencies, and we also have that they give instability with PID control.

The input variation (TV) for a setpoint change is large in some cases, especially for cases where
the controller gain K. is large. In such cases the setpoint response may be slowed down by, for
example, prefiltering the setpoint change or using b smaller than 1 in (3). (Alternatively, if input
usage is not a concern, then prefiltering or use of b > 1 may be used to speed up the setpoint
response. )

The last column in Table 4 gives for a load disturbance the ratio between the achieved TAE and
the minimum TAE with the same kind of controller (PI or series-PID) with no robustness limitations
imposed. In many cases this ratio is surprisingly small (e.g., less than 1.4 for the PI-settings for
cases E2, E7, E9, E11 and E15). However, in most cases the ratio is larger, and even infinity (cases
E1l and E6-PID). The largest values are for processes with little or no inherent control limitations
(e.g. no time delay), such that theoretically very large controller gains may be used. In practice, this
performance can not be achieved due to unmodeled dynamics and limitations on the input usage.

For example, for the second-order process g(s) = m (case E1) one may in theory achieve
perfect control (IAE=0) by using a sufficiently high controller gain. This is also why no SIMC PID-
settings are given in Table 4 for this process, because the choice 7. = 6 = 0 gives infinite controller
gain. More precisely, going back to (23)-(24), the SIMC-PID settings for process E1 are

c:lﬁzi; TT=471; T =T =0.1 (32)

kt. .
These settings give for any value of 7. excellent robustness margins. In particular, for 7. — 0 we get
GM=o00, PM=76.3°, My = 1, and M; = 1.15. However, in this case the good margins are misleading
since the crossover frequency, w. &~ 1/7., approaches infinity as 7. goes to zero. Thus, the time delay
error A§ = PM /w,. that yields instability approaches zero (more precisely, 1.297,) as 7, goes to zero.

The recommendation given earlier was that a second-order model (and thus use of PID control
with SIMC settings) should only be used for dominant second-order process with 7 > 6, approxi-
mately. This recommendation is justified by comparing for cases E1-E11 the results with PI-control
and PID-control. We note from Table 4 that there is a close correlation between the value of 75/6 and
the improvement in TAE for load changes. For example, 75/6 is infinite for case E1, and indeed the
(theoretical) improvement with PID control over PI control is infinite. In cases E5, E6, E8, E3, E10
and E2 the ratio 75/ is larger than 1 (ranges from 7.9 to 1.6), and there is a significant improvement
in TAE with PID control (by a factor 24 to 1.9). In cases E11, E9, E4 and E7 the ratio 75/6 is less
than 1 (ranges from 1 to 0.4) and the improvement with PID control is rather small (by a factor 1.6
to 1.3). This improvement is too small in most cases to justify the additional complexity and noise
sensitivity of using derivative action. This is for the SIMC settings. The trend is the same for the
[AE-optimal settings, although there is generally a larger improvement with PID over PI control.

In summary, these fifteen examples illustrate that the simple SIMC tuning rules used in combi-
nation with the simple half-rule for estimating the effective delay, result in good and robust settings.

5 Comparison with other tuning methods

Above we have evaluated the proposed SIMC tuning approach on its own merit. A detailed and
fair comparison with other tuning methods is virtually impossible — because there are many tuning
methods, many possible performance criteria and many possible models. We here perform a com-
parison for three typical processes; the integrating process with delay (Case 2), the pure time delay
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process (Case 1), and the fourth-order process E5 with distributed time constants. The following
tuning methods are used for comparison:

Original IMC PID tuning rules. Rivera et al. (1986) derived PID settings for various pro-
cesses. For a first-order time delay process their “improved IMC Pl-settings” for fast response
(e =1.70) are

0.588 (11 + ¢ 0
TMC PT : Kc:—u; ="+ (33)
k 0 2
and their PID-settings for fast response (¢ = 0.86) are
0.769 0
IMC series — PID : K, = T%, TI=T Tp =g (34)

Note that these rules give 77 > 7, so the response to input load disturbances will be poor for lag
dominant processes with 7 > 6.
Astrom/Schei PID tuning (Maximize K;). Schei (1994) argued that in process control

applications we usually want a robust design with the highest possible attenuation of low-frequency

disturbances, and proposed to maximize the low-frequency controller gain K7 def IT(—IC subject to

given robustness constraints on the sensitivity peaks M, and M;. Both for PI- and PID-control,
maximizing K7 is equivalent to minimizing the integrated error (IE) for load disturbances, which for
robust designs with no overshoot is the same as minimizing the IAE (Astrom and Hagglund 1995).
Note that the use of derivative action (7p) does not affect the IE (and also not the TAE for robust
designs), but it may improve robustness (lower M) and reduce the input variation (lower TV — at
least with no noise). Astrom et al. (1998) showed how to formulate the minimization of K as an
efficient optimization problem for the case with PI control and a constraint on M. The value of the
tuning parameter M, is typically between 1.4 (robust tuning) and 2 (more aggressive tuning). We
will here select it to be the same as for the corresponding SIMC design, that is, typically around 1.7.

Ziegler-Nichols (ZN) PID tuning rules. Ziegler and Nichols (1942) proposed as the first
step to generate sustained oscillations with a P-controller, and from this obtain the “ultimate” gain
K, and corresponding “ultimate” period P, (alternatively, this information can be obtained using
relay feedback (Astrom and Hagglund 1995)). Based on simulations, Ziegler and Nichols (1942)
recommended the following “closed-loop” settings:

P —control : K.=0.5K,

PI — control : K.=0.45K,; 7 = P,/1.2
PID — control (series) : K,= 0.3K,; 71 = P,/4; 7p = P,/4

Remark. We have here assumed that the PID-settings given by Ziegler and Nichols (K. = 0.6K,,7; = P, /2,7 =
P, /8) were originally derived for the ideal form PID controller (see (Hellem 2001) for justification), and have translated
these into the corresponding series settings using (36). This gives somewhat less agressive settings and better TAE-
values than if we assume that the ZN-settings were originally derived for the series form. Note that K./7r and K.7p
are not affected, so the difference is only at intermediate frequencies.

Tyreus-Luyben modified ZN PI tuning rules. The ZN settings are too aggressive for most
process control applications, where oscillations and overshoot are usually not desired. This led Tyreus
and Luyben (1992) to recommend the following PI-rules for more conservative tuning:

K.=0313K,; 77 =2.2P,
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Figure 5: Responses for PI-control of integrating process, g(s) = e~%/s, with settings from Table 5
Setpoint change at t = 0; load disturbance of magnitude 0.5 at ¢ = 10.

5.1 Integrating process

efﬂs

The results for the integrating process, g(s) = k'“—, are shown in Table 5 and Figure 5. The
SIMC-PT controller with 7. = 6 yields My = 1.7 and TAE(load)=16. The Astrom/Schei PI-settings
for My = 1.7 are very similar to the SIMC settings, but with somewhat better load rejection (TAE
reduced from 16 to 13). The ZN PI-controller has a shorter integral time and larger gain than
the SIMC-controller, which results in much better load rejection with IAE reduced from 16 to 5.6.
However, the robustness is worse, with M increased from 1.70 to 2.83 and the gain margin reduced
from 2.96 to 1.86. The IMC settings of Rivera et al. (1986) result in a pure P-controller with very
good setpoint responses, but there is steady-state offset for load disturbances. The modified ZN
Pl-settings of Tyreus-Luyben are almost identical to the SIMC-settings. This is encouraging since it
is exactly for this type of process that these settings were developed (Tyreus and Luyben 1992).

5.2 Pure time delay process

The results for the pure time delay process, g(s) = ke™?%, are given in Table 6 and Figure 6. Note
that the setpoint and load disturbances responses are identical for this process, and also that the
input and output signals are identical, except for the time delay.

Recall that the SIMC-controller for this process is a pure integrating controller with M; = 1.59
and [AE=2.17. The minimum achievable TAE-value for any controller for this process is [AE=1
(using a Smith Predictor (17) with 7. = 0). We find that the PI-settings using SIMC (IAE=2.17),
IMC (IAE=1.71) and Astrom/Schei (IAE=1.59) all yield very good performance. In particular, note
that the excellent Astrom/Schei performance is achieved with good robustness (M, = 1.60) and very
smooth input usage (TV=1.08). Pessen (1994) recommends Pl-settings for the time delay process
that give even better performance (IAE=1.44), but with somewhat worse robustness (M; = 1.80).
The ZN PI-controller is significantly more sluggish with TAE=3.70, and the Tyreus-Luyben controller

16



is extremely sluggish with IJAE=14.1. This is due to low value of the integral gain K.

Because the process gain remains constant at high frequency, any “real” PID controller (with
both proportional and derivative action), yields instability for this process, including the ZN PID-
controller (Rivera et al. 1986). (However, the IMC PID-controller is actually a ID-controller, and it
yields a stable response with TAE=1.38.)

The poor response with the ZN Pl-controller and the instability with PID control, may partly
explain the myth in the process industry that time delay processes cannot be adequately controlled
using PID controllers. However, as seen from Table 6 and Figure 6, excellent performance can be
achieved even with Pl-control.

OUTPUTYy

ZN
(0] = Tyreus/Luyben b
0 2 4 6 8 10 12 14 16 18 20
time

Figure 6: Setpoint responses for PI-control of pure time delay process, g(s) = e*, with settings from
Table 6.

5.3 Fourth-order process (E5)

The results for the fourth-order process E5 (Astrom et al. 1998) are shown in Table 7 and Figure 7.
The SIMC Pl-settings again give a smooth response (TV(load) = 1.41) with good robustness (M, =
1.59) and acceptable disturbance rejection (IAE = 0.296). The Astrom/Schei PI-settings with M =
1.6 give very similar reponses. IMC-settings are not given since no tuning rules are provided for
models in this particular form (Rivera et al. 1986). The Ziegler-Nichols PI-settings give better
disturbance rejection (IAE = 0.137), but as seen in Figure 7 the system is close to instability. This
is confirmed by the large sensitivity peak (M, = 11.3) and excessive input variation (TV = 13.9)
caused by the oscillations. The Tyreus-Luyben Pl-settings give [AE = 0.131 and a much smoother
response with TV = 2.91, but the robustness is still somewhat poor (M; = 2.72). As expected, since
this is a dominant second-order process, a significant improvement can be obtained with PID-control.
As seen from Table 7 the performance of the SIMC PID-controller is not quite as good as the ZN
PID-controller, but the robustness and input smoothness is much better.
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Figure 7: Responses for process 1/(s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1) (E5) with settings from
Table 7.
Setpoint change at t = 0; load disturbance of magnitude 3 at ¢t = 10.

6 Discussion

6.1 Detuning the controller

The above recommended SIMC settings with 7, = #, as well as almost all other PID tuning rules given
in the literature, are derived to give a “fast” closed-loop response subject to achieving reasonable
robustness. However, in many practical cases we do need fast control, and to reduce the manipulated
input usage, reduce measurement noise sensitivity and generally make operation smoother, we may
want detune the controller. One main advantage of the SIMC tuning method is that detuning is
easily done by selecting a larger value for 7.. From the SIMC tuning rules (23)-(24) a larger value
of 7. decreases the controller gain and, for lag-dominant processes with 71 > 4(7,. + ), increases the
integral time. Fruehauf et al. (1994) state that in process control applications one typically chooses
T. > 0.5 min, except for flow control loops where one may have 7. about 0.05 min.

6.2 Measurement noise

Measurement noise has not been considered in this paper, but it is an important consideration in
many cases, especially if the proportional gain K. is large, or, for cases with derivative action, if
the derivative gain K.7p is large. However, since the magnitude of the measurement noise varies
a lot in applications, it is difficult to give general rules about when measurement noise may be a
problem. In general, robust designs (with small M) with moderate input usage (small TV) are
insensitive to measurement noise. Therefore, the SIMC rules with the recommended choice 7, = 6,
are less sensitive to measurement noise than most other published settings method, including the
ZN-settings. If actual implementation shows that the sensitivity to measurement noise is too large,
then the followong modifications may be attempted:
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1. Filter the measurement signal, for example, by sending it through a first-order filter 1/(7ps+1);
see also (2). With the proposed SIMC-settings one can typically increase the filter time constant
Tr up to about 0.57., without a large affect on performance and robustness.

2. If derivative action is used, one may try to remove it, and obtain a first-order model before
deriving the SIMC Pl-settings.

3. If derivative action has been removed and filtering the measurement signal is not sufficient,
then the controller needs to be detuned by going back to (23)-(24) and selecting a larger value
for 7.

6.3 Ideal PID controller

The settings given in this paper (K., 77,7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

1 K!
Ideal PID : ((s) = K. (1 + e + T'Ds> = s (T}T'DSQ + 775 + 1) (35)

we use the following translation formulas

D D D
K=k (14720 = (14725 rp- 30
c +7'I v T I +7'I ) 1_'_:-_,? ( )

The SIMC-PID series settings in (29)-(31) then correspond to the following SIMC ideal-PID
settings (1. = 0):

05(m + T T:
7—1<891 Ké:?(lg 2), 7—;:7—14_7—2) TID:1+2:_i (37)
T >80 : K’:—O'5E<1+E>' =80+ 1y Th=—02 (38)
PE Re T g 8o/ 7 S A

We see that the rules are much more complicated when we use the ideal form.

Example. Consider the second-order process g/s) = e™*/(s +1)* (E9) with the k =1,0 =1,7, = 1
and o = 1. The series-form SIMC' settings are K. = 0.5, 71 = 1 and 7p = 1. The corresponding
settings for the ideal PID controller in (35) are K. =1, 71 = 2 and 1}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.

Remarks:

1. Use of the above formulas make the series and ideal controllers identical when considering the
feedback controller, but they may differ when it comes to setpoint changes, because one usually
does not differentiate the setpoint and the values for K, differ.

2. The tuning parameters for the series and ideal forms are equal when the ratio between the
derivative and integral time, 7p /77, approaches zero, that is, for a PI-controller (7p = 0) or a
PD-controller (7; = 00).

3. Note that it is not always possible to do the reverse and obtain series settings from the ideal
settings. Specifically, this can only be done when 77 > 47},. This is because the ideal form is
more general as it also allows for complex zeros in the controller. Two implications of this are:
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(a) We should start directly with the ideal PID controller if we want to derive SIMC-settings
for a second-order oscillatory process (with complex poles).

(b) Even for non-oscillatory processes, the ideal PID may give better performance due to its
less restrictive form. For example, for the process g(s) = 1/(7s + 1)* (E4), the minimum
achievable TAE for a load disturbance is TAE=0.89 with a series-PID, and 40% lower
(IAE=0.52) with an ideal PID. The optimal settings for the ideal PID-controller (K =
4.96, 77 = 1.25, 77, = 1.84) can not be represented by the series controller because 77 < 477,.

6.4 Retuning for integrating processes

Integrating processes are common in industry, but control performance is often poor because of
incorrect settings. When encountering oscillations, the intuition of the operators is to reduce the
controller gain. This is the exactly opposite of what one should do for an integrating process, since
the product of the controller gain K. and the integral time 7; must be larger than the value in (22)
in order to avoid slow oscillations. One solution is to simply use proportional control (with 77 = 00),
but this is often not desirable. Here we show how to easily retune the controller to just avoid the
oscillations without actually having to derive a model. This approach has been applied with success
to industrial examples.

Consider a PI controller with (initial) settings K.o and 779 which results in “slow” oscillations
with period PO (larger than 377, approximately). Then we likely have a close-to integrating process
g(s) = k’e for which the product of the controller gain and integral time (K.779) is too low.
From (20) we can estimate the damping coefficient ( and time constant 7 associated with these
oscillations, and a standard analysis of second-order systems (e.g. Seborg et al. (1989) page 118)
gives that the corresponding period is

2
h=A=am m\/w 2 e (39)

where we have assumed (% << 1 (significant oscillations). Thus, from (39) the product of the original
controller gain and integral time is approximately

1 /770\2
Keo -0 = (21)° 5 (#)
0

To avoid oscillations (¢ > 1) with the new settings we must from (21) require K.r; > 4/k', that is,
we must require that

Koo — w2

2

KCT[ S ]_ (&) (40)
Ti0

Here 1/72 = 0.10, so we have the rule:

e To avoid “slow” oscillations the product of the controller gain and integral time should be
increased by a factor f =~ 0.1(Py/170)?.

Example. This actual industrial case originated as a project to improve the purity control of a
distillation column. It soon become clear that the main problem was large variations (disturbances) in
its feed flow. The feed flow was again the bottoms flow from an upstream column, which was again set
by its reboiler level controller. The control of the reboiler level itself was acceptable, but the bottoms
flowrate showed large variations, This is shown in Figure 8, where y is the reboiler level and u is the
bottoms flow valve position. The PI settings had been kept at their default setting (K. = —0.5 and
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Figure 8: Industrial case study of retuning reboiler level control system

11 = 1 min) since start-up several years ago, and resulted in an oscillatory response as shown in the
top part of Figure 8.

From a closer analysis of the “before” response we find that the period of the slow oscillations is
Py =0.85 h = 51 min. Since 71 =1 min, we get from the above rule we should increase K. - 11 by a
factor f =~ 0.1+ (51)% = 260 to avoid the oscillations. The plant personnel were somewhat sceptical
to authorize such large changes, but eventually accepted to increase K. by a factor 7.7 and 11 by
a factor 24, that is, K.t was increased by 7.7 - 24 = 185. The much improved response is shown
in the “after” plot in Figure 8. There is still some minor oscillations, but these may be caused by
disturbances outside the loop. In any case the control of the downstream distillation column was much
improved.

6.5 Derivative action to counteract time delay?

Introduction of derivative action, e.g. 7p = #/2, is commonly proposed to improve the response when
we have time delay (Smith and Corripio 1985) (Rivera et al. 1986). To derive this value we may in
(17) use the more exact 1st order Pade approximation, e % ~ (—£s+1)/(4s + 1). With the choice
T, = 0 this results in the same series-form PID-controller (18) found above, but in addition we get a
term (£s+1)/(0.5%s+1). This is as an additional derivative term with 7p = 0/2, effective over only
a small range, which increases the controller gain by a factor of two at high frequencies. However,
with the robust SIMC settings used in this paper (7, = #), the addition of derivative action (without
changing K. or 77) has in most cases no effect on IAE for load disturbances, since the integral gain
K; = K_./717 is unchanged and there are no oscillations (Astrom and Hagglund 1995). Although
the robustness margins are somewhat improved (for example, for an integrating with delay process,
k's=% /s, the value of Mj is reduced from 1.70 (PI) to 1.50 (PID) by adding derivative action with
Tp = 6/2), this probably does not justify the increased complexity of the controller and the increased
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sensitivity to measurement noise. This conclusion is further confirmed by Table 6 and Figure 6,
where we found that a PI-controller (and even a pure I-controller) gave very good performance for a
pure time delay process. In conclusion, it is not recommended to use derivative action to counteract
time delay, at least not with the robust settings recommended in this paper.

6.6 Concluding remarks

e As illustrated by the many examples, the very simple analytic tuning procedure presented in
this paper yields surprisingly good results. Additional examples and simulations are available
in reports that are available over the Internet (Holm and Butler 1998) (Skogestad 2001). The
proposed SIMC-settings are quite similar to the “simplified IMC-PID tuning rules” of Fruehauf
et al. (1994), which are based on extensive simulations and have been verified industrially.
Importantly, the approach is analytic, which makes it very well suited for teaching and for
gaining insight. Specifically, it gives invaluable insight into how the controller should be retuned
in response to process changes, like changes in the time delay or gain.

e The approach has been developed for typical process control applications. Unstable processes
have not been considered, with the exception of integrating processes. Oscillating processes
(with complex poles or zeros) have also not been considered.

e The effective delay 0 is easily obtained using the proposed half rule. Since the effective delay
is the main limiting factor in terms of control performance, its value gives invaluable insight
about the inherent controllability of the process.

e From the settings in (23)-(25), a PI-controller results from a first-order model, and a PID-
controller from a second-order model. With the effective delay computed using the half rule
in (10)-(11), it then follows that PI-control performance is limited by (half of) the magnitude
of the second-largest time constant 75, whereas PID-control performance is limited by (half of)
the magnitude of the third-largest time constant, 73.

e The tuning method presented in this paper starts with a transfer function model of the process.
If such a model is not known, then it is recommended to use plant data, together with a
regression package, to obtain a detailed transfer function model, which is then subsequently
approximated as a model with effective delay using the half-rule.

7 Conclusion

A two-step procedure is proposed for deriving PID settings for typical process control applications.

1. The half rule and is used to approximate the process as a first or second order model with
effective delay 6, see (10)-(11),

2. For a first-order model (with parameters k, 7, and ) the following SIMC Pl-settings are sug-

gested:
1 1

K.=—- :

“ kT.+0

where the closed-loop response time 7, is the tuning parameter. For a dominant second-order
process (for which 7 > , approximately), it is recimmended to add derivative action with

71 = min{ry, 4(r. + 0)}

Series — form PID : 7 =7
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Note that although the same formulas are used to obtain K. and 7 for both PI- and PID-control,
the actual values will differ since the effective delay # is smaller for a second-order model. The tuning
parameter 7, should be chosen to get the desired trade-off between fast response (small TAE) on the
one side, and smooth input usage (small TV) and robustness (small M) on the other side. The
recommended choice of 7. = 6 gives robust (M, about 1.6 to 1.7) and somewhat conservative settings
when compared with most other tuning rules.
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Appendix: Approximation of positive numerator time con-
stants

In Figure 9 we consider four approximations of a real numerator term (7's + 1) with 7' > 0. In terms of the
notation used in the rules presented in the paper, these approximations correspond to

T 1
Approximation T1 : ( bs +1) ~Ty/m>1
(ros +1)

. . (T()S + ]_)
Approximation T2 : ~Ty/m0 <1
pp (7'03 +1) 0/ <
. . (TUS + 1) 1

Approximation T3 : ~
P (os+1) (10 —To)s+1
(Tps + 1) N |

Approximation T4 : ~
P (7005 + 1) (ops + 1) (TgThs 1)

For control purposes we have that
e Approximations that give a too high gain are “safe” (as they will increase the resulting gain margin)

e Approximations that give too much negative phase are “safe” (as they will increase the resulting phase
margin)

and by considering Figure 9 and we have that

1. Aprroximation 1 (with Ty > 7) is always safe (both in gain and phase). It is good for frequencies
w>1 / T0

2. Approximation 2 (with Ty < 79) is never safe (neither in gain or phase). It is good for w > 5/T.
3. Approximation 3 is good (and safe) for w < 1/(79 — Tp). At high frequencies it is unsafe in gain.

4. Approximation 4 is good (and safe) for w > 1/74 = Ty/(704706). At low frequencies it is somewhat
unsafe in phase.
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Figure 9: Comparison of go(s) = ( with 7, > T > 7, (solid line), with four approximations

Tas+1)(1p8+1)

(dashed and dotted lines): g;(s) = (T:Z—fl), ga(s) = (TZ—E)’ g3(s) = m with 73 = 7, — T, and
94(8) = (7_45—1+1) with Ty = T‘az-b.

“Good” here means that the resulting controller settings yield acceptable performance and robustness. Note
that approximations 1 and 2 are asymptotically correct (and best) at high frequency, whereas approximation
3 is assymptotically correct (and best) at low frequency. Approximation 4 is is asymptotically correct at
both high and low frequencies.

Furthermore, for control purposes it is most critical to have a good approximation of the plant behavior
at about the bandwidth frequency. For our model this is approximately at w = 1/6 where 6 is the effective
delay. From this we derive:

1. If Ty is larger than all denominator time constant (7o) use Approximation 1 (this is the only approxi-
mation that applies in this case and it is always safe).

2. If 79 > Ty > 50 use Approximation 2. (Approximation 2 is “unsafe”, but with Ty > 50 the resulting
increase in My with the suggested SIMC-settings is less than about 0.3).

3. If the resulting 73 = 79 — T is smaller than # use Approximation 3.

4. If the resulting 74 is larger than 6 use Approximation 4

The first three approximations have been the basis for deriving the correspodning rules T1-T3 given
in the paper. The rules have been verified by evaluating the resulting control performance when using the
approximated model to derive SIMC PID settings. Some specific comments on the rules:
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e Since the loss in accuracy when using Approximation 3 instead of Approximation 4 is minor, even
for cases where Approximation 4 applies, it was decided to not include Approximation 4 in the final
rules.

e Approximation 1,
(Tos +1)
(7’08 + 1)

where k£ = %Q > 1 is good for 7p > 6. It may be safely applied also when 7y < 6, but then gives
conservative controller settings because the gain k = T'/7p is too high at the important frequency
1/6. This is the reason for the two modifications Tla and T1b to Approximation 1. For example,
for the process go(s) = (0.225;11)2 e ®, Approximation 1 gives O_QLH_le*s with & = T/7y = 10. With
Te = 0 = 1 the SIMC-rules then yield K. = 0.01 and 77 = 0.2 which gives a very sluggish reponse with
TAE(load)=20 and M, = 1.10. With the modification k = Ty/6 = 2 (Rule T1la), we get K. = 0.05
which gives IAE(load)=4.99 and M, = 1.84 (which is close to the IAE-optimal PI-settings for this

process).

e The introduction of 7y instead of 79 in Rule T3, gives a smooth transition between Rules T2 and T3,
and also improves the accuracy of Approximation 3 for the case when 7 is large.

e We normally select 79 = 79, (large), except when 7y, is “close to Ty”. Specifically, we select 9 = 7pp
(small) if Ty/70p < T0a/To and Ty/mos < 1.6. The factor 1.6 is partly justified because 80/50 = 1.6,
and we then in some important cases get a smooth transition when there are parameter changes in
the model go(s).

Example E2. For the process

(—0.35s +1)(0.08s + 1)
(25 + 1)(Ls + 1)(0.45 + 1)(0.25 + 1)(0.05s + 1)3

go(s) =k

we first introduce from Rule T3 the approximation

0.085+1 1
025 +1 0125+ 1

Using the half rule the process may then be approximated as a first-order delay process with
0=1/2+04+4+0.124+3-0.056+03=147;, 7 =2+1/2=25
or as a second-order delay process with
0=04/2+0.12+3-005+03=0.77;, 71 =2; T=1+04/2=12

Remark: We here used 19 = 179, = 0.2 (the closest larger time constant) for the approzimation of the zero
at Ty = 0.08. Actually, this is a borderline case with Ty/Top = 1.6, and we could instead have used 19 = o =
0.05 (the closest smaller time constant). Approzimation using Rule T1b would then give g:ggzi ~ 1, but
the effect on the resulting models would be marginal: The resulting effective time delay 0 would change from
1.47 to 1.50 (first-order process) and from 0.77 to 0.80 (second-order proces), whereas the time constants

(11 and 1) and gain (k) would be unchanged.
Example E6. For the process (Ezample 6 in Astrom et al. (1998)),

(0.17s +1)?
s(s+1)?(0.028s + 1)

go(s) = (42)
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we first introduce from Rule T3 the approxzimation

(0.17s +1)* 1 1
(s+1) ~ (1—-017—-017)s+1 0.66s+1

Using the half rule we may then approzimate (42) as an integrating process, g(s) = k'e™% /s, with
K'=1, 6=1+0.66+0.028 = 1.69
or as an integrating process with lag, g(s) = k'e=%%/s(1ys + 1), with

K'=1, 6=0.66/2+0.028=0.358; 75 =1+0.66/2=1.33

Example E13. For the process
2s+1

10s + 1)(0.5s + 1)°

the effective delay is (as we will show) 0 = 1.25. We then get 7o = min(7p,50) = min(10,6.25) = 6.25, and
from Rule T3 we have

- (43)

go(s) = (

2s+1 _ (6.25/10)  0.625
10s +1° (6.25 —2)s+1  4.25s+1

Using the half rule we then get a first-order time delay approzimation with

E=0.625 6=1+4+0.5/2=1.25 1 =4.2540.5/2=4.5
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Case Process model, go(s) Approximation, g(s) ——  SIMC settings Performance

Setpoint (1) Load disturbance

Eoo |n o m [ K |m w0 ® | M, | 1AR | TV | TABG) | TV | e
E1 (PI) W} oo 1 01 |11 |- 55 |08 |- 1.56 || 0.36 127 | 015 155 | oo
—0.3s+ .08s+
B2 (P1) | Grnmeadte e oosre | 1 147 |25 |- 0.85 |25 |- 1.66 | 3.56 | 190 |[297 |1.26 |1.39
E2 (PID) 1 0.77 2 1.2 1.30 2 1.2 1.73 || 2.73 2.84 1.54 1.33 1.99
2(155+1
E3 (PI) et 1.5 | 015 | 105 |- 233 | 1.05 |- 155 | 046 | 497 | 045 |1.30 | 3.82
E3 (PID) 1.5 0.05 1 0.15 || 6.67 | 0.4 0.15 1.47 || 0.25 15.0 0.068 1.45 64
E4 (PI) ﬁ 1 2.5 1.5 - 0.3 1.5 - 1.46 || 5.59 1.15 5.40 1.10 1.93
E4 (PID) 1 1.5 1.5 1 0.5 1.5 1 143 || 4.31 1.27 3.13 1.12 3.49
E5 (PI) RS (TR pam O an 1 0.148 | 1.1 |- 371 |11 |- 159 | 045 | 030 |81 148 | 4.1
E5 (PID) 1 0.028 | 1.0 0.22 || 17.9 0.224 | 0.22 1.83 || 0.23 49.8 0.012 1.97 6.2
(0.17541)2 *
E6 (PI) T (0028571 1 169 | |- 0.296 | 13.5 | - 1.48 || 6.50 0.67 | 45.7 1.55 | 10.1
E6 (PID) 1 0.358 | 1.33 || 1.40 2.86 1.33 1.23 || 1.95 3.19 2.04 1.55 o0
E7 (PI) (_sisl'gé 1 3.5 1.5 - 0.214 | 1.5 - 1.66 || 7.28 1.06 8.34 1.28 1.23
E7 (PID) 1 2.5 1.5 1 0.3 1.5 1 1.85 || 5.99 1.02 6.23 1.57 1.22
ES8 (PI) PFICESAEL 1 1.5 () 0.33 | 12 - 1.76 || 6.47 0.84 36.4 1.78 3.2
E8 (PID) 1 0.5 () 1.5 1.5 4 1.5 1.79 || 2.02 4.21 2.67 1.99 40
E9 (PI) ﬁ 1 1.5 1.5 - 0.5 1.5 - 1.61 || 3.38 1.31 3.14 1.15 1.34
E9 (PID) 1 1 1 1 0.5 1 1 1.59 || 3.03 1.29 2 1.10 1.60
E10 (PI) m 1 2 21 - 5.25 16 - 1.72 || 6.34 12.3 3.05 1.49 2.9
E10 (PID) 1 1 20 2 10 8 2 1.65 || 4.32 22.8 0.80 1.37 49
(=s+1 -
E11 (PI) We s 1 ) 7 - 0.7 7 - 1.63 || 11.5 1.59 10.1 1.20 1.37
E1l1 (PID) 1 3 6 3 1 6 3 1.66 || 9.09 2.11 6.03 1.24 1.86
(6s4+1)(3s+1)e” %3¢
E12 (PI) (10$+%2$f+1)(8+9 0.225 | 0.3 1 - 7.41 1 - 1.66 || 1.07 18.3 0.15 1.39 2.1
E13 (PI) {10s71)(0.5551) 0.625 | 1.25 4.5 - 2.88 4.50 - 1.74 || 2.86 6.56 1.61 1.20 3.39
El4 (P1) | ==t 1 1 SO 0.5 8 - 2 3.59 2.04 17.3 3.40 3.75
E15 (PI) ’S‘fll 1 1 1 - 0.5 1 - 2 2 1.02 2.85 3.00 1.23
Table 4: Approximation g(s) = km, SIMC PI/PID-settings (7. = #) and performance summary for 15 processes.

(1) The TIAE- and TV-values for PID control are without derivative action on the setpoint.
2) TAEmin is for the TAE-optimal PI- or PID-controller.

(
(
(

*

Integrating process, g(s) = k' (

6—05

s(Tos+1) "

)
3) The derivative time for the series form PID controller in eq.(1).
)




Setpoint Load disturbance
Method K, k0| 7m/0 | /0 W || M, | IAE(y) | TV(u) | IAE(y) | TV(u)
SIMC (7, = 0) 0.5 8 - 1.70 || 3.92 1.22 16.0 1.55
IMC (e = 1.76) 0.59 oo | - 1.75 || 2.14 1.32 00 1.24
Astrom/Schei (M; = 1.7) || 0.404 7.0 |- 1.70 || 4.56 1.16 13.0 1.88
ZN-PI 0.71 3.33 | - 2.83 || 3.92 2.83 5.61 2.87
Tyreus-Luyben 0.49 7.32 | - 1.70 || 3.95 1.21 14.9 1.59
ZN-PID 0.471 1 1 2.29 || 2.88 2.45 3.32 3.00

Table 5: Tunings and performance for integrating process, g(s) = k'e % /s
(1) The derivative time is for the series form PID controller in eq. (1).

(2) The TAE- and TV-values for PID control are without derivative action on the setpoint.

Setpoint® Load disturbance

Method K, k| K k0% | 75/0 W | M, | TAE(y) | TV(u) | IAE(y) | TV(u)
SIMC (7. = 0) 0 0.5 - 1.59 || 2.17 1.08 2.17 1.08
IMC-PI (¢ = 1.70) 0.294 | 0.588 - 1.62 || 1.71 1.22 1.71 1.22
Astrom/Schei (M = 1.6) || 0.200 | 0.629 - 1.60 || 1.59 1.08 1.59 1.08
Pessen 0.25 0.751 - 1.80 || 1.45 1.30 1.45 1.30
ZN-PI 0.45 0.27 - 1.85 || 3.70 1.53 3.70 1.53
Tyreus-Luyben 0.313 | 0.071 - 1.46 || 14.1 1.22 14.1 1.22
IMC-PID (e = 0.86) 0 0.769 0.5 2.01 || 1.90 1.06 1.38 1.67
ZN-PID 0.3 0.6 0.5 Unstable

Table 6: Tunings and performance for pure time delay process, g(s) = ke

) K, = K. /7y is the integral controller gain.

(1) The derivative time is for the series form PID controller in eq.(1).

—0s

(2) The TAE- and TV-values for PID control are without derivative action on the setpoint.

Setpoint @ Load disturbance
Method K, |7 |m®| M, |IAE(y) | TV(u) | IAE(y) | TV(u)
SIMC-PI (7. = 0) 3.72 1 1.1 |- 1.59 | 0.45 8.2 0.296 | 1.41
Astrom/Schei (M, = 1.6) || 2.74 | 0.67 | - 1.60 || 0.58 6.2 0.246 | 1.52
ZN-PI 13.6 | 0.47 | - 11.3 || 1.87 207 0.137 | 13.9
Tyreus-Luyben 9.46 | 1.24 | - 2.72 || 0.50 358 0131 |291
SIMC-PID (7, = 6) 179 1.0 |0.22 | 1.58] 0.27 43.3 | 0.056 | 1.49
ZN-PID 9.1 |0.14|0.14 | 2.39 | 0.24 39.2  |0.025 |3.09

Table 7: Tunings and performance for process g(s) = (

(1) The derivative time is for the series form PID controller in eq.(1).

1
5+1)(0.2541)(0-045+1)(0-0085+1) (

E5)

(2) The TAE- and TV-values for PID control are without derivative action on the setpoint.
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