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tThe aim of this paper is to present analyti
 rules for PID 
ontroller tuning that are simpleand still result in good 
losed-loop behavior. The starting point has been the IMC-PID tuningrules that have a
hieved widespread industrial a

eptan
e. The rule for the integral term hasbeen modi�ed to improve disturban
e reje
tion for integrating pro
esses. Furthermore, ratherthan deriving separate rules for ea
h transfer fun
tion model, there is a just a single tuning rulefor on a �rst-order or se
ond-order time delay model. Simple analyti
 rules for model redu
tionare presented to obtain a model in this form, in
luding the \half rule" for obtaining the e�e
tivetime delay.1 Introdu
tionAlthough the proportional-integral-derivative (PID) 
ontroller has only three parameters, it is noteasy, without a systemati
 pro
edure, to �nd good values (settings) for them. In fa
t, a visit to apro
ess plant will usually show that a large number of the PID 
ontrollers are poorly tuned. Thetuning rules presented in this paper have developed mainly as a result of tea
hing this material,where there are several obje
tives:1. The tuning rules should be well motivated, and preferably model-based and analyti
ally derived.2. They should be simple and easy to memorize.3. They should work well on a wide range of pro
esses.In this paper a simple two-step pro
edure that satis�es these obje
tives is presented:Step 1. Obtain a �rst- or se
ond-order plus delay model. The e�e
tive delay in this model may beobtained using the proposed half-rule.�Originally presented at the AIChE Annual meeting, Reno, NV, USA, Nov. 2001, with the title \Probably thebest simple PID tuning rules in the world"yE-mail: skoge�
hembio.ntnu.no; Phone: +47-7359-41541



Step 2. Derive model-based 
ontroller settings. PI-settings result if we start from a �rst-ordermodel, whereas PID-settings result from a se
ond-order model.There has been previous work along these lines, in
luding the 
lassi
al paper by Ziegler andNi
hols (1942), the IMC PID-tuning paper by Rivera, Morari and Skogestad (1986) and the 
loselyrelated dire
t synthesis tuning rules in the book by Smith and Corripio (1985). The Ziegler-Ni
holssettings result in a very good disturban
e response for integrating pro
esses, but are otherwise knownto result in rather aggressive settings (Tyreus and Luyben 1992) (Astrom and Hagglund 1995), andalso give poor performan
e for pro
esses with a dominant delay. On the other hand, the analyti
allyderived IMC-settings of Rivera et al. (1986) are known to result in poor disturban
e response forintegrating pro
esses (e.g., Chien and Fruehauf (1990), Horn et al. (1996)), but are robust andgenerally give very good responses for setpoint 
hanges. The single tuning rule presented in thispaper works well for both integrating and pure time delay pro
esses, and for both setpoints and loaddisturban
es.
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Figure 1: Blo
k diagram of feedba
k 
ontrol system.In this paper we 
onsider an input (\load") disturban
e (gd = g).Notation. The notation is summarized in Figure 1. where u is the manipulated input (
ontrolleroutput), d the disturban
e, y the 
ontrolled output, and ys the setpoint (referen
e) for the 
ontrolledoutput. g(s) = �y�u denotes the pro
ess transfer fun
tion and 
(s) is the feedba
k part of the 
ontroller.The � used to indi
ate deviation variables is deleted in the following. The Lapla
e variable s isoften omitted to simplify notation. The settings given in this paper are for the series (
as
ade,\intera
ting") form PID 
ontroller:Series PID : 
(s) = K
 � ��Is + 1�Is � � (�Ds+ 1) = K
�Is ��I�Ds2 + (�I + �D)s+ 1� (1)where K
 is the 
ontroller gain, �I the integral time, and �D the derivative time. The reason for usingthe series form is that the PID rules with derivative a
tion are then mu
h simpler. The 
orrespondingsettings for the ideal (parallel form) PID 
ontroller are easily obtained using (36).Simulations. The following series form PID 
ontroller is used in all simulations and evaluationsof performan
e: u(s) = K
 ��Is+ 1�Is ��ys(s)� �Ds+ 1�F s+ 1y(s)� (2)with �F = ��D and � = 0:01 (the robustness margins have been 
omputed with � = 0). Note thatwe in order to avoid \derivative ki
k" do not di�erentiate the setpoint in (2). The value � = 0:012



was 
hosen in order to not bias the results, but in pra
ti
e (and espe
ially for noisy pro
esses) alarger value of � in the range 0.1-0.2 is normally used. In most 
ases we use PI-
ontrol, i.e. �D = 0,and the above implementation issues and di�eren
es between series and ideal form do not apply. Inthe time domain the PI-
ontroller be
omesu(t) = u0 +K
 �(bys(t)� y(t)) + 1�I Z t0 (ys(�)� y(�))d�� (3)where we have used b = 1 for the proportional setpoint weight.2 Model approximation (Step 1)
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TimeFigure 2: Step response of �rst-order plus time delay system, g(s) = ke��s=(�1s+ 1).The �rst step in the proposed design pro
edure is to obtain from the original model g0(s) anapproximate �rst- or se
ond-order time delay model g(s) in the formg(s) = k(�1s+ 1)(�2s+ 1)e��s = k0(s+ 1=�1)(�2s+ 1)e��s (4)Thus, we need to estimate the following model information (see Figure 2):� Plant gain, k� Dominant lag time 
onstant, �1� (E�e
tive) time delay (dead time), �� Optional: Se
ond-order lag time 
onstant, �2 (for dominant se
ond-order pro
ess for whi
h�2 > �, approximately)If the response is lag-dominant, i.e. if �1 > 8� approximately, then the individual values of the time
onstant �1 and the gain k may be diÆ
ult to obtain, but at the same time are not very important for3




ontroller design. Lag-dominant pro
esses may instead be approximated by an integrating pro
ess,using k�1s+ 1 � k�1s = k0s (5)whi
h is exa
t when �1 !1 or 1=�1 � 0. In this 
ase we need to obtain the value for the� Slope, k0 def= k=�1The problem of obtaining the e�e
tive delay � (as well as the other model parameters) 
an beset up as a parameter estimation problem, for example, by making an least squares approximationof the open-loop step response. However, our goal is to use the resulting e�e
tive delay to obtain
ontroller settings, so a better approa
h would be to �nd the approximation whi
h for a given tuningmethod results in the best 
losed-loop response (here \best" 
ould, for example, by to minimizethe integrated absolute error (IAE)) with a spe
i�ed value for the sensitivity peak, Ms). However,our main obje
tive is not \optimality" but \simpli
ity", so we propose a mu
h simpler approa
h asoutlined next.2.1 Approximation of e�e
tive delay using the half ruleWe �rst 
onsider the 
ontrol-relevant approximation of the fast dynami
 modes (high-frequen
y plantdynami
s) by use of an e�e
tive delay. To derive these approximations, 
onsider the following two�rst-order Taylor approximations of a time delay transfer fun
tion:e��s � 1� �s and e��s = 1e�s � 11 + �s (6)From (6) we see that an \inverse response time 
onstant" T inv0 (negative numerator time 
onstant)may be approximated as a time delay: (�T inv0 s + 1) � e�T inv0 s (7)This is reasonable sin
e an inverse response has a deteriorating e�e
t on 
ontrol similar to that of atime delay (e.g., (Skogestad and Postlethwaite 1996)). Similarly, from (6) a (small) lag time 
onstant�0 may be approximated as a time delay: 1�0s + 1 � e��0s (8)Furthermore, sin
e �T inv0 s+ 1�0s+ 1 e��0s � e��0s � e�T inv0 s � e��0 = e�(�0+T inv0 +�0)s = e��sit follows that the e�e
tive delay � 
an be taken as the sum of the original delay �0, and the 
ontri-bution from the various approximated terms. In addition, for digital implementation with samplingperiod h, the 
ontribution to the e�e
tive delay is approximately h=2 (whi
h is the average time ittakes for the 
ontroller to respond to a 
hange).In terms of 
ontrol, the lag-approximation (8) is 
onservative, sin
e the e�e
t of a delay on 
ontrolperforman
e is worse than that of a lag of equal magnitude (e.g., (Skogestad and Postlethwaite 1996)).In parti
ular, this applies when approximating the largest of the negle
ted lags. Thus, to be less
onservative it is re
ommended to use the simple half rule:4



� Half rule: The largest negle
ted (denominator) time 
onstant (lag) is distributed evenly tothe e�e
tive delay and the smallest retained time 
onstant.In summary, let the original model be in the formQj(�T invj0 + 1)Qi(�i0s+ 1) e��0s (9)where the lags �i0 are ordered a

ording to their magnitude, and T invj0 > 0 denote the inverse response(negative numerator) time 
onstants. Then, a

ording to the half-rule, to obtain a �rst-order modele��s=(�1s+ 1), we use �1 = �10 + �202 ; � = �0 + �202 +Xi�3 �i0 +Xj T invj0 + h2 (10)and, to obtain a se
ond-order model (4), we use�1 = �10; �2 = �20 + �302 ; � = �0 + �302 +Xi�4 �i0 +Xj T invj0 + h2 (11)where h is the sampling period (for 
ases with digital implementation).The main basis for the empiri
al half-rule is to maintain the robustness of the proposed PI- andPID-tuning rules, as is justi�ed by the examples later.Example E1. The pro
ess g0(s) = 1(s+ 1)(0:2s+ 1)is approximated as a �rst-order time delay pro
ess, g(s) = ke��s+1=(�1sd+1), with k = 1; � = 0:2=2 =0:1 and �1 = 1 + 0:2=2 = 1:1.2.2 Approximation of positive numerator time 
onstantsWe next 
onsider how to get a model in the form (9), if we have positive numerator time 
onstantsin the original model g0(s). It is proposed to 
an
el the numerator term (T0s+ 1) against a \neigh-bouring" denominator term (�0s+1) (where both T0 and �0 are positive and real) using the followingapproximations: T0s+ 1�0s+ 1 � 8>>>>>>><>>>>>>>: T0=�0 for T0 � �0 � � (Rule T1)T0=� for T0 � � � �0 (Rule T1a)1 for � � T0 � �0 (Rule T1b)T0=�0 for �0 � T0 � 5� (Rule T2)(~�0=�0)(~�0�T0)s+1 for ~�0 def= min(�0; 5�) � T0 (Rule T3) (12)Here � is the (�nal) e�e
tive delay, whi
h exa
t value depends on the subsequent approximation ofthe time 
onstants (half rule), so one may need to guess � and iterate. If there is more than onepositive numerator time 
onstant, then one should approximate one T0 at a time, starting with thelargest T0.We normally sele
t �0 as the 
losest larger denominator time 
onstant (�0 > T0) and use RulesT2 or T3. The ex
eption is if there exists no larger �0, or if there is smaller denominator time
onstant \
lose to" T0, in whi
h 
ase we sele
t �0 as the 
losest smaller denominator time 
onstant5



(�0 < T0) and use rules T1, T1a or T1b. To de�ne \
lose to" more pre
isely, let �0a (large) and �0b(small) denote the two neighboring denominator 
onstants to T0. Then, we sele
t �0 = �0b (small) ifT0=�0b < �0a=T0 and T0=�0b < 1:6 (both 
onditions must be satis�ed).Derivations of the above rules and additional examples are given in the Appendix.Example E3. For the pro
ess (Example 4 in (Astrom et al. 1998))g0(s) = 2(15s+ 1)(20s+ 1)(s+ 1)(0:1s+ 1)2 (13)we �rst introdu
e from Rule T2 the approximation15s+ 120s+ 1 � 15s20s = 0:75(Rule T2 applies sin
e T0 = 15 is larger than 5�, where � is 
omputed below). Using the half rule,the pro
ess may then be approximated as a �rst-order time delay model withk = 2 � 0:75 = 1:5; � = 0:1 + 0:12 = 0:15; �1 = 1 + 0:12 = 1:05or as a se
ond-order time delay model withk = 1:5; � = 0:12 = 0:05; �1 = 1; �2 = 0:1 + 0:12 = 0:15
3 Derivation of PID tuning rules (Step 2)3.1 Dire
t synthesis (IMC tuning) for setpointsNext, we derive PI-settings or PID-settings using the method of dire
t synthesis for setpoints (Smithand Corripio 1985), or equivalently the Internal Model Control approa
h for setpoints (Rivera etal. 1986). For the system in Figure 1, the 
losed-loop setpoint response isyys = g(s)
(s)g(s)
(s) + 1 (14)where we have assumed that the measurement of the output y is perfe
t. The idea of dire
t synthesisis to spe
ify the desired 
losed-loop response and solve for the 
orresponding 
ontroller. From (14)we get 
(s) = 1g(s) 11(y=ys)desired � 1 (15)We here 
onsider the se
ond-order time delay model g(s) in (4), and spe
ify that we, following thedelay, desire a simple �rst-order response with time 
onstant �
 (Smith and Corripio 1985) (Riveraet al. 1986):  yys!desired = 1�
s+ 1e��s (16)We have kept the delay � in the \desired" response be
ause it is unavoidable. Substituting (16) and(4) into (15) gives a \Smith Predi
tor" 
ontroller (Smith 1957):
(s) = (�1s+ 1)(�2s+ 1)k 1(�
s+ 1� e��s) (17)6



�
 is the desired 
losed-loop time 
onstant, and is the sole tuning parameter for the 
ontroller. Ourobje
tive is to derive PID settings, and to this e�e
t we introdu
e in (17) a �rst-order Taylor seriesapproximation of the delay, e��s � 1� �s. This gives
(s) = (�1s+ 1)(�2s + 1)k 1(�
 + �)s (18)whi
h is a series form PID-
ontroller (1) with (Smith and Corripio 1985) (Rivera et al. 1986)K
 = 1k �1�
 + � = 1k0 1�
 + � ; �I = �1; �D = �2 (19)3.2 Modifying the integral time for improved disturban
e reje
tionThe PID-settings in (19) were derived by 
onsidering the setpoint response, and the result was that weshould e�e
tively 
an
el the �rst order dynami
s of the pro
ess by sele
ting the integral time �I = �1.This is a robust setting whi
h results in very good responses to setpoints and to disturban
es enteringdire
tly at the pro
ess output. However, it is well known that for lag dominant pro
esses with �1 � �(e.g. an integrating pro
esses), the 
hoi
e �I = �1 results in a long settling time for input (\load")disturban
es (Chien and Fruehauf 1990). To improve the load disturban
e response we need to redu
ethe integral time, but not by too mu
h, be
ause otherwise we get slow os
illations 
aused by havingalmost have two integrators in series (one from the 
ontroller and almost one from the slow lagdynami
s in the pro
ess). This is illustrated in Figure 3, where we for the pro
esse��s=(�1s+ 1) with �1 = 30; � = 1
onsider PI-
ontrol with K
 = 15 and four di�erent values of the integral time:� �I = �1 = 30 (\IMC-rule", see (19)): Ex
ellent setpoint response, but slow settling for a loaddisturban
e.� �I = 8� = 8 (SIMC-rule, see below): Faster settling for a load disturban
e.� �I = 4: Even faster settling, but the setpoint response (and robustness) is poorer.� �I = 2: Poor response with \slow" os
illations.A good trade-o� between disturban
e response and robustness is obtained by sele
ting the integraltime su
h that we just avoid the slow os
illations, whi
h 
orresponds to �I = 8� in the above example.Let us analyze this in more detail. First, note that these \slow" os
illations are not 
aused by the delay� (and o

ur at a lower frequen
y than the \usual fast" os
illations whi
h o

ur at about frequen
y1=�). Be
ause of this, we negle
t the delay in the model when we analyze the slow os
illations. Thepro
ess model then be
omes g(s) = k e��s�1s+ 1 � k 1�1s+ 1 � k�1s = k0swhere the se
ond approximation applies sin
e the resulting frequen
y of os
illations !0 is su
h that(�1!0)2 is mu
h larger than 11. With a PI 
ontroller 
 = K
 �1 + 1�I s� the 
losed-loop 
hara
etristi
polynomial 1 + g
 then be
omes �Ik0KC s2 + �Is+ 11From (20) and (22) we get �0 = �I=2, so !0�1 = 1�0 �1 = 2 �1�I . Here �1 � �I and it follows that !0�1 � 1.7



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

τ
I
=30

8

4

2

τ
I
=2

8

4

30
y

s
=

y(t)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

τ
I
=30

8

4

2

τ
I
=2

8

4

30
y

s
=

y(t)

Figure 3: E�e
t of 
hanging the integral time �I for PI-
ontrol of \almost integrating" pro
essg(s) = e�s=(30s+ 1) with K
 = 15.Unit setpoint 
hange at t = 0; Load disturban
e of magnitude 10 at t = 20.whi
h is in standard se
ond-order form, � 20 s2 + 2�0�s+ 1, with�0 = s �Ik0 K
 ; � = 12qk0 K
 �I (20)Os
illations o

ur for � < 1. Of 
ourse, some os
illations may be tolerated, but a robust 
hoi
e is tohave � = 1 (see also Marlin (1995) page 588), or equivalentlyK
�I = 4=k0 (21)Inserting the re
ommended value for K
 from (19) then gives the following modi�ed integral timefor pro
esses where the 
hoi
e �I = �1 is too large:�I = 4(�
 + �) (22)3.3 SIMC-PID tuning rulesTo summarize, the re
ommended SIMC PID settings2 for the se
ond-order time delay pro
ess in (4)are3 K
 = 1k �1�
 + � = 1k0 1�
 + � (23)�I = minf�1; 4(�
 + �)g (24)�D = �2 (25)2Here SIMC means \Simple 
ontrol" or \Skogestad IMC".3The derivative time in (25) is for the series form PID-
ontroller in (1).8



Pro
ess g(s) K
 �I � (4)DFirst-order k e��a(�1s+1) 1k �1�
+� minf�1; 4(�
 + �)g -Se
ond-order, eq.(4) k e��a(�1s+1)(�2s+1) 1k �1�
+� minf�1; 4(�
 + �)g �2Pure time delay(1) ke��s 0 0 (�) -Integrating(2) k0 e��ss 1k0 � 1(�
+�) 4(�
 + �) -Integrating with lag k0 e��ss(�2s+1) 1k0 � 1(�
+�) 4(�
 + �) �2Double integrating(3) k00 e��ss2 1k00 � 14(�
+�)2 4 (�
 + �) 4 (�
 + �)Table 1: SIMC PID-settings (23)-(25) for some spe
ial 
ases of (4) (with �
 as a tuning parameter).(1) The pure time delay pro
ess is a spe
ial 
ase of a �rst-order pro
ess with �1 = 0.(2) The integrating pro
ess is a spe
ial 
ase of a �rst-order pro
ess with �1 !1.(3) For the double integrating pro
ess, integral a
tion has been added a

ording to eq.(27).(4) The derivative time is for the series form PID 
ontroller in eq.(1).(*) Pure integral 
ontroller 
(s) = KIs with KI def= K
�I = 1k(�
+�) .Here the desired �rst-order 
losed-loop response time �
 is the only tuning parameter. Note that thesame rules are used both for PI- and PID-settings, but the a
tual settings will di�er. To get a PI-
ontroller we start from a �rst-order model (with �2 = 0), and to get a PID-
ontroller we start froma se
ond-order model. PID-
ontrol (with derivative a
tion) is primarily re
ommended for pro
esseswith dominant se
ond order dynami
s (with �2 > �, approximately), and we note that the derivativetime is then sele
ted so as to 
an
el the se
ond-largest pro
ess time 
onstant.In Table 1 we summarize the resulting tunings for a few spe
ial 
ases, in
luding the pure timedelay pro
ess, integrating pro
ess, and double integrating pro
ess. For the double integrating pro
ess,we let let �2 ! 1 and introdu
e k00 = k0=�2 and �nd (after some algebra) that the PID-
ontrollerfor the integrating pro
ess with lag approa
hes a PD-
ontroller withK
 = 1k00 � 14(�
 + �)2 ; �D = 4(�
 + �) (26)This 
ontroller gives good setpoint responses for the double integrating pro
ess, but results in steady-state o�set for load disturban
es o

uring at the input. To remove this o�set, we need to reintrodu
eintegral a
tion, and as before propose to use�I = 4(�
 + �) (27)It should be noted that derivative a
tion is required to stabilize a double integrating pro
ess if wehave integral a
tion in the 
ontroller.3.4 Re
ommended 
hoi
e for tuning parameter �
The value of the desired 
losed-loop time 
onstant �
 
an be 
hosen freely, but from (23) we must have�� < �
 < 1 to get a positive and nonzero 
ontroller gain. The optimal value of �
 is determinedby a trade-o� between:1. Fast speed of response and good disturban
e reje
tion (favored by a small value of �
)2. Stability, robustness and small input variation (favored by a large value of �
).9



A good trade-o� is obtained by 
hoosing �
 equal to the time delay:SIMC� rule for fast response with good robustness : �
 = � (28)This gives a reasonably fast response with moderate input usage and good robustness margins, andfor the se
ond-order time delay pro
ess in (4) results in the following SIMC-PID settings whi
h maybe easily memorized (�
 = �): K
 = 0:5k �1� = 0:5k0 1� (29)�I = minf�1; 8�g (30)�D = �2 (31)The 
orresponding settings for the ideal PID-
ontroller are given in (37)-(38).4 Evaluation of the proposed tuning rulesIn this se
tion we evaluate the proposed SIMC PID tuning rules in (23)-(31) with the 
hoi
e �
 = �.We �rst 
onsider pro
esses that already are in the se
ond-order plus delay form in (4). Afterwardswe 
onsider more 
ompli
ated pro
esses whi
h must �rst be approximated as se
ond-order plus delaypro
esses (Step 1), before applying the tuning rules (Step 2).4.1 First- or se
ond-order time delay pro
esses4.1.1 RobustnessThe robustness margins with the SIMC PID-settings in (29)-(31), when applied to �rst- or se
ond-order time delay pro
esses, are always between the values given by the two 
olumns in Table 2.For pro
esses with �1 � 8�, for whi
h we use �I = �1 (left 
olumn), the system always has a gainmargin GM=3.14 and phase margin PM=61:4o, whi
h is mu
h better than than the typi
al minimumrequirements GM> 1:7 and PM> 30o (Seborg et al. 1989). The sensitivity and 
omplementarysensitivity peaks are Ms = 1:59 and Mt = 1:00 (here small values are desired with a typi
al upperbound of 2). The maximum allowed time delay error is ��=� = PM [rad℄=(w
 � �), whi
h in this
ase gives ��=� = 2:14 (i.e., the system goes unstable if the time delay is in
reased from � to(1 + 2:14)� = 3:14�).As expe
ted, the robustness margins are somewhat poorer for lag-dominant pro
esses with tau1 >8�, where we in order to improve the disturban
e response use �I = 8�. Spe
i�
ally, for the extreme
ase of an integrating pro
ess (right 
olumn) the suggested settings give GM=2.96, PM=46:9o,Ms = 1:70 and Mt = 1:30, and the maximum allowed time delay error is �� = 1:59�.Of the robustness measures listed above, we will in the following 
on
entrate on Ms, whi
h is thepeak value as a fun
tion of frequen
y of the sensitivity fun
tion S = 1=(1+g
). Noti
e that Ms < 1:7guarantees GM> 2:43 and PM> 34:2o (Rivera et al. 1986).4.1.2 Performan
eTo evaluate the 
losed-loop performan
e, we 
onsider a unit step setpoint 
hange (ys = 1) and a unitstep input (load) disturban
e (gd = g and d = 1), and for ea
h of the two 
onsider the input andoutput performan
e: 10



Pro
ess g(s) k�1s+1e��s k0s e��sController gain, K
 0:5k �1� 0:5k0 1�Integral time, �I �1 8�Gain margin (GM) 3.14 2.96Phase margin (PM) 61.4o 46.9oSensitivity peak, Ms 1.59 1.70Complementary sensitivity peak, Mt 1.00 1.30Phase 
rossover frequen
y, !180 � � 1.57 1.49Gain 
rossover frequen
y, !
 � � 0.50 0.51Allowed time delay error, ��=� 2.14 1.59Table 2: Robustness margins for �rst-order and integrating time delay pro
ess using the SIMC-settings in (29) and (30) (�
 = �). The same margins apply to a se
ond-order pro
ess (4) if we 
hoose�D = �2 in (31).Output perfoman
e. To evaluate the output 
ontrol performan
e we 
ompute the integrated ab-solute error (IAE) of the 
ontrol error e = y � ys.IAE = Z 10 je(t)jdtwhi
h should be as small as possible.Input performan
e. To evaluate the manipulated input usage we 
ompute the total variation(TV) of the input u(t), whi
h is sum of all its moves up and down. TV is a bit diÆ
ult tode�ne 
ompa
tly for a 
ontinuous pro
ess, but if we dis
retize the input signal as a sequen
e,[u1; u2; : : : ; ui; : : :℄, then TV = 1Xi=1 jui+1 � uijwhi
h should be as small as possible. The total variation is a good measure of the \smoothness"of a signal.In Table 3 we summarize the results with the 
hoi
e �
 = � for the following �ve �rst-order timedelay pro
esses:Case 1. Pure time delay pro
essCase 2. Integrating pro
essCase 3. Integrating pro
ess with lag �2 = 4�Case 4. Double integrating pro
essCase 5. First-order pro
ess with �1 = 4�Note that the robustness margins fall within the limits given in Table 2, ex
ept for the doubleintegrating pro
ess in 
ase 4 where we from (27) have added integral a
tion.Setpoint 
hange. The simulated time responses for the �ve 
ases are shown in Figure 4. Thesetpoint responses are ni
e and smooth. For a unit setpoint 
hange, the minimum a
hievable IAE-value for these time delay pro
esses is IAE = � (e.g. using a Smith Predi
tor 
ontroller (17) with11



Setpoint(1) Load disturban
eCase g(s) K
 �I � (3)D Ms IAE(y) TV(u) IAE(y) TV(u) IAEIAEmin(2)1 ke��s 0 (�) - 1.59 2.17 � 1:08 1k 2.17 k� 1.08 1.592 k0 e��ss 0:5k0 � 1� 8 � - 1.70 3.92 � 1:22 1k0� 16 k0�2 1.55 3.273 k0 e��ss(4�s+1) 0:5k0 � 1� 8 � �2 = 4� 1.70 5.28 � 1:23 1k0� 16 k0�2 1.59 5.414 k00 e��ss2 0:0625k00 � 1�2 8 � 8 � 1.96 7.92 � 0:205 1k00�2 128 k00�3 2.34 5.495 k e��s4�s+1 0:5k �1� = 2k �1 = 4� - 1.59 2:17� 4:11 1k 2 k� 1.08 2.41Table 3: SIMC settings and performan
e summary for �ve di�erent time delay pro
esses (�
 = �).(1) The IAE and TV-values for PID 
ontrol are without derivative a
tion on the setpoint.(2) IAEmin is for the IAE-optimal PI/PID-
ontroller of the same kind.(3) The derivative time is for the series form PID 
ontroller in eq.(1).(*) Pure integral 
ontroller 
(s) = KIs with KI = K
�I = 0:5k� .tau
 = 0). From Table 3 we see that with the proposed settings the a
tual IAE-setpoint-value variesbetween 2:17� (for the �rst-order pro
ess) to 7:92� (for the more diÆ
ult double integrating pro
ess).To avoid \derivative ki
k" on the input, we have 
hosen to follow industry pra
ti
e and notdi�erentiate the setpoint, see (2). This is the reason for the di�eren
e in the setpoint responsesbetween 
ases 2 and 3, and also the reason for the somewhat sluggish setpoint response for thedouble integrating pro
ess in 
ase 4. Note also that the setpoint response 
an always be modi�ed byintrodu
ing a \feedforward" �lter on the setpoint.Load disturban
e. The load disturban
e responses are also ni
e and smooth, although a bitsluggish for the integrating and double integrating pro
esses. In the last 
olumn in Table 3 we
ompare the a
hieved IAE-value with that for the IAE-optimal 
ontroller of the same kind (PI orseries-PID). The ratio varies from 1.59 for the pure time delay pro
ess to 5.49 for the more diÆ
ultdouble integrating pro
ess.However, lower IAE-values generally 
ome at the expense of poorer robustness (larger value ofMs), more ex
essive input usage (larger value of TV), or a more 
ompli
ated 
ontroller. For example,for the integrating pro
ess, the IAE-optimal PI-
ontroller (K
 = 0:91k0 � 1� , �I = 4:1�) redu
es IAE(load)by a fa
tor 3.27, but the input variation in
reases from TV=1.55 to TV=3.79, and the sensitivitypeak in
reases from Ms = 1:70 to Ms = 3:71. The IAE-optimal PID-
ontroller (K
 = 0:80k0 � 1� ,�I = 1:26�, �D = 0:76�) redu
es IAE(load) by a fa
tor 8.2 (to IAE = 1:95k0�2), but this 
ontrollerhas Ms = 4:1 and TV(load)=5.34. The lowest a
hievable IAE-value for the integrating pro
ess is foran ideal Smith Predi
tor 
ontroller (17) with �
 = 0, whi
h redu
es IAE(load) by a fa
tor 32 (to IAE= 0:5k0�2). However, this 
ontroller is unrealizable with in�nite input usage and requires a perfe
tmodel.Input usage. As seen from the simulations in the lower part of Figure 4 the input usage with theproposed settings is very smooth in all 
ases. To have no steady-state o�set for a load disturban
e,the minimum a
hievable value is TV(load)=1 (smooth input 
hange with no overshoot), and we �ndthat the a
hieved value ranges from 1.08 (�rst-order pro
ess), through 1.55 (integrating pro
ess) andup to 2.34 (double integrating pro
ess).
12
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Figure 4: Responses using SIMC settings for the �ve time delay pro
esses in Table 3 (�
 = �).Unit setpoint 
hange at t = 0; Unit load disturban
e at t = 20.Simulations are without derivative a
tion on the setpoint.Parameter values: � = 1; k = 1; k0 = 1; k00 = 1.4.2 More 
omplex pro
esses: Obtaining the e�e
tive delayWe here 
onsider some 
ases where we must �rst (step 1) approximate the model as a �rst- orse
ond-order plus delay pro
ess, before (step 2) applying the proposed tuning rules.In Table 4 we summarize for �fteen di�erent pro
esses (E1-E15), the model approximation (step1), the SIMC-settings with �
 = � (step 2) and the resulting Ms-value, setpoint and load disturban
eperforman
e (IAE and TV). For most of the pro
esses, both PI- and PID-settings are given. For somepro
esses (E1, E12, E13, E14, E15) only �rst-order approximations are derived, and only PI-settingsare given. The model approximations for 
ases E2, E3, E6 and E13 are studied separately; see (41),(13), (42) and (43). Pro
esses E1 and E3-E8 have been studied by Astrom and 
oworkers (Astrom etal. 1998) (Hagglund and Astrom 2001), and in all 
ases the SIMC PI-settings and IAE-load-values inTable 4 are very similar to those obtained by Astrom and 
oworkers for similar values of Ms. Pro
essE11 has been studied by S
hei (1994).The peak sensitivity (Ms) for the 25 
ases ranges from 1.23 to 2, with an average value of 1.66.This 
on�rms that the simple approximation rules (in
luding the half rule for the e�e
tive delay)are able to maintain the original robustness where Ms ranges from 1.59 to 1.70 (see Table 2) . Thepoorest robustness with Ms = 2 is obtained for the two inverse response pro
esses in E14 and E15.13



For these two pro
esses, we also �nd that the input usage is large, with TV for a load disturban
elarger than 3, whereas it for all other 
ases is less than 2 (the minimum value is 1). The inverseresponses pro
esses E14 and E15 are rather unusual in that the pro
ess gain remains �nite (at 1) athigh frequen
ies, and we also have that they give instability with PID 
ontrol.The input variation (TV) for a setpoint 
hange is large in some 
ases, espe
ially for 
ases wherethe 
ontroller gain K
 is large. In su
h 
ases the setpoint response may be slowed down by, forexample, pre�ltering the setpoint 
hange or using b smaller than 1 in (3). (Alternatively, if inputusage is not a 
on
ern, then pre�ltering or use of b > 1 may be used to speed up the setpointresponse.)The last 
olumn in Table 4 gives for a load disturban
e the ratio between the a
hieved IAE andthe minimum IAE with the same kind of 
ontroller (PI or series-PID) with no robustness limitationsimposed. In many 
ases this ratio is surprisingly small (e.g., less than 1.4 for the PI-settings for
ases E2, E7, E9, E11 and E15). However, in most 
ases the ratio is larger, and even in�nity (
asesE1 and E6-PID). The largest values are for pro
esses with little or no inherent 
ontrol limitations(e.g. no time delay), su
h that theoreti
ally very large 
ontroller gains may be used. In pra
ti
e, thisperforman
e 
an not be a
hieved due to unmodeled dynami
s and limitations on the input usage.For example, for the se
ond-order pro
ess g(s) = 1(s+1)(0:2s+1) (
ase E1) one may in theory a
hieveperfe
t 
ontrol (IAE=0) by using a suÆ
iently high 
ontroller gain. This is also why no SIMC PID-settings are given in Table 4 for this pro
ess, be
ause the 
hoi
e �
 = � = 0 gives in�nite 
ontrollergain. More pre
isely, going ba
k to (23)-(24), the SIMC-PID settings for pro
ess E1 areK
 = 1k �1�
 = 1�
 ; �I = 4�
; �D = �2 = 0:1 (32)These settings give for any value of �
 ex
ellent robustness margins. In parti
ular, for �
 ! 0 we getGM=1, PM=76.3o, Ms = 1, and Mt = 1:15. However, in this 
ase the good margins are misleadingsin
e the 
rossover frequen
y, !
 � 1=�
, approa
hes in�nity as �
 goes to zero. Thus, the time delayerror �� = PM=!
 that yields instability approa
hes zero (more pre
isely, 1:29�
) as �
 goes to zero.The re
ommendation given earlier was that a se
ond-order model (and thus use of PID 
ontrolwith SIMC settings) should only be used for dominant se
ond-order pro
ess with �2 > �, approxi-mately. This re
ommendation is justi�ed by 
omparing for 
ases E1-E11 the results with PI-
ontroland PID-
ontrol. We note from Table 4 that there is a 
lose 
orrelation between the value of �2=� andthe improvement in IAE for load 
hanges. For example, �2=� is in�nite for 
ase E1, and indeed the(theoreti
al) improvement with PID 
ontrol over PI 
ontrol is in�nite. In 
ases E5, E6, E8, E3, E10and E2 the ratio �2=� is larger than 1 (ranges from 7.9 to 1.6), and there is a signi�
ant improvementin IAE with PID 
ontrol (by a fa
tor 24 to 1.9). In 
ases E11, E9, E4 and E7 the ratio �2=� is lessthan 1 (ranges from 1 to 0.4) and the improvement with PID 
ontrol is rather small (by a fa
tor 1.6to 1.3). This improvement is too small in most 
ases to justify the additional 
omplexity and noisesensitivity of using derivative a
tion. This is for the SIMC settings. The trend is the same for theIAE-optimal settings, although there is generally a larger improvement with PID over PI 
ontrol.In summary, these �fteen examples illustrate that the simple SIMC tuning rules used in 
ombi-nation with the simple half-rule for estimating the e�e
tive delay, result in good and robust settings.5 Comparison with other tuning methodsAbove we have evaluated the proposed SIMC tuning approa
h on its own merit. A detailed andfair 
omparison with other tuning methods is virtually impossible { be
ause there are many tuningmethods, many possible performan
e 
riteria and many possible models. We here perform a 
om-parison for three typi
al pro
esses; the integrating pro
ess with delay (Case 2), the pure time delay14



pro
ess (Case 1), and the fourth-order pro
ess E5 with distributed time 
onstants. The followingtuning methods are used for 
omparison:Original IMC PID tuning rules. Rivera et al. (1986) derived PID settings for various pro-
esses. For a �rst-order time delay pro
ess their \improved IMC PI-settings" for fast response(" = 1:7�) are IMC PI : K
 = 0:588k (�1 + �2)� ; �I = �1 + �2 (33)and their PID-settings for fast response (" = 0:8�) areIMC series� PID : K
 = 0:769k �1� ; �I = �1; �D = �2 (34)Note that these rules give �I � �1, so the response to input load disturban
es will be poor for lagdominant pro
esses with �1 � �.Astrom/S
hei PID tuning (Maximize KI). S
hei (1994) argued that in pro
ess 
ontrolappli
ations we usually want a robust design with the highest possible attenuation of low-frequen
ydisturban
es, and proposed to maximize the low-frequen
y 
ontroller gain KI def= K
�I subje
t togiven robustness 
onstraints on the sensitivity peaks Ms and Mt. Both for PI- and PID-
ontrol,maximizing KI is equivalent to minimizing the integrated error (IE) for load disturban
es, whi
h forrobust designs with no overshoot is the same as minimizing the IAE (Astrom and Hagglund 1995).Note that the use of derivative a
tion (�D) does not a�e
t the IE (and also not the IAE for robustdesigns), but it may improve robustness (lower Ms) and redu
e the input variation (lower TV { atleast with no noise). Astrom et al. (1998) showed how to formulate the minimization of KI as aneÆ
ient optimization problem for the 
ase with PI 
ontrol and a 
onstraint on Ms. The value of thetuning parameter Ms is typi
ally between 1.4 (robust tuning) and 2 (more aggressive tuning). Wewill here sele
t it to be the same as for the 
orresponding SIMC design, that is, typi
ally around 1.7.Ziegler-Ni
hols (ZN) PID tuning rules. Ziegler and Ni
hols (1942) proposed as the �rststep to generate sustained os
illations with a P-
ontroller, and from this obtain the \ultimate" gainKu and 
orresponding \ultimate" period Pu (alternatively, this information 
an be obtained usingrelay feedba
k (Astrom and Hagglund 1995)). Based on simulations, Ziegler and Ni
hols (1942)re
ommended the following \
losed-loop" settings:P� 
ontrol : K
 = 0:5KuPI� 
ontrol : K
 = 0:45Ku; �I = Pu=1:2PID� 
ontrol (series) : K
 = 0:3Ku; �I = Pu=4; �D = Pu=4Remark. We have here assumed that the PID-settings given by Ziegler and Ni
hols (K 0
 = 0:6Ku; � 0I = Pu=2; � 0D =Pu=8) were originally derived for the ideal form PID 
ontroller (see (Hellem 2001) for justi�
ation), and have translatedthese into the 
orresponding series settings using (36). This gives somewhat less agressive settings and better IAE-values than if we assume that the ZN-settings were originally derived for the series form. Note that K
=�I and K
�Dare not a�e
ted, so the di�eren
e is only at intermediate frequen
ies.Tyreus-Luyben modi�ed ZN PI tuning rules. The ZN settings are too aggressive for mostpro
ess 
ontrol appli
ations, where os
illations and overshoot are usually not desired. This led Tyreusand Luyben (1992) to re
ommend the following PI-rules for more 
onservative tuning:K
 = 0:313Ku; �I = 2:2Pu15
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Figure 5: Responses for PI-
ontrol of integrating pro
ess, g(s) = e�s=s, with settings from Table 5Setpoint 
hange at t = 0; load disturban
e of magnitude 0.5 at t = 10.5.1 Integrating pro
essThe results for the integrating pro
ess, g(s) = k0 e��ss , are shown in Table 5 and Figure 5. TheSIMC-PI 
ontroller with �
 = � yields Ms = 1:7 and IAE(load)=16. The Astrom/S
hei PI-settingsfor Ms = 1:7 are very similar to the SIMC settings, but with somewhat better load reje
tion (IAEredu
ed from 16 to 13). The ZN PI-
ontroller has a shorter integral time and larger gain thanthe SIMC-
ontroller, whi
h results in mu
h better load reje
tion with IAE redu
ed from 16 to 5.6.However, the robustness is worse, with Ms in
reased from 1.70 to 2.83 and the gain margin redu
edfrom 2.96 to 1.86. The IMC settings of Rivera et al. (1986) result in a pure P-
ontroller with verygood setpoint responses, but there is steady-state o�set for load disturban
es. The modi�ed ZNPI-settings of Tyreus-Luyben are almost identi
al to the SIMC-settings. This is en
ouraging sin
e itis exa
tly for this type of pro
ess that these settings were developed (Tyreus and Luyben 1992).5.2 Pure time delay pro
essThe results for the pure time delay pro
ess, g(s) = ke��s, are given in Table 6 and Figure 6. Notethat the setpoint and load disturban
es responses are identi
al for this pro
ess, and also that theinput and output signals are identi
al, ex
ept for the time delay.Re
all that the SIMC-
ontroller for this pro
ess is a pure integrating 
ontroller with Ms = 1:59and IAE=2.17. The minimum a
hievable IAE-value for any 
ontroller for this pro
ess is IAE=1(using a Smith Predi
tor (17) with �
 = 0). We �nd that the PI-settings using SIMC (IAE=2.17),IMC (IAE=1.71) and Astrom/S
hei (IAE=1.59) all yield very good performan
e. In parti
ular, notethat the ex
ellent Astrom/S
hei performan
e is a
hieved with good robustness (Ms = 1:60) and verysmooth input usage (TV=1.08). Pessen (1994) re
ommends PI-settings for the time delay pro
essthat give even better performan
e (IAE=1.44), but with somewhat worse robustness (Ms = 1:80).The ZN PI-
ontroller is signi�
antly more sluggish with IAE=3.70, and the Tyreus-Luyben 
ontroller16



is extremely sluggish with IAE=14.1. This is due to low value of the integral gain KI .Be
ause the pro
ess gain remains 
onstant at high frequen
y, any \real" PID 
ontroller (withboth proportional and derivative a
tion), yields instability for this pro
ess, in
luding the ZN PID-
ontroller (Rivera et al. 1986). (However, the IMC PID-
ontroller is a
tually a ID-
ontroller, and ityields a stable response with IAE=1.38.)The poor response with the ZN PI-
ontroller and the instability with PID 
ontrol, may partlyexplain the myth in the pro
ess industry that time delay pro
esses 
annot be adequately 
ontrolledusing PID 
ontrollers. However, as seen from Table 6 and Figure 6, ex
ellent performan
e 
an bea
hieved even with PI-
ontrol.
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Figure 6: Setpoint responses for PI-
ontrol of pure time delay pro
ess, g(s) = e�s, with settings fromTable 6.5.3 Fourth-order pro
ess (E5)The results for the fourth-order pro
ess E5 (Astrom et al. 1998) are shown in Table 7 and Figure 7.The SIMC PI-settings again give a smooth response (TV(load) = 1.41) with good robustness (Ms =1:59) and a

eptable disturban
e reje
tion (IAE = 0.296). The Astrom/S
hei PI-settings with Ms =1:6 give very similar reponses. IMC-settings are not given sin
e no tuning rules are provided formodels in this parti
ular form (Rivera et al. 1986). The Ziegler-Ni
hols PI-settings give betterdisturban
e reje
tion (IAE = 0.137), but as seen in Figure 7 the system is 
lose to instability. Thisis 
on�rmed by the large sensitivity peak (Ms = 11:3) and ex
essive input variation (TV = 13.9)
aused by the os
illations. The Tyreus-Luyben PI-settings give IAE = 0.131 and a mu
h smootherresponse with TV = 2.91, but the robustness is still somewhat poor (Ms = 2:72). As expe
ted, sin
ethis is a dominant se
ond-order pro
ess, a signi�
ant improvement 
an be obtained with PID-
ontrol.As seen from Table 7 the performan
e of the SIMC PID-
ontroller is not quite as good as the ZNPID-
ontroller, but the robustness and input smoothness is mu
h better.17
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Figure 7: Responses for pro
ess 1=(s + 1)(0:2s + 1)(0:04s + 1)(0:008s + 1) (E5) with settings fromTable 7.Setpoint 
hange at t = 0; load disturban
e of magnitude 3 at t = 10.6 Dis
ussion6.1 Detuning the 
ontrollerThe above re
ommended SIMC settings with �
 = �, as well as almost all other PID tuning rules givenin the literature, are derived to give a \fast" 
losed-loop response subje
t to a
hieving reasonablerobustness. However, in many pra
ti
al 
ases we do need fast 
ontrol, and to redu
e the manipulatedinput usage, redu
e measurement noise sensitivity and generally make operation smoother, we maywant detune the 
ontroller. One main advantage of the SIMC tuning method is that detuning iseasily done by sele
ting a larger value for �
. From the SIMC tuning rules (23)-(24) a larger valueof �
 de
reases the 
ontroller gain and, for lag-dominant pro
esses with �1 > 4(�
 + �), in
reases theintegral time. Fruehauf et al. (1994) state that in pro
ess 
ontrol appli
ations one typi
ally 
hooses�
 > 0:5 min, ex
ept for 
ow 
ontrol loops where one may have �
 about 0.05 min.6.2 Measurement noiseMeasurement noise has not been 
onsidered in this paper, but it is an important 
onsideration inmany 
ases, espe
ially if the proportional gain K
 is large, or, for 
ases with derivative a
tion, ifthe derivative gain K
�D is large. However, sin
e the magnitude of the measurement noise variesa lot in appli
ations, it is diÆ
ult to give general rules about when measurement noise may be aproblem. In general, robust designs (with small Ms) with moderate input usage (small TV) areinsensitive to measurement noise. Therefore, the SIMC rules with the re
ommended 
hoi
e �
 = �,are less sensitive to measurement noise than most other published settings method, in
luding theZN-settings. If a
tual implementation shows that the sensitivity to measurement noise is too large,then the followong modi�
ations may be attempted:18



1. Filter the measurement signal, for example, by sending it through a �rst-order �lter 1=(�F s+1);see also (2). With the proposed SIMC-settings one 
an typi
ally in
rease the �lter time 
onstant�F up to about 0:5�
, without a large a�e
t on performan
e and robustness.2. If derivative a
tion is used, one may try to remove it, and obtain a �rst-order model beforederiving the SIMC PI-settings.3. If derivative a
tion has been removed and �ltering the measurement signal is not suÆ
ient,then the 
ontroller needs to be detuned by going ba
k to (23)-(24) and sele
ting a larger valuefor �
.6.3 Ideal PID 
ontrollerThe settings given in this paper (K
; �I ; �D) are for the series (
as
ade, \intera
ting") form PID
ontroller in (1). To derive the 
orresponding settings for the ideal (parallel, \non-intera
ting") formPID 
ontroller Ideal PID : 
0(s) = K 0
  1 + 1� 0Is + � 0Ds! = K 0
� 0Is �� 0I� 0Ds2 + � 0Is+ 1� (35)we use the following translation formulasK 0
 = K
 �1 + �D�I � ; � 0I = �I �1 + �D�I � ; � 0D = �D1 + �D�I (36)The SIMC-PID series settings in (29)-(31) then 
orrespond to the following SIMC ideal-PIDsettings (�
 = �): �1 � 8� : K 0
 = 0:5k (�1 + �2)� ; � 0I = �1 + �2; � 0D = �21 + �2�1 (37)�1 � 8� : K 0
 = 0:5k �1� �1 + �28�� ; � 0I = 8� + �2; � 0D = �21 + �28� (38)We see that the rules are mu
h more 
ompli
ated when we use the ideal form.Example. Consider the se
ond-order pro
ess g=s) = e�s=(s+ 1)2 (E9) with the k = 1; � = 1; �1 = 1and �2 = 1. The series-form SIMC settings are K
 = 0:5, �I = 1 and �D = 1. The 
orrespondingsettings for the ideal PID 
ontroller in (35) are K 0
 = 1, � 0I = 2 and � 0D = 0:5. The robustness marginswith these settings are given by the �rst 
olumn in Table 2.Remarks:1. Use of the above formulas make the series and ideal 
ontrollers identi
al when 
onsidering thefeedba
k 
ontroller, but they may di�er when it 
omes to setpoint 
hanges, be
ause one usuallydoes not di�erentiate the setpoint and the values for K
 di�er.2. The tuning parameters for the series and ideal forms are equal when the ratio between thederivative and integral time, �D=�I , approa
hes zero, that is, for a PI-
ontroller (�D = 0) or aPD-
ontroller (�I =1).3. Note that it is not always possible to do the reverse and obtain series settings from the idealsettings. Spe
i�
ally, this 
an only be done when � 0I � 4� 0D. This is be
ause the ideal form ismore general as it also allows for 
omplex zeros in the 
ontroller. Two impli
ations of this are:19



(a) We should start dire
tly with the ideal PID 
ontroller if we want to derive SIMC-settingsfor a se
ond-order os
illatory pro
ess (with 
omplex poles).(b) Even for non-os
illatory pro
esses, the ideal PID may give better performan
e due to itsless restri
tive form. For example, for the pro
ess g(s) = 1=(�s + 1)4 (E4), the minimuma
hievable IAE for a load disturban
e is IAE=0.89 with a series-PID, and 40% lower(IAE=0.52) with an ideal PID. The optimal settings for the ideal PID-
ontroller (K 0
 =4:96; � 0I = 1:25; � 0D = 1:84) 
an not be represented by the series 
ontroller be
ause � 0I < 4� 0D.6.4 Retuning for integrating pro
essesIntegrating pro
esses are 
ommon in industry, but 
ontrol performan
e is often poor be
ause ofin
orre
t settings. When en
ountering os
illations, the intuition of the operators is to redu
e the
ontroller gain. This is the exa
tly opposite of what one should do for an integrating pro
ess, sin
ethe produ
t of the 
ontroller gain K
 and the integral time �I must be larger than the value in (22)in order to avoid slow os
illations. One solution is to simply use proportional 
ontrol (with �I =1),but this is often not desirable. Here we show how to easily retune the 
ontroller to just avoid theos
illations without a
tually having to derive a model. This approa
h has been applied with su

essto industrial examples.Consider a PI 
ontroller with (initial) settings K
0 and �I0 whi
h results in \slow" os
illationswith period P0 (larger than 3 ��I0, approximately). Then we likely have a 
lose-to integrating pro
essg(s) = k0 e��ss for whi
h the produ
t of the 
ontroller gain and integral time (K
0�I0) is too low.From (20) we 
an estimate the damping 
oeÆ
ient � and time 
onstant �0 asso
iated with theseos
illations, and a standard analysis of se
ond-order systems (e.g. Seborg et al. (1989) page 118)gives that the 
orresponding period isP0 = 2�p1� �2 �0 = 2�p1� �2s �Ik0K
 � 2�s �I0k0 K
0 (39)where we have assumed �2 << 1 (signi�
ant os
illations). Thus, from (39) the produ
t of the original
ontroller gain and integral time is approximatelyK
0 � �I0 = (2�)2 1k0 ��I0P0 �2To avoid os
illations (� � 1) with the new settings we must from (21) require K
�I � 4=k0, that is,we must require that K
�IK
0�I0 � 1�2 � �P0�i0�2 (40)Here 1=�2 � 0:10, so we have the rule:� To avoid \slow" os
illations the produ
t of the 
ontroller gain and integral time should bein
reased by a fa
tor f � 0:1(P0=�I0)2.Example. This a
tual industrial 
ase originated as a proje
t to improve the purity 
ontrol of adistillation 
olumn. It soon be
ome 
lear that the main problem was large variations (disturban
es) inits feed 
ow. The feed 
ow was again the bottoms 
ow from an upstream 
olumn, whi
h was again setby its reboiler level 
ontroller. The 
ontrol of the reboiler level itself was a

eptable, but the bottoms
owrate showed large variations, This is shown in Figure 8, where y is the reboiler level and u is thebottoms 
ow valve position. The PI settings had been kept at their default setting (K
 = �0:5 and20



Figure 8: Industrial 
ase study of retuning reboiler level 
ontrol system�I = 1 min) sin
e start-up several years ago, and resulted in an os
illatory response as shown in thetop part of Figure 8.From a 
loser analysis of the \before" response we �nd that the period of the slow os
illations isP0 = 0:85 h = 51 min. Sin
e �I = 1 min, we get from the above rule we should in
rease K
 � �I by afa
tor f � 0:1 � (51)2 = 260 to avoid the os
illations. The plant personnel were somewhat s
epti
alto authorize su
h large 
hanges, but eventually a

epted to in
rease K
 by a fa
tor 7.7 and �I bya fa
tor 24, that is, K
�I was in
reased by 7:7 � 24 = 185. The mu
h improved response is shownin the \after" plot in Figure 8. There is still some minor os
illations, but these may be 
aused bydisturban
es outside the loop. In any 
ase the 
ontrol of the downstream distillation 
olumn was mu
himproved.6.5 Derivative a
tion to 
ountera
t time delay?Introdu
tion of derivative a
tion, e.g. �D = �=2, is 
ommonly proposed to improve the response whenwe have time delay (Smith and Corripio 1985) (Rivera et al. 1986). To derive this value we may in(17) use the more exa
t 1st order Pade approximation, e��s � (� �2s+ 1)=( �2s+ 1). With the 
hoi
e�
 = � this results in the same series-form PID-
ontroller (18) found above, but in addition we get aterm ( �2s+1)=(0:5 �2s+1). This is as an additional derivative term with �D = �=2, e�e
tive over onlya small range, whi
h in
reases the 
ontroller gain by a fa
tor of two at high frequen
ies. However,with the robust SIMC settings used in this paper (�
 = �), the addition of derivative a
tion (without
hanging K
 or �I) has in most 
ases no e�e
t on IAE for load disturban
es, sin
e the integral gainKI = K
=�I is un
hanged and there are no os
illations (Astrom and Hagglund 1995). Althoughthe robustness margins are somewhat improved (for example, for an integrating with delay pro
ess,k0s��s=s, the value of Ms is redu
ed from 1.70 (PI) to 1.50 (PID) by adding derivative a
tion with�D = �=2), this probably does not justify the in
reased 
omplexity of the 
ontroller and the in
reased21



sensitivity to measurement noise. This 
on
lusion is further 
on�rmed by Table 6 and Figure 6,where we found that a PI-
ontroller (and even a pure I-
ontroller) gave very good performan
e for apure time delay pro
ess. In 
on
lusion, it is not re
ommended to use derivative a
tion to 
ountera
ttime delay, at least not with the robust settings re
ommended in this paper.6.6 Con
luding remarks� As illustrated by the many examples, the very simple analyti
 tuning pro
edure presented inthis paper yields surprisingly good results. Additional examples and simulations are availablein reports that are available over the Internet (Holm and Butler 1998) (Skogestad 2001). Theproposed SIMC-settings are quite similar to the \simpli�ed IMC-PID tuning rules" of Fruehaufet al. (1994), whi
h are based on extensive simulations and have been veri�ed industrially.Importantly, the approa
h is analyti
, whi
h makes it very well suited for tea
hing and forgaining insight. Spe
i�
ally, it gives invaluable insight into how the 
ontroller should be retunedin response to pro
ess 
hanges, like 
hanges in the time delay or gain.� The approa
h has been developed for typi
al pro
ess 
ontrol appli
ations. Unstable pro
esseshave not been 
onsidered, with the ex
eption of integrating pro
esses. Os
illating pro
esses(with 
omplex poles or zeros) have also not been 
onsidered.� The e�e
tive delay � is easily obtained using the proposed half rule. Sin
e the e�e
tive delayis the main limiting fa
tor in terms of 
ontrol performan
e, its value gives invaluable insightabout the inherent 
ontrollability of the pro
ess.� From the settings in (23)-(25), a PI-
ontroller results from a �rst-order model, and a PID-
ontroller from a se
ond-order model. With the e�e
tive delay 
omputed using the half rulein (10)-(11), it then follows that PI-
ontrol performan
e is limited by (half of) the magnitudeof the se
ond-largest time 
onstant �2, whereas PID-
ontrol performan
e is limited by (half of)the magnitude of the third-largest time 
onstant, �3.� The tuning method presented in this paper starts with a transfer fun
tion model of the pro
ess.If su
h a model is not known, then it is re
ommended to use plant data, together with aregression pa
kage, to obtain a detailed transfer fun
tion model, whi
h is then subsequentlyapproximated as a model with e�e
tive delay using the half-rule.7 Con
lusionA two-step pro
edure is proposed for deriving PID settings for typi
al pro
ess 
ontrol appli
ations.1. The half rule and is used to approximate the pro
ess as a �rst or se
ond order model withe�e
tive delay �, see (10)-(11),2. For a �rst-order model (with parameters k; �1 and �) the following SIMC PI-settings are sug-gested: K
 = 1k �1�
 + � ; �I = minf�1; 4(�
 + �)gwhere the 
losed-loop response time �
 is the tuning parameter. For a dominant se
ond-orderpro
ess (for whi
h �2 > �, approximately), it is re
immended to add derivative a
tion withSeries� form PID : �D = �222



Note that although the same formulas are used to obtain K
 and �I for both PI- and PID-
ontrol,the a
tual values will di�er sin
e the e�e
tive delay � is smaller for a se
ond-order model. The tuningparameter �
 should be 
hosen to get the desired trade-o� between fast response (small IAE) on theone side, and smooth input usage (small TV) and robustness (small Ms) on the other side. There
ommended 
hoi
e of �
 = � gives robust (Ms about 1.6 to 1.7) and somewhat 
onservative settingswhen 
ompared with most other tuning rules.A
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ontrollers. Trans. of theA.S.M.E. 64, 759{768.Appendix: Approximation of positive numerator time 
on-stantsIn Figure 9 we 
onsider four approximations of a real numerator term (Ts+1) with T > 0. In terms of thenotation used in the rules presented in the paper, these approximations 
orrespond toApproximation T1 : (T0s+ 1)(�0s+ 1) � T0=�0 � 1Approximation T2 : (T0s+ 1)(�0s+ 1) � T0=�0 � 1Approximation T3 : (T0s+ 1)(�0s+ 1) � 1(�0 � T0)s+ 1Approximation T4 : (T0s+ 1)(�0as+ 1)(�0bs+ 1) � 1( �0a�0bT0 s+ 1)For 
ontrol purposes we have that� Approximations that give a too high gain are \safe" (as they will in
rease the resulting gain margin)� Approximations that give too mu
h negative phase are \safe" (as they will in
rease the resulting phasemargin)and by 
onsidering Figure 9 and we have that1. Aprroximation 1 (with T0 � �0) is always safe (both in gain and phase). It is good for frequen
ies! > 1=�02. Approximation 2 (with T0 � �0) is never safe (neither in gain or phase). It is good for ! > 5=T .3. Approximation 3 is good (and safe) for ! < 1=(�0 � T0). At high frequen
ies it is unsafe in gain.4. Approximation 4 is good (and safe) for ! > 1=�4 = T0=(�0a�0b). At low frequen
ies it is somewhatunsafe in phase. 24
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Figure 9: Comparison of g0(s) = (Ts+1)(�as+1)(�bs+1) with �a � T � �b (solid line), with four approximations(dashed and dotted lines): g1(s) = T=�b(�as+1) , g2(s) = T=�a(�bs+1) , g3(s) = 1(�3s+1)(�bs+1) with �3 = �a�T , andg4(s) = 1(�4s+1) with �4 = �a�bT .\Good" here means that the resulting 
ontroller settings yield a

eptable performan
e and robustness. Notethat approximations 1 and 2 are asymptoti
ally 
orre
t (and best) at high frequen
y, whereas approximation3 is assymptoti
ally 
orre
t (and best) at low frequen
y. Approximation 4 is is asymptoti
ally 
orre
t atboth high and low frequen
ies.Furthermore, for 
ontrol purposes it is most 
riti
al to have a good approximation of the plant behaviorat about the bandwidth frequen
y. For our model this is approximately at ! = 1=� where � is the e�e
tivedelay. From this we derive:1. If T0 is larger than all denominator time 
onstant (�0) use Approximation 1 (this is the only approxi-mation that applies in this 
ase and it is always safe).2. If �0 � T0 � 5� use Approximation 2. (Approximation 2 is \unsafe", but with T0 � 5� the resultingin
rease in Ms with the suggested SIMC-settings is less than about 0.3).3. If the resulting �3 = �0 � T is smaller than � use Approximation 3.4. If the resulting �4 is larger than � use Approximation 4The �rst three approximations have been the basis for deriving the 
orrespodning rules T1-T3 givenin the paper. The rules have been veri�ed by evaluating the resulting 
ontrol performan
e when using theapproximated model to derive SIMC PID settings. Some spe
i�
 
omments on the rules:25



� Sin
e the loss in a

ura
y when using Approximation 3 instead of Approximation 4 is minor, evenfor 
ases where Approximation 4 applies, it was de
ided to not in
lude Approximation 4 in the �nalrules.� Approximation 1, (T0s+ 1)(�0s+ 1) � kwhere k = T0�0 � 1 is good for �0 � �. It may be safely applied also when �0 < �, but then gives
onservative 
ontroller settings be
ause the gain k = T=�0 is too high at the important frequen
y1=�. This is the reason for the two modi�
ations T1a and T1b to Approximation 1. For example,for the pro
ess g0(s) = 2s+1(0:2s+1)2 e�s, Approximation 1 gives k0:2s+1e�s with k = T=�0 = 10. With�
 = � = 1 the SIMC-rules then yield K
 = 0:01 and �I = 0:2 whi
h gives a very sluggish reponse withIAE(load)=20 and Ms = 1:10. With the modi�
ation k = T0=� = 2 (Rule T1a), we get K
 = 0:05whi
h gives IAE(load)=4.99 and Ms = 1:84 (whi
h is 
lose to the IAE-optimal PI-settings for thispro
ess).� The introdu
tion of ~�0 instead of �0 in Rule T3, gives a smooth transition between Rules T2 and T3,and also improves the a

ura
y of Approximation 3 for the 
ase when �0 is large.� We normally sele
t �0 = �0a (large), ex
ept when �0b is \
lose to T0". Spe
i�
ally, we sele
t �0 = �0b(small) if T0=�0b < �0a=T0 and T0=�0b < 1:6. The fa
tor 1.6 is partly justi�ed be
ause 8�=5� = 1:6,and we then in some important 
ases get a smooth transition when there are parameter 
hanges inthe model g0(s).Example E2. For the pro
essg0(s) = k (�0:3s+ 1)(0:08s + 1)(2s+ 1)(1s + 1)(0:4s + 1)(0:2s + 1)(0:05s + 1)3 (41)we �rst introdu
e from Rule T3 the approximation0:08s + 10:2s+ 1 � 10:12s + 1Using the half rule the pro
ess may then be approximated as a �rst-order delay pro
ess with� = 1=2 + 0:4 + 0:12 + 3 � 0:05 + 0:3 = 1:47; �1 = 2 + 1=2 = 2:5or as a se
ond-order delay pro
ess with� = 0:4=2 + 0:12 + 3 � 0:05 + 0:3 = 0:77; �1 = 2; �2 = 1 + 0:4=2 = 1:2Remark: We here used �0 = �0a = 0:2 (the 
losest larger time 
onstant) for the approximation of the zeroat T0 = 0:08. A
tually, this is a borderline 
ase with T0=�0b = 1:6, and we 
ould instead have used �0 = �0b =0:05 (the 
losest smaller time 
onstant). Approximation using Rule T1b would then give 0:08s+10:05s+1 � 1, butthe e�e
t on the resulting models would be marginal: The resulting e�e
tive time delay � would 
hange from1.47 to 1.50 (�rst-order pro
ess) and from 0.77 to 0.80 (se
ond-order pro
es), whereas the time 
onstants(�1 and �2) and gain (k) would be un
hanged.Example E6. For the pro
ess (Example 6 in Astrom et al. (1998)),g0(s) = (0:17s + 1)2s(s+ 1)2(0:028s + 1) (42)26



we �rst introdu
e from Rule T3 the approximation(0:17s + 1)2(s+ 1) � 1(1� 0:17 � 0:17)s + 1 = 10:66s + 1Using the half rule we may then approximate (42) as an integrating pro
ess, g(s) = k0e��s=s, withk0 = 1; � = 1 + 0:66 + 0:028 = 1:69or as an integrating pro
ess with lag, g(s) = k0e��s=s(�2s+ 1), withk0 = 1; � = 0:66=2 + 0:028 = 0:358; �2 = 1 + 0:66=2 = 1:33Example E13. For the pro
ess g0(s) = 2s+ 1(10s+ 1)(0:5s + 1)e�s (43)the e�e
tive delay is (as we will show) � = 1:25. We then get ~�0 = min(�0; 5�) = min(10; 6:25) = 6:25, andfrom Rule T3 we have 2s+ 110s+ 1 � (6:25=10)(6:25 � 2)s+ 1 = 0:6254:25s+ 1Using the half rule we then get a �rst-order time delay approximation withk = 0:625; � = 1 + 0:5=2 = 1:25; �1 = 4:25 + 0:5=2 = 4:5
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Case Pro
ess model, g0(s) Approximation, g(s) || SIMC settings Performan
eSetpoint (1) Load disturban
ek � �1 �2 K
 �I �D (3) Ms IAE(y) TV(u) IAE(y) TV(u) IAEIAEmin(2)E1 (PI) 1(s+1)(0:2s+1) 1 0.1 1.1 - 5.5 0.8 - 1.56 0.36 12.7 0.15 1.55 1E2 (PI) (�0:3s+1)(0:08s+1)(2s+1)(1s+1)(0:4s+1)(0:2s+1)(0:05s+1)3 1 1.47 2.5 - 0.85 2.5 - 1.66 3.56 1.90 2.97 1.26 1.39E2 (PID) 1 0.77 2 1.2 1.30 2 1.2 1.73 2.73 2.84 1.54 1.33 1.99E3 (PI) 2(15s+1)(20s+1)(s+1)(0:1s+1)2 1.5 0.15 1.05 - 2.33 1.05 - 1.55 0.46 4.97 0.45 1.30 3.82E3 (PID) 1.5 0.05 1 0.15 6.67 0.4 0.15 1.47 0.25 15.0 0.068 1.45 64E4 (PI) 1(s+1)4 1 2.5 1.5 - 0.3 1.5 - 1.46 5.59 1.15 5.40 1.10 1.93E4 (PID) 1 1.5 1.5 1 0.5 1.5 1 1.43 4.31 1.27 3.13 1.12 3.49E5 (PI) 1(s+1)(0:2s+1)(0:04s+1)(0:008s+1) 1 0.148 1.1 - 3.71 1.1 - 1.59 0.45 0.30 8.1 1.48 4.1E5 (PID) 1 0.028 1.0 0.22 17.9 0.224 0.22 1.83 0.23 49.8 0.012 1.97 6.2E6 (PI) (0:17s+1)2s(s+1)2(0:028s+1) 1 1.69 (�) - 0.296 13.5 - 1.48 6.50 0.67 45.7 1.55 10.1E6 (PID) 1 0.358 (�) 1.33 1.40 2.86 1.33 1.23 1.95 3.19 2.04 1.55 1E7 (PI) �2s+1(s+1)3 1 3.5 1.5 - 0.214 1.5 - 1.66 7.28 1.06 8.34 1.28 1.23E7 (PID) 1 2.5 1.5 1 0.3 1.5 1 1.85 5.99 1.02 6.23 1.57 1.22E8 (PI) 1s(s+1)2 1 1.5 (�) - 0.33 12 - 1.76 6.47 0.84 36.4 1.78 3.2E8 (PID) 1 0.5 (�) 1.5 1.5 4 1.5 1.79 2.02 4.21 2.67 1.99 40E9 (PI) e�s(s+1)2 1 1.5 1.5 - 0.5 1.5 - 1.61 3.38 1.31 3.14 1.15 1.34E9 (PID) 1 1 1 1 0.5 1 1 1.59 3.03 1.29 2 1.10 1.60E10 (PI) e�s(20s+1)(2s+1) 1 2 21 - 5.25 16 - 1.72 6.34 12.3 3.05 1.49 2.9E10 (PID) 1 1 20 2 10 8 2 1.65 4.32 22.8 0.80 1.37 4.9E11 (PI) (�s+1)(6s+1)(2s+1)2 e�s 1 5 7 - 0.7 7 - 1.63 11.5 1.59 10.1 1.20 1.37E11 (PID) 1 3 6 3 1 6 3 1.66 9.09 2.11 6.03 1.24 1.86E12 (PI) (6s+1)(3s+1)e�0:3s(10s+1)(8s+1)(s+1) 0.225 0.3 1 - 7.41 1 - 1.66 1.07 18.3 0.15 1.39 2.1E13 (PI) 2s+1(10s+1)(0:5s+1)e�s 0.625 1.25 4.5 - 2.88 4.50 - 1.74 2.86 6.56 1.61 1.20 3.39E14 (PI) �s+1s 1 1 (�) - 0.5 8 - 2 3.59 2.04 17.3 3.40 3.75E15 (PI) �s+1s+1 1 1 1 - 0.5 1 - 2 2 1.02 2.85 3.00 1.23Table 4: Approximation g(s) = k e��s(�1s+1)(�2s+1) , SIMC PI/PID-settings (�
 = �) and performan
e summary for 15 pro
esses.(1) The IAE- and TV-values for PID 
ontrol are without derivative a
tion on the setpoint.(2) IAEmin is for the IAE-optimal PI- or PID-
ontroller.(3) The derivative time for the series form PID 
ontroller in eq.(1).(*) Integrating pro
ess, g(s) = k0 e��ss(�2s+1) .
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Setpoint Load disturban
eMethod K
 � k0� �I=� �D=� (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC (�
 = �) 0.5 8 - 1.70 3.92 1.22 16.0 1.55IMC (" = 1:7�) 0.59 1 - 1.75 2.14 1.32 1 1.24Astrom/S
hei (Ms = 1:7) 0.404 7.0 - 1.70 4.56 1.16 13.0 1.88ZN-PI 0.71 3.33 - 2.83 3.92 2.83 5.61 2.87Tyreus-Luyben 0.49 7.32 - 1.70 3.95 1.21 14.9 1.59ZN-PID 0.471 1 1 2.29 2.88 2.45 3.32 3.00Table 5: Tunings and performan
e for integrating pro
ess, g(s) = k0e��s=s(1) The derivative time is for the series form PID 
ontroller in eq. (1).(2) The IAE- and TV-values for PID 
ontrol are without derivative a
tion on the setpoint.Setpoint(2) Load disturban
eMethod K
 � k KI � k�(�) �D=� (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC (�
 = �) 0 0.5 - 1.59 2.17 1.08 2.17 1.08IMC-PI (" = 1:7�) 0.294 0.588 - 1.62 1.71 1.22 1.71 1.22Astrom/S
hei (Ms = 1:6) 0.200 0.629 - 1.60 1.59 1.08 1.59 1.08Pessen 0.25 0.751 - 1.80 1.45 1.30 1.45 1.30ZN-PI 0.45 0.27 - 1.85 3.70 1.53 3.70 1.53Tyreus-Luyben 0.313 0.071 - 1.46 14.1 1.22 14.1 1.22IMC-PID (" = 0:8�) 0 0.769 0.5 2.01 1.90 1.06 1.38 1.67ZN-PID 0.3 0.6 0.5 UnstableTable 6: Tunings and performan
e for pure time delay pro
ess, g(s) = ke��s.(�) KI = K
=�I is the integral 
ontroller gain.(1) The derivative time is for the series form PID 
ontroller in eq.(1).(2) The IAE- and TV-values for PID 
ontrol are without derivative a
tion on the setpoint.Setpoint (2) Load disturban
eMethod K
 �I �D (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC-PI (�
 = �) 3.72 1.1 - 1.59 0.45 8.2 0.296 1.41Astrom/S
hei (Ms = 1:6) 2.74 0.67 - 1.60 0.58 6.2 0.246 1.52ZN-PI 13.6 0.47 - 11.3 1.87 207 0.137 13.9Tyreus-Luyben 9.46 1.24 - 2.72 0.50 35.8 0.131 2.91SIMC-PID (�
 = �) 17.9 1.0 0.22 1.58 0.27 43.3 0.056 1.49ZN-PID 9.1 0.14 0.14 2.39 0.24 39.2 0.025 3.09Table 7: Tunings and performan
e for pro
ess g(s) = 1(s+1)(0:2s+1)(0:04s+1)(0:008s+1) (E5)(1) The derivative time is for the series form PID 
ontroller in eq.(1).(2) The IAE- and TV-values for PID 
ontrol are without derivative a
tion on the setpoint.29


