
Simple analyti rules for model redution and PID ontrollertuning �Sigurd SkogestadyDepartment of Chemial EngineeringNorwegian University of Siene and TehnologyN{7491 Trondheim NorwaySubmitted to J. Proess Control, De. 2001, Marh 2002, and June 2002This version: June 25, 2002AbstratThe aim of this paper is to present analyti rules for PID ontroller tuning that are simpleand still result in good losed-loop behavior. The starting point has been the IMC-PID tuningrules that have ahieved widespread industrial aeptane. The rule for the integral term hasbeen modi�ed to improve disturbane rejetion for integrating proesses. Furthermore, ratherthan deriving separate rules for eah transfer funtion model, there is a just a single tuning rulefor on a �rst-order or seond-order time delay model. Simple analyti rules for model redutionare presented to obtain a model in this form, inluding the \half rule" for obtaining the e�etivetime delay.1 IntrodutionAlthough the proportional-integral-derivative (PID) ontroller has only three parameters, it is noteasy, without a systemati proedure, to �nd good values (settings) for them. In fat, a visit to aproess plant will usually show that a large number of the PID ontrollers are poorly tuned. Thetuning rules presented in this paper have developed mainly as a result of teahing this material,where there are several objetives:1. The tuning rules should be well motivated, and preferably model-based and analytially derived.2. They should be simple and easy to memorize.3. They should work well on a wide range of proesses.In this paper a simple two-step proedure that satis�es these objetives is presented:Step 1. Obtain a �rst- or seond-order plus delay model. The e�etive delay in this model may beobtained using the proposed half-rule.�Originally presented at the AIChE Annual meeting, Reno, NV, USA, Nov. 2001, with the title \Probably thebest simple PID tuning rules in the world"yE-mail: skoge�hembio.ntnu.no; Phone: +47-7359-41541



Step 2. Derive model-based ontroller settings. PI-settings result if we start from a �rst-ordermodel, whereas PID-settings result from a seond-order model.There has been previous work along these lines, inluding the lassial paper by Ziegler andNihols (1942), the IMC PID-tuning paper by Rivera, Morari and Skogestad (1986) and the loselyrelated diret synthesis tuning rules in the book by Smith and Corripio (1985). The Ziegler-Niholssettings result in a very good disturbane response for integrating proesses, but are otherwise knownto result in rather aggressive settings (Tyreus and Luyben 1992) (Astrom and Hagglund 1995), andalso give poor performane for proesses with a dominant delay. On the other hand, the analytiallyderived IMC-settings of Rivera et al. (1986) are known to result in poor disturbane response forintegrating proesses (e.g., Chien and Fruehauf (1990), Horn et al. (1996)), but are robust andgenerally give very good responses for setpoint hanges. The single tuning rule presented in thispaper works well for both integrating and pure time delay proesses, and for both setpoints and loaddisturbanes.
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Figure 1: Blok diagram of feedbak ontrol system.In this paper we onsider an input (\load") disturbane (gd = g).Notation. The notation is summarized in Figure 1. where u is the manipulated input (ontrolleroutput), d the disturbane, y the ontrolled output, and ys the setpoint (referene) for the ontrolledoutput. g(s) = �y�u denotes the proess transfer funtion and (s) is the feedbak part of the ontroller.The � used to indiate deviation variables is deleted in the following. The Laplae variable s isoften omitted to simplify notation. The settings given in this paper are for the series (asade,\interating") form PID ontroller:Series PID : (s) = K � ��Is + 1�Is � � (�Ds+ 1) = K�Is ��I�Ds2 + (�I + �D)s+ 1� (1)where K is the ontroller gain, �I the integral time, and �D the derivative time. The reason for usingthe series form is that the PID rules with derivative ation are then muh simpler. The orrespondingsettings for the ideal (parallel form) PID ontroller are easily obtained using (36).Simulations. The following series form PID ontroller is used in all simulations and evaluationsof performane: u(s) = K ��Is+ 1�Is ��ys(s)� �Ds+ 1�F s+ 1y(s)� (2)with �F = ��D and � = 0:01 (the robustness margins have been omputed with � = 0). Note thatwe in order to avoid \derivative kik" do not di�erentiate the setpoint in (2). The value � = 0:012



was hosen in order to not bias the results, but in pratie (and espeially for noisy proesses) alarger value of � in the range 0.1-0.2 is normally used. In most ases we use PI-ontrol, i.e. �D = 0,and the above implementation issues and di�erenes between series and ideal form do not apply. Inthe time domain the PI-ontroller beomesu(t) = u0 +K �(bys(t)� y(t)) + 1�I Z t0 (ys(�)� y(�))d�� (3)where we have used b = 1 for the proportional setpoint weight.2 Model approximation (Step 1)
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TimeFigure 2: Step response of �rst-order plus time delay system, g(s) = ke��s=(�1s+ 1).The �rst step in the proposed design proedure is to obtain from the original model g0(s) anapproximate �rst- or seond-order time delay model g(s) in the formg(s) = k(�1s+ 1)(�2s+ 1)e��s = k0(s+ 1=�1)(�2s+ 1)e��s (4)Thus, we need to estimate the following model information (see Figure 2):� Plant gain, k� Dominant lag time onstant, �1� (E�etive) time delay (dead time), �� Optional: Seond-order lag time onstant, �2 (for dominant seond-order proess for whih�2 > �, approximately)If the response is lag-dominant, i.e. if �1 > 8� approximately, then the individual values of the timeonstant �1 and the gain k may be diÆult to obtain, but at the same time are not very important for3



ontroller design. Lag-dominant proesses may instead be approximated by an integrating proess,using k�1s+ 1 � k�1s = k0s (5)whih is exat when �1 !1 or 1=�1 � 0. In this ase we need to obtain the value for the� Slope, k0 def= k=�1The problem of obtaining the e�etive delay � (as well as the other model parameters) an beset up as a parameter estimation problem, for example, by making an least squares approximationof the open-loop step response. However, our goal is to use the resulting e�etive delay to obtainontroller settings, so a better approah would be to �nd the approximation whih for a given tuningmethod results in the best losed-loop response (here \best" ould, for example, by to minimizethe integrated absolute error (IAE)) with a spei�ed value for the sensitivity peak, Ms). However,our main objetive is not \optimality" but \simpliity", so we propose a muh simpler approah asoutlined next.2.1 Approximation of e�etive delay using the half ruleWe �rst onsider the ontrol-relevant approximation of the fast dynami modes (high-frequeny plantdynamis) by use of an e�etive delay. To derive these approximations, onsider the following two�rst-order Taylor approximations of a time delay transfer funtion:e��s � 1� �s and e��s = 1e�s � 11 + �s (6)From (6) we see that an \inverse response time onstant" T inv0 (negative numerator time onstant)may be approximated as a time delay: (�T inv0 s + 1) � e�T inv0 s (7)This is reasonable sine an inverse response has a deteriorating e�et on ontrol similar to that of atime delay (e.g., (Skogestad and Postlethwaite 1996)). Similarly, from (6) a (small) lag time onstant�0 may be approximated as a time delay: 1�0s + 1 � e��0s (8)Furthermore, sine �T inv0 s+ 1�0s+ 1 e��0s � e��0s � e�T inv0 s � e��0 = e�(�0+T inv0 +�0)s = e��sit follows that the e�etive delay � an be taken as the sum of the original delay �0, and the ontri-bution from the various approximated terms. In addition, for digital implementation with samplingperiod h, the ontribution to the e�etive delay is approximately h=2 (whih is the average time ittakes for the ontroller to respond to a hange).In terms of ontrol, the lag-approximation (8) is onservative, sine the e�et of a delay on ontrolperformane is worse than that of a lag of equal magnitude (e.g., (Skogestad and Postlethwaite 1996)).In partiular, this applies when approximating the largest of the negleted lags. Thus, to be lessonservative it is reommended to use the simple half rule:4



� Half rule: The largest negleted (denominator) time onstant (lag) is distributed evenly tothe e�etive delay and the smallest retained time onstant.In summary, let the original model be in the formQj(�T invj0 + 1)Qi(�i0s+ 1) e��0s (9)where the lags �i0 are ordered aording to their magnitude, and T invj0 > 0 denote the inverse response(negative numerator) time onstants. Then, aording to the half-rule, to obtain a �rst-order modele��s=(�1s+ 1), we use �1 = �10 + �202 ; � = �0 + �202 +Xi�3 �i0 +Xj T invj0 + h2 (10)and, to obtain a seond-order model (4), we use�1 = �10; �2 = �20 + �302 ; � = �0 + �302 +Xi�4 �i0 +Xj T invj0 + h2 (11)where h is the sampling period (for ases with digital implementation).The main basis for the empirial half-rule is to maintain the robustness of the proposed PI- andPID-tuning rules, as is justi�ed by the examples later.Example E1. The proess g0(s) = 1(s+ 1)(0:2s+ 1)is approximated as a �rst-order time delay proess, g(s) = ke��s+1=(�1sd+1), with k = 1; � = 0:2=2 =0:1 and �1 = 1 + 0:2=2 = 1:1.2.2 Approximation of positive numerator time onstantsWe next onsider how to get a model in the form (9), if we have positive numerator time onstantsin the original model g0(s). It is proposed to anel the numerator term (T0s+ 1) against a \neigh-bouring" denominator term (�0s+1) (where both T0 and �0 are positive and real) using the followingapproximations: T0s+ 1�0s+ 1 � 8>>>>>>><>>>>>>>: T0=�0 for T0 � �0 � � (Rule T1)T0=� for T0 � � � �0 (Rule T1a)1 for � � T0 � �0 (Rule T1b)T0=�0 for �0 � T0 � 5� (Rule T2)(~�0=�0)(~�0�T0)s+1 for ~�0 def= min(�0; 5�) � T0 (Rule T3) (12)Here � is the (�nal) e�etive delay, whih exat value depends on the subsequent approximation ofthe time onstants (half rule), so one may need to guess � and iterate. If there is more than onepositive numerator time onstant, then one should approximate one T0 at a time, starting with thelargest T0.We normally selet �0 as the losest larger denominator time onstant (�0 > T0) and use RulesT2 or T3. The exeption is if there exists no larger �0, or if there is smaller denominator timeonstant \lose to" T0, in whih ase we selet �0 as the losest smaller denominator time onstant5



(�0 < T0) and use rules T1, T1a or T1b. To de�ne \lose to" more preisely, let �0a (large) and �0b(small) denote the two neighboring denominator onstants to T0. Then, we selet �0 = �0b (small) ifT0=�0b < �0a=T0 and T0=�0b < 1:6 (both onditions must be satis�ed).Derivations of the above rules and additional examples are given in the Appendix.Example E3. For the proess (Example 4 in (Astrom et al. 1998))g0(s) = 2(15s+ 1)(20s+ 1)(s+ 1)(0:1s+ 1)2 (13)we �rst introdue from Rule T2 the approximation15s+ 120s+ 1 � 15s20s = 0:75(Rule T2 applies sine T0 = 15 is larger than 5�, where � is omputed below). Using the half rule,the proess may then be approximated as a �rst-order time delay model withk = 2 � 0:75 = 1:5; � = 0:1 + 0:12 = 0:15; �1 = 1 + 0:12 = 1:05or as a seond-order time delay model withk = 1:5; � = 0:12 = 0:05; �1 = 1; �2 = 0:1 + 0:12 = 0:15
3 Derivation of PID tuning rules (Step 2)3.1 Diret synthesis (IMC tuning) for setpointsNext, we derive PI-settings or PID-settings using the method of diret synthesis for setpoints (Smithand Corripio 1985), or equivalently the Internal Model Control approah for setpoints (Rivera etal. 1986). For the system in Figure 1, the losed-loop setpoint response isyys = g(s)(s)g(s)(s) + 1 (14)where we have assumed that the measurement of the output y is perfet. The idea of diret synthesisis to speify the desired losed-loop response and solve for the orresponding ontroller. From (14)we get (s) = 1g(s) 11(y=ys)desired � 1 (15)We here onsider the seond-order time delay model g(s) in (4), and speify that we, following thedelay, desire a simple �rst-order response with time onstant � (Smith and Corripio 1985) (Riveraet al. 1986):  yys!desired = 1�s+ 1e��s (16)We have kept the delay � in the \desired" response beause it is unavoidable. Substituting (16) and(4) into (15) gives a \Smith Preditor" ontroller (Smith 1957):(s) = (�1s+ 1)(�2s+ 1)k 1(�s+ 1� e��s) (17)6



� is the desired losed-loop time onstant, and is the sole tuning parameter for the ontroller. Ourobjetive is to derive PID settings, and to this e�et we introdue in (17) a �rst-order Taylor seriesapproximation of the delay, e��s � 1� �s. This gives(s) = (�1s+ 1)(�2s + 1)k 1(� + �)s (18)whih is a series form PID-ontroller (1) with (Smith and Corripio 1985) (Rivera et al. 1986)K = 1k �1� + � = 1k0 1� + � ; �I = �1; �D = �2 (19)3.2 Modifying the integral time for improved disturbane rejetionThe PID-settings in (19) were derived by onsidering the setpoint response, and the result was that weshould e�etively anel the �rst order dynamis of the proess by seleting the integral time �I = �1.This is a robust setting whih results in very good responses to setpoints and to disturbanes enteringdiretly at the proess output. However, it is well known that for lag dominant proesses with �1 � �(e.g. an integrating proesses), the hoie �I = �1 results in a long settling time for input (\load")disturbanes (Chien and Fruehauf 1990). To improve the load disturbane response we need to reduethe integral time, but not by too muh, beause otherwise we get slow osillations aused by havingalmost have two integrators in series (one from the ontroller and almost one from the slow lagdynamis in the proess). This is illustrated in Figure 3, where we for the proesse��s=(�1s+ 1) with �1 = 30; � = 1onsider PI-ontrol with K = 15 and four di�erent values of the integral time:� �I = �1 = 30 (\IMC-rule", see (19)): Exellent setpoint response, but slow settling for a loaddisturbane.� �I = 8� = 8 (SIMC-rule, see below): Faster settling for a load disturbane.� �I = 4: Even faster settling, but the setpoint response (and robustness) is poorer.� �I = 2: Poor response with \slow" osillations.A good trade-o� between disturbane response and robustness is obtained by seleting the integraltime suh that we just avoid the slow osillations, whih orresponds to �I = 8� in the above example.Let us analyze this in more detail. First, note that these \slow" osillations are not aused by the delay� (and our at a lower frequeny than the \usual fast" osillations whih our at about frequeny1=�). Beause of this, we neglet the delay in the model when we analyze the slow osillations. Theproess model then beomes g(s) = k e��s�1s+ 1 � k 1�1s+ 1 � k�1s = k0swhere the seond approximation applies sine the resulting frequeny of osillations !0 is suh that(�1!0)2 is muh larger than 11. With a PI ontroller  = K �1 + 1�I s� the losed-loop haraetristipolynomial 1 + g then beomes �Ik0KC s2 + �Is+ 11From (20) and (22) we get �0 = �I=2, so !0�1 = 1�0 �1 = 2 �1�I . Here �1 � �I and it follows that !0�1 � 1.7
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Figure 3: E�et of hanging the integral time �I for PI-ontrol of \almost integrating" proessg(s) = e�s=(30s+ 1) with K = 15.Unit setpoint hange at t = 0; Load disturbane of magnitude 10 at t = 20.whih is in standard seond-order form, � 20 s2 + 2�0�s+ 1, with�0 = s �Ik0 K ; � = 12qk0 K �I (20)Osillations our for � < 1. Of ourse, some osillations may be tolerated, but a robust hoie is tohave � = 1 (see also Marlin (1995) page 588), or equivalentlyK�I = 4=k0 (21)Inserting the reommended value for K from (19) then gives the following modi�ed integral timefor proesses where the hoie �I = �1 is too large:�I = 4(� + �) (22)3.3 SIMC-PID tuning rulesTo summarize, the reommended SIMC PID settings2 for the seond-order time delay proess in (4)are3 K = 1k �1� + � = 1k0 1� + � (23)�I = minf�1; 4(� + �)g (24)�D = �2 (25)2Here SIMC means \Simple ontrol" or \Skogestad IMC".3The derivative time in (25) is for the series form PID-ontroller in (1).8



Proess g(s) K �I � (4)DFirst-order k e��a(�1s+1) 1k �1�+� minf�1; 4(� + �)g -Seond-order, eq.(4) k e��a(�1s+1)(�2s+1) 1k �1�+� minf�1; 4(� + �)g �2Pure time delay(1) ke��s 0 0 (�) -Integrating(2) k0 e��ss 1k0 � 1(�+�) 4(� + �) -Integrating with lag k0 e��ss(�2s+1) 1k0 � 1(�+�) 4(� + �) �2Double integrating(3) k00 e��ss2 1k00 � 14(�+�)2 4 (� + �) 4 (� + �)Table 1: SIMC PID-settings (23)-(25) for some speial ases of (4) (with � as a tuning parameter).(1) The pure time delay proess is a speial ase of a �rst-order proess with �1 = 0.(2) The integrating proess is a speial ase of a �rst-order proess with �1 !1.(3) For the double integrating proess, integral ation has been added aording to eq.(27).(4) The derivative time is for the series form PID ontroller in eq.(1).(*) Pure integral ontroller (s) = KIs with KI def= K�I = 1k(�+�) .Here the desired �rst-order losed-loop response time � is the only tuning parameter. Note that thesame rules are used both for PI- and PID-settings, but the atual settings will di�er. To get a PI-ontroller we start from a �rst-order model (with �2 = 0), and to get a PID-ontroller we start froma seond-order model. PID-ontrol (with derivative ation) is primarily reommended for proesseswith dominant seond order dynamis (with �2 > �, approximately), and we note that the derivativetime is then seleted so as to anel the seond-largest proess time onstant.In Table 1 we summarize the resulting tunings for a few speial ases, inluding the pure timedelay proess, integrating proess, and double integrating proess. For the double integrating proess,we let let �2 ! 1 and introdue k00 = k0=�2 and �nd (after some algebra) that the PID-ontrollerfor the integrating proess with lag approahes a PD-ontroller withK = 1k00 � 14(� + �)2 ; �D = 4(� + �) (26)This ontroller gives good setpoint responses for the double integrating proess, but results in steady-state o�set for load disturbanes ouring at the input. To remove this o�set, we need to reintrodueintegral ation, and as before propose to use�I = 4(� + �) (27)It should be noted that derivative ation is required to stabilize a double integrating proess if wehave integral ation in the ontroller.3.4 Reommended hoie for tuning parameter �The value of the desired losed-loop time onstant � an be hosen freely, but from (23) we must have�� < � < 1 to get a positive and nonzero ontroller gain. The optimal value of � is determinedby a trade-o� between:1. Fast speed of response and good disturbane rejetion (favored by a small value of �)2. Stability, robustness and small input variation (favored by a large value of �).9



A good trade-o� is obtained by hoosing � equal to the time delay:SIMC� rule for fast response with good robustness : � = � (28)This gives a reasonably fast response with moderate input usage and good robustness margins, andfor the seond-order time delay proess in (4) results in the following SIMC-PID settings whih maybe easily memorized (� = �): K = 0:5k �1� = 0:5k0 1� (29)�I = minf�1; 8�g (30)�D = �2 (31)The orresponding settings for the ideal PID-ontroller are given in (37)-(38).4 Evaluation of the proposed tuning rulesIn this setion we evaluate the proposed SIMC PID tuning rules in (23)-(31) with the hoie � = �.We �rst onsider proesses that already are in the seond-order plus delay form in (4). Afterwardswe onsider more ompliated proesses whih must �rst be approximated as seond-order plus delayproesses (Step 1), before applying the tuning rules (Step 2).4.1 First- or seond-order time delay proesses4.1.1 RobustnessThe robustness margins with the SIMC PID-settings in (29)-(31), when applied to �rst- or seond-order time delay proesses, are always between the values given by the two olumns in Table 2.For proesses with �1 � 8�, for whih we use �I = �1 (left olumn), the system always has a gainmargin GM=3.14 and phase margin PM=61:4o, whih is muh better than than the typial minimumrequirements GM> 1:7 and PM> 30o (Seborg et al. 1989). The sensitivity and omplementarysensitivity peaks are Ms = 1:59 and Mt = 1:00 (here small values are desired with a typial upperbound of 2). The maximum allowed time delay error is ��=� = PM [rad℄=(w � �), whih in thisase gives ��=� = 2:14 (i.e., the system goes unstable if the time delay is inreased from � to(1 + 2:14)� = 3:14�).As expeted, the robustness margins are somewhat poorer for lag-dominant proesses with tau1 >8�, where we in order to improve the disturbane response use �I = 8�. Spei�ally, for the extremease of an integrating proess (right olumn) the suggested settings give GM=2.96, PM=46:9o,Ms = 1:70 and Mt = 1:30, and the maximum allowed time delay error is �� = 1:59�.Of the robustness measures listed above, we will in the following onentrate on Ms, whih is thepeak value as a funtion of frequeny of the sensitivity funtion S = 1=(1+g). Notie that Ms < 1:7guarantees GM> 2:43 and PM> 34:2o (Rivera et al. 1986).4.1.2 PerformaneTo evaluate the losed-loop performane, we onsider a unit step setpoint hange (ys = 1) and a unitstep input (load) disturbane (gd = g and d = 1), and for eah of the two onsider the input andoutput performane: 10



Proess g(s) k�1s+1e��s k0s e��sController gain, K 0:5k �1� 0:5k0 1�Integral time, �I �1 8�Gain margin (GM) 3.14 2.96Phase margin (PM) 61.4o 46.9oSensitivity peak, Ms 1.59 1.70Complementary sensitivity peak, Mt 1.00 1.30Phase rossover frequeny, !180 � � 1.57 1.49Gain rossover frequeny, ! � � 0.50 0.51Allowed time delay error, ��=� 2.14 1.59Table 2: Robustness margins for �rst-order and integrating time delay proess using the SIMC-settings in (29) and (30) (� = �). The same margins apply to a seond-order proess (4) if we hoose�D = �2 in (31).Output perfomane. To evaluate the output ontrol performane we ompute the integrated ab-solute error (IAE) of the ontrol error e = y � ys.IAE = Z 10 je(t)jdtwhih should be as small as possible.Input performane. To evaluate the manipulated input usage we ompute the total variation(TV) of the input u(t), whih is sum of all its moves up and down. TV is a bit diÆult tode�ne ompatly for a ontinuous proess, but if we disretize the input signal as a sequene,[u1; u2; : : : ; ui; : : :℄, then TV = 1Xi=1 jui+1 � uijwhih should be as small as possible. The total variation is a good measure of the \smoothness"of a signal.In Table 3 we summarize the results with the hoie � = � for the following �ve �rst-order timedelay proesses:Case 1. Pure time delay proessCase 2. Integrating proessCase 3. Integrating proess with lag �2 = 4�Case 4. Double integrating proessCase 5. First-order proess with �1 = 4�Note that the robustness margins fall within the limits given in Table 2, exept for the doubleintegrating proess in ase 4 where we from (27) have added integral ation.Setpoint hange. The simulated time responses for the �ve ases are shown in Figure 4. Thesetpoint responses are nie and smooth. For a unit setpoint hange, the minimum ahievable IAE-value for these time delay proesses is IAE = � (e.g. using a Smith Preditor ontroller (17) with11



Setpoint(1) Load disturbaneCase g(s) K �I � (3)D Ms IAE(y) TV(u) IAE(y) TV(u) IAEIAEmin(2)1 ke��s 0 (�) - 1.59 2.17 � 1:08 1k 2.17 k� 1.08 1.592 k0 e��ss 0:5k0 � 1� 8 � - 1.70 3.92 � 1:22 1k0� 16 k0�2 1.55 3.273 k0 e��ss(4�s+1) 0:5k0 � 1� 8 � �2 = 4� 1.70 5.28 � 1:23 1k0� 16 k0�2 1.59 5.414 k00 e��ss2 0:0625k00 � 1�2 8 � 8 � 1.96 7.92 � 0:205 1k00�2 128 k00�3 2.34 5.495 k e��s4�s+1 0:5k �1� = 2k �1 = 4� - 1.59 2:17� 4:11 1k 2 k� 1.08 2.41Table 3: SIMC settings and performane summary for �ve di�erent time delay proesses (� = �).(1) The IAE and TV-values for PID ontrol are without derivative ation on the setpoint.(2) IAEmin is for the IAE-optimal PI/PID-ontroller of the same kind.(3) The derivative time is for the series form PID ontroller in eq.(1).(*) Pure integral ontroller (s) = KIs with KI = K�I = 0:5k� .tau = 0). From Table 3 we see that with the proposed settings the atual IAE-setpoint-value variesbetween 2:17� (for the �rst-order proess) to 7:92� (for the more diÆult double integrating proess).To avoid \derivative kik" on the input, we have hosen to follow industry pratie and notdi�erentiate the setpoint, see (2). This is the reason for the di�erene in the setpoint responsesbetween ases 2 and 3, and also the reason for the somewhat sluggish setpoint response for thedouble integrating proess in ase 4. Note also that the setpoint response an always be modi�ed byintroduing a \feedforward" �lter on the setpoint.Load disturbane. The load disturbane responses are also nie and smooth, although a bitsluggish for the integrating and double integrating proesses. In the last olumn in Table 3 weompare the ahieved IAE-value with that for the IAE-optimal ontroller of the same kind (PI orseries-PID). The ratio varies from 1.59 for the pure time delay proess to 5.49 for the more diÆultdouble integrating proess.However, lower IAE-values generally ome at the expense of poorer robustness (larger value ofMs), more exessive input usage (larger value of TV), or a more ompliated ontroller. For example,for the integrating proess, the IAE-optimal PI-ontroller (K = 0:91k0 � 1� , �I = 4:1�) redues IAE(load)by a fator 3.27, but the input variation inreases from TV=1.55 to TV=3.79, and the sensitivitypeak inreases from Ms = 1:70 to Ms = 3:71. The IAE-optimal PID-ontroller (K = 0:80k0 � 1� ,�I = 1:26�, �D = 0:76�) redues IAE(load) by a fator 8.2 (to IAE = 1:95k0�2), but this ontrollerhas Ms = 4:1 and TV(load)=5.34. The lowest ahievable IAE-value for the integrating proess is foran ideal Smith Preditor ontroller (17) with � = 0, whih redues IAE(load) by a fator 32 (to IAE= 0:5k0�2). However, this ontroller is unrealizable with in�nite input usage and requires a perfetmodel.Input usage. As seen from the simulations in the lower part of Figure 4 the input usage with theproposed settings is very smooth in all ases. To have no steady-state o�set for a load disturbane,the minimum ahievable value is TV(load)=1 (smooth input hange with no overshoot), and we �ndthat the ahieved value ranges from 1.08 (�rst-order proess), through 1.55 (integrating proess) andup to 2.34 (double integrating proess).
12
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Figure 4: Responses using SIMC settings for the �ve time delay proesses in Table 3 (� = �).Unit setpoint hange at t = 0; Unit load disturbane at t = 20.Simulations are without derivative ation on the setpoint.Parameter values: � = 1; k = 1; k0 = 1; k00 = 1.4.2 More omplex proesses: Obtaining the e�etive delayWe here onsider some ases where we must �rst (step 1) approximate the model as a �rst- orseond-order plus delay proess, before (step 2) applying the proposed tuning rules.In Table 4 we summarize for �fteen di�erent proesses (E1-E15), the model approximation (step1), the SIMC-settings with � = � (step 2) and the resulting Ms-value, setpoint and load disturbaneperformane (IAE and TV). For most of the proesses, both PI- and PID-settings are given. For someproesses (E1, E12, E13, E14, E15) only �rst-order approximations are derived, and only PI-settingsare given. The model approximations for ases E2, E3, E6 and E13 are studied separately; see (41),(13), (42) and (43). Proesses E1 and E3-E8 have been studied by Astrom and oworkers (Astrom etal. 1998) (Hagglund and Astrom 2001), and in all ases the SIMC PI-settings and IAE-load-values inTable 4 are very similar to those obtained by Astrom and oworkers for similar values of Ms. ProessE11 has been studied by Shei (1994).The peak sensitivity (Ms) for the 25 ases ranges from 1.23 to 2, with an average value of 1.66.This on�rms that the simple approximation rules (inluding the half rule for the e�etive delay)are able to maintain the original robustness where Ms ranges from 1.59 to 1.70 (see Table 2) . Thepoorest robustness with Ms = 2 is obtained for the two inverse response proesses in E14 and E15.13



For these two proesses, we also �nd that the input usage is large, with TV for a load disturbanelarger than 3, whereas it for all other ases is less than 2 (the minimum value is 1). The inverseresponses proesses E14 and E15 are rather unusual in that the proess gain remains �nite (at 1) athigh frequenies, and we also have that they give instability with PID ontrol.The input variation (TV) for a setpoint hange is large in some ases, espeially for ases wherethe ontroller gain K is large. In suh ases the setpoint response may be slowed down by, forexample, pre�ltering the setpoint hange or using b smaller than 1 in (3). (Alternatively, if inputusage is not a onern, then pre�ltering or use of b > 1 may be used to speed up the setpointresponse.)The last olumn in Table 4 gives for a load disturbane the ratio between the ahieved IAE andthe minimum IAE with the same kind of ontroller (PI or series-PID) with no robustness limitationsimposed. In many ases this ratio is surprisingly small (e.g., less than 1.4 for the PI-settings forases E2, E7, E9, E11 and E15). However, in most ases the ratio is larger, and even in�nity (asesE1 and E6-PID). The largest values are for proesses with little or no inherent ontrol limitations(e.g. no time delay), suh that theoretially very large ontroller gains may be used. In pratie, thisperformane an not be ahieved due to unmodeled dynamis and limitations on the input usage.For example, for the seond-order proess g(s) = 1(s+1)(0:2s+1) (ase E1) one may in theory ahieveperfet ontrol (IAE=0) by using a suÆiently high ontroller gain. This is also why no SIMC PID-settings are given in Table 4 for this proess, beause the hoie � = � = 0 gives in�nite ontrollergain. More preisely, going bak to (23)-(24), the SIMC-PID settings for proess E1 areK = 1k �1� = 1� ; �I = 4�; �D = �2 = 0:1 (32)These settings give for any value of � exellent robustness margins. In partiular, for � ! 0 we getGM=1, PM=76.3o, Ms = 1, and Mt = 1:15. However, in this ase the good margins are misleadingsine the rossover frequeny, ! � 1=�, approahes in�nity as � goes to zero. Thus, the time delayerror �� = PM=! that yields instability approahes zero (more preisely, 1:29�) as � goes to zero.The reommendation given earlier was that a seond-order model (and thus use of PID ontrolwith SIMC settings) should only be used for dominant seond-order proess with �2 > �, approxi-mately. This reommendation is justi�ed by omparing for ases E1-E11 the results with PI-ontroland PID-ontrol. We note from Table 4 that there is a lose orrelation between the value of �2=� andthe improvement in IAE for load hanges. For example, �2=� is in�nite for ase E1, and indeed the(theoretial) improvement with PID ontrol over PI ontrol is in�nite. In ases E5, E6, E8, E3, E10and E2 the ratio �2=� is larger than 1 (ranges from 7.9 to 1.6), and there is a signi�ant improvementin IAE with PID ontrol (by a fator 24 to 1.9). In ases E11, E9, E4 and E7 the ratio �2=� is lessthan 1 (ranges from 1 to 0.4) and the improvement with PID ontrol is rather small (by a fator 1.6to 1.3). This improvement is too small in most ases to justify the additional omplexity and noisesensitivity of using derivative ation. This is for the SIMC settings. The trend is the same for theIAE-optimal settings, although there is generally a larger improvement with PID over PI ontrol.In summary, these �fteen examples illustrate that the simple SIMC tuning rules used in ombi-nation with the simple half-rule for estimating the e�etive delay, result in good and robust settings.5 Comparison with other tuning methodsAbove we have evaluated the proposed SIMC tuning approah on its own merit. A detailed andfair omparison with other tuning methods is virtually impossible { beause there are many tuningmethods, many possible performane riteria and many possible models. We here perform a om-parison for three typial proesses; the integrating proess with delay (Case 2), the pure time delay14



proess (Case 1), and the fourth-order proess E5 with distributed time onstants. The followingtuning methods are used for omparison:Original IMC PID tuning rules. Rivera et al. (1986) derived PID settings for various pro-esses. For a �rst-order time delay proess their \improved IMC PI-settings" for fast response(" = 1:7�) are IMC PI : K = 0:588k (�1 + �2)� ; �I = �1 + �2 (33)and their PID-settings for fast response (" = 0:8�) areIMC series� PID : K = 0:769k �1� ; �I = �1; �D = �2 (34)Note that these rules give �I � �1, so the response to input load disturbanes will be poor for lagdominant proesses with �1 � �.Astrom/Shei PID tuning (Maximize KI). Shei (1994) argued that in proess ontrolappliations we usually want a robust design with the highest possible attenuation of low-frequenydisturbanes, and proposed to maximize the low-frequeny ontroller gain KI def= K�I subjet togiven robustness onstraints on the sensitivity peaks Ms and Mt. Both for PI- and PID-ontrol,maximizing KI is equivalent to minimizing the integrated error (IE) for load disturbanes, whih forrobust designs with no overshoot is the same as minimizing the IAE (Astrom and Hagglund 1995).Note that the use of derivative ation (�D) does not a�et the IE (and also not the IAE for robustdesigns), but it may improve robustness (lower Ms) and redue the input variation (lower TV { atleast with no noise). Astrom et al. (1998) showed how to formulate the minimization of KI as aneÆient optimization problem for the ase with PI ontrol and a onstraint on Ms. The value of thetuning parameter Ms is typially between 1.4 (robust tuning) and 2 (more aggressive tuning). Wewill here selet it to be the same as for the orresponding SIMC design, that is, typially around 1.7.Ziegler-Nihols (ZN) PID tuning rules. Ziegler and Nihols (1942) proposed as the �rststep to generate sustained osillations with a P-ontroller, and from this obtain the \ultimate" gainKu and orresponding \ultimate" period Pu (alternatively, this information an be obtained usingrelay feedbak (Astrom and Hagglund 1995)). Based on simulations, Ziegler and Nihols (1942)reommended the following \losed-loop" settings:P� ontrol : K = 0:5KuPI� ontrol : K = 0:45Ku; �I = Pu=1:2PID� ontrol (series) : K = 0:3Ku; �I = Pu=4; �D = Pu=4Remark. We have here assumed that the PID-settings given by Ziegler and Nihols (K 0 = 0:6Ku; � 0I = Pu=2; � 0D =Pu=8) were originally derived for the ideal form PID ontroller (see (Hellem 2001) for justi�ation), and have translatedthese into the orresponding series settings using (36). This gives somewhat less agressive settings and better IAE-values than if we assume that the ZN-settings were originally derived for the series form. Note that K=�I and K�Dare not a�eted, so the di�erene is only at intermediate frequenies.Tyreus-Luyben modi�ed ZN PI tuning rules. The ZN settings are too aggressive for mostproess ontrol appliations, where osillations and overshoot are usually not desired. This led Tyreusand Luyben (1992) to reommend the following PI-rules for more onservative tuning:K = 0:313Ku; �I = 2:2Pu15



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

O
U

TP
U

T 
y

y
s
=

SIMC

IMC

ZN

ZN

SIMC

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

O
U

TP
U

T 
y

y
s
=

SIMC

IMC

ZN

ZN

SIMC

Figure 5: Responses for PI-ontrol of integrating proess, g(s) = e�s=s, with settings from Table 5Setpoint hange at t = 0; load disturbane of magnitude 0.5 at t = 10.5.1 Integrating proessThe results for the integrating proess, g(s) = k0 e��ss , are shown in Table 5 and Figure 5. TheSIMC-PI ontroller with � = � yields Ms = 1:7 and IAE(load)=16. The Astrom/Shei PI-settingsfor Ms = 1:7 are very similar to the SIMC settings, but with somewhat better load rejetion (IAEredued from 16 to 13). The ZN PI-ontroller has a shorter integral time and larger gain thanthe SIMC-ontroller, whih results in muh better load rejetion with IAE redued from 16 to 5.6.However, the robustness is worse, with Ms inreased from 1.70 to 2.83 and the gain margin reduedfrom 2.96 to 1.86. The IMC settings of Rivera et al. (1986) result in a pure P-ontroller with verygood setpoint responses, but there is steady-state o�set for load disturbanes. The modi�ed ZNPI-settings of Tyreus-Luyben are almost idential to the SIMC-settings. This is enouraging sine itis exatly for this type of proess that these settings were developed (Tyreus and Luyben 1992).5.2 Pure time delay proessThe results for the pure time delay proess, g(s) = ke��s, are given in Table 6 and Figure 6. Notethat the setpoint and load disturbanes responses are idential for this proess, and also that theinput and output signals are idential, exept for the time delay.Reall that the SIMC-ontroller for this proess is a pure integrating ontroller with Ms = 1:59and IAE=2.17. The minimum ahievable IAE-value for any ontroller for this proess is IAE=1(using a Smith Preditor (17) with � = 0). We �nd that the PI-settings using SIMC (IAE=2.17),IMC (IAE=1.71) and Astrom/Shei (IAE=1.59) all yield very good performane. In partiular, notethat the exellent Astrom/Shei performane is ahieved with good robustness (Ms = 1:60) and verysmooth input usage (TV=1.08). Pessen (1994) reommends PI-settings for the time delay proessthat give even better performane (IAE=1.44), but with somewhat worse robustness (Ms = 1:80).The ZN PI-ontroller is signi�antly more sluggish with IAE=3.70, and the Tyreus-Luyben ontroller16



is extremely sluggish with IAE=14.1. This is due to low value of the integral gain KI .Beause the proess gain remains onstant at high frequeny, any \real" PID ontroller (withboth proportional and derivative ation), yields instability for this proess, inluding the ZN PID-ontroller (Rivera et al. 1986). (However, the IMC PID-ontroller is atually a ID-ontroller, and ityields a stable response with IAE=1.38.)The poor response with the ZN PI-ontroller and the instability with PID ontrol, may partlyexplain the myth in the proess industry that time delay proesses annot be adequately ontrolledusing PID ontrollers. However, as seen from Table 6 and Figure 6, exellent performane an beahieved even with PI-ontrol.
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Figure 6: Setpoint responses for PI-ontrol of pure time delay proess, g(s) = e�s, with settings fromTable 6.5.3 Fourth-order proess (E5)The results for the fourth-order proess E5 (Astrom et al. 1998) are shown in Table 7 and Figure 7.The SIMC PI-settings again give a smooth response (TV(load) = 1.41) with good robustness (Ms =1:59) and aeptable disturbane rejetion (IAE = 0.296). The Astrom/Shei PI-settings with Ms =1:6 give very similar reponses. IMC-settings are not given sine no tuning rules are provided formodels in this partiular form (Rivera et al. 1986). The Ziegler-Nihols PI-settings give betterdisturbane rejetion (IAE = 0.137), but as seen in Figure 7 the system is lose to instability. Thisis on�rmed by the large sensitivity peak (Ms = 11:3) and exessive input variation (TV = 13.9)aused by the osillations. The Tyreus-Luyben PI-settings give IAE = 0.131 and a muh smootherresponse with TV = 2.91, but the robustness is still somewhat poor (Ms = 2:72). As expeted, sinethis is a dominant seond-order proess, a signi�ant improvement an be obtained with PID-ontrol.As seen from Table 7 the performane of the SIMC PID-ontroller is not quite as good as the ZNPID-ontroller, but the robustness and input smoothness is muh better.17
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Figure 7: Responses for proess 1=(s + 1)(0:2s + 1)(0:04s + 1)(0:008s + 1) (E5) with settings fromTable 7.Setpoint hange at t = 0; load disturbane of magnitude 3 at t = 10.6 Disussion6.1 Detuning the ontrollerThe above reommended SIMC settings with � = �, as well as almost all other PID tuning rules givenin the literature, are derived to give a \fast" losed-loop response subjet to ahieving reasonablerobustness. However, in many pratial ases we do need fast ontrol, and to redue the manipulatedinput usage, redue measurement noise sensitivity and generally make operation smoother, we maywant detune the ontroller. One main advantage of the SIMC tuning method is that detuning iseasily done by seleting a larger value for �. From the SIMC tuning rules (23)-(24) a larger valueof � dereases the ontroller gain and, for lag-dominant proesses with �1 > 4(� + �), inreases theintegral time. Fruehauf et al. (1994) state that in proess ontrol appliations one typially hooses� > 0:5 min, exept for ow ontrol loops where one may have � about 0.05 min.6.2 Measurement noiseMeasurement noise has not been onsidered in this paper, but it is an important onsideration inmany ases, espeially if the proportional gain K is large, or, for ases with derivative ation, ifthe derivative gain K�D is large. However, sine the magnitude of the measurement noise variesa lot in appliations, it is diÆult to give general rules about when measurement noise may be aproblem. In general, robust designs (with small Ms) with moderate input usage (small TV) areinsensitive to measurement noise. Therefore, the SIMC rules with the reommended hoie � = �,are less sensitive to measurement noise than most other published settings method, inluding theZN-settings. If atual implementation shows that the sensitivity to measurement noise is too large,then the followong modi�ations may be attempted:18



1. Filter the measurement signal, for example, by sending it through a �rst-order �lter 1=(�F s+1);see also (2). With the proposed SIMC-settings one an typially inrease the �lter time onstant�F up to about 0:5�, without a large a�et on performane and robustness.2. If derivative ation is used, one may try to remove it, and obtain a �rst-order model beforederiving the SIMC PI-settings.3. If derivative ation has been removed and �ltering the measurement signal is not suÆient,then the ontroller needs to be detuned by going bak to (23)-(24) and seleting a larger valuefor �.6.3 Ideal PID ontrollerThe settings given in this paper (K; �I ; �D) are for the series (asade, \interating") form PIDontroller in (1). To derive the orresponding settings for the ideal (parallel, \non-interating") formPID ontroller Ideal PID : 0(s) = K 0  1 + 1� 0Is + � 0Ds! = K 0� 0Is �� 0I� 0Ds2 + � 0Is+ 1� (35)we use the following translation formulasK 0 = K �1 + �D�I � ; � 0I = �I �1 + �D�I � ; � 0D = �D1 + �D�I (36)The SIMC-PID series settings in (29)-(31) then orrespond to the following SIMC ideal-PIDsettings (� = �): �1 � 8� : K 0 = 0:5k (�1 + �2)� ; � 0I = �1 + �2; � 0D = �21 + �2�1 (37)�1 � 8� : K 0 = 0:5k �1� �1 + �28�� ; � 0I = 8� + �2; � 0D = �21 + �28� (38)We see that the rules are muh more ompliated when we use the ideal form.Example. Consider the seond-order proess g=s) = e�s=(s+ 1)2 (E9) with the k = 1; � = 1; �1 = 1and �2 = 1. The series-form SIMC settings are K = 0:5, �I = 1 and �D = 1. The orrespondingsettings for the ideal PID ontroller in (35) are K 0 = 1, � 0I = 2 and � 0D = 0:5. The robustness marginswith these settings are given by the �rst olumn in Table 2.Remarks:1. Use of the above formulas make the series and ideal ontrollers idential when onsidering thefeedbak ontroller, but they may di�er when it omes to setpoint hanges, beause one usuallydoes not di�erentiate the setpoint and the values for K di�er.2. The tuning parameters for the series and ideal forms are equal when the ratio between thederivative and integral time, �D=�I , approahes zero, that is, for a PI-ontroller (�D = 0) or aPD-ontroller (�I =1).3. Note that it is not always possible to do the reverse and obtain series settings from the idealsettings. Spei�ally, this an only be done when � 0I � 4� 0D. This is beause the ideal form ismore general as it also allows for omplex zeros in the ontroller. Two impliations of this are:19



(a) We should start diretly with the ideal PID ontroller if we want to derive SIMC-settingsfor a seond-order osillatory proess (with omplex poles).(b) Even for non-osillatory proesses, the ideal PID may give better performane due to itsless restritive form. For example, for the proess g(s) = 1=(�s + 1)4 (E4), the minimumahievable IAE for a load disturbane is IAE=0.89 with a series-PID, and 40% lower(IAE=0.52) with an ideal PID. The optimal settings for the ideal PID-ontroller (K 0 =4:96; � 0I = 1:25; � 0D = 1:84) an not be represented by the series ontroller beause � 0I < 4� 0D.6.4 Retuning for integrating proessesIntegrating proesses are ommon in industry, but ontrol performane is often poor beause ofinorret settings. When enountering osillations, the intuition of the operators is to redue theontroller gain. This is the exatly opposite of what one should do for an integrating proess, sinethe produt of the ontroller gain K and the integral time �I must be larger than the value in (22)in order to avoid slow osillations. One solution is to simply use proportional ontrol (with �I =1),but this is often not desirable. Here we show how to easily retune the ontroller to just avoid theosillations without atually having to derive a model. This approah has been applied with suessto industrial examples.Consider a PI ontroller with (initial) settings K0 and �I0 whih results in \slow" osillationswith period P0 (larger than 3 ��I0, approximately). Then we likely have a lose-to integrating proessg(s) = k0 e��ss for whih the produt of the ontroller gain and integral time (K0�I0) is too low.From (20) we an estimate the damping oeÆient � and time onstant �0 assoiated with theseosillations, and a standard analysis of seond-order systems (e.g. Seborg et al. (1989) page 118)gives that the orresponding period isP0 = 2�p1� �2 �0 = 2�p1� �2s �Ik0K � 2�s �I0k0 K0 (39)where we have assumed �2 << 1 (signi�ant osillations). Thus, from (39) the produt of the originalontroller gain and integral time is approximatelyK0 � �I0 = (2�)2 1k0 ��I0P0 �2To avoid osillations (� � 1) with the new settings we must from (21) require K�I � 4=k0, that is,we must require that K�IK0�I0 � 1�2 � �P0�i0�2 (40)Here 1=�2 � 0:10, so we have the rule:� To avoid \slow" osillations the produt of the ontroller gain and integral time should beinreased by a fator f � 0:1(P0=�I0)2.Example. This atual industrial ase originated as a projet to improve the purity ontrol of adistillation olumn. It soon beome lear that the main problem was large variations (disturbanes) inits feed ow. The feed ow was again the bottoms ow from an upstream olumn, whih was again setby its reboiler level ontroller. The ontrol of the reboiler level itself was aeptable, but the bottomsowrate showed large variations, This is shown in Figure 8, where y is the reboiler level and u is thebottoms ow valve position. The PI settings had been kept at their default setting (K = �0:5 and20



Figure 8: Industrial ase study of retuning reboiler level ontrol system�I = 1 min) sine start-up several years ago, and resulted in an osillatory response as shown in thetop part of Figure 8.From a loser analysis of the \before" response we �nd that the period of the slow osillations isP0 = 0:85 h = 51 min. Sine �I = 1 min, we get from the above rule we should inrease K � �I by afator f � 0:1 � (51)2 = 260 to avoid the osillations. The plant personnel were somewhat septialto authorize suh large hanges, but eventually aepted to inrease K by a fator 7.7 and �I bya fator 24, that is, K�I was inreased by 7:7 � 24 = 185. The muh improved response is shownin the \after" plot in Figure 8. There is still some minor osillations, but these may be aused bydisturbanes outside the loop. In any ase the ontrol of the downstream distillation olumn was muhimproved.6.5 Derivative ation to ounterat time delay?Introdution of derivative ation, e.g. �D = �=2, is ommonly proposed to improve the response whenwe have time delay (Smith and Corripio 1985) (Rivera et al. 1986). To derive this value we may in(17) use the more exat 1st order Pade approximation, e��s � (� �2s+ 1)=( �2s+ 1). With the hoie� = � this results in the same series-form PID-ontroller (18) found above, but in addition we get aterm ( �2s+1)=(0:5 �2s+1). This is as an additional derivative term with �D = �=2, e�etive over onlya small range, whih inreases the ontroller gain by a fator of two at high frequenies. However,with the robust SIMC settings used in this paper (� = �), the addition of derivative ation (withouthanging K or �I) has in most ases no e�et on IAE for load disturbanes, sine the integral gainKI = K=�I is unhanged and there are no osillations (Astrom and Hagglund 1995). Althoughthe robustness margins are somewhat improved (for example, for an integrating with delay proess,k0s��s=s, the value of Ms is redued from 1.70 (PI) to 1.50 (PID) by adding derivative ation with�D = �=2), this probably does not justify the inreased omplexity of the ontroller and the inreased21



sensitivity to measurement noise. This onlusion is further on�rmed by Table 6 and Figure 6,where we found that a PI-ontroller (and even a pure I-ontroller) gave very good performane for apure time delay proess. In onlusion, it is not reommended to use derivative ation to ounterattime delay, at least not with the robust settings reommended in this paper.6.6 Conluding remarks� As illustrated by the many examples, the very simple analyti tuning proedure presented inthis paper yields surprisingly good results. Additional examples and simulations are availablein reports that are available over the Internet (Holm and Butler 1998) (Skogestad 2001). Theproposed SIMC-settings are quite similar to the \simpli�ed IMC-PID tuning rules" of Fruehaufet al. (1994), whih are based on extensive simulations and have been veri�ed industrially.Importantly, the approah is analyti, whih makes it very well suited for teahing and forgaining insight. Spei�ally, it gives invaluable insight into how the ontroller should be retunedin response to proess hanges, like hanges in the time delay or gain.� The approah has been developed for typial proess ontrol appliations. Unstable proesseshave not been onsidered, with the exeption of integrating proesses. Osillating proesses(with omplex poles or zeros) have also not been onsidered.� The e�etive delay � is easily obtained using the proposed half rule. Sine the e�etive delayis the main limiting fator in terms of ontrol performane, its value gives invaluable insightabout the inherent ontrollability of the proess.� From the settings in (23)-(25), a PI-ontroller results from a �rst-order model, and a PID-ontroller from a seond-order model. With the e�etive delay omputed using the half rulein (10)-(11), it then follows that PI-ontrol performane is limited by (half of) the magnitudeof the seond-largest time onstant �2, whereas PID-ontrol performane is limited by (half of)the magnitude of the third-largest time onstant, �3.� The tuning method presented in this paper starts with a transfer funtion model of the proess.If suh a model is not known, then it is reommended to use plant data, together with aregression pakage, to obtain a detailed transfer funtion model, whih is then subsequentlyapproximated as a model with e�etive delay using the half-rule.7 ConlusionA two-step proedure is proposed for deriving PID settings for typial proess ontrol appliations.1. The half rule and is used to approximate the proess as a �rst or seond order model withe�etive delay �, see (10)-(11),2. For a �rst-order model (with parameters k; �1 and �) the following SIMC PI-settings are sug-gested: K = 1k �1� + � ; �I = minf�1; 4(� + �)gwhere the losed-loop response time � is the tuning parameter. For a dominant seond-orderproess (for whih �2 > �, approximately), it is reimmended to add derivative ation withSeries� form PID : �D = �222
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Figure 9: Comparison of g0(s) = (Ts+1)(�as+1)(�bs+1) with �a � T � �b (solid line), with four approximations(dashed and dotted lines): g1(s) = T=�b(�as+1) , g2(s) = T=�a(�bs+1) , g3(s) = 1(�3s+1)(�bs+1) with �3 = �a�T , andg4(s) = 1(�4s+1) with �4 = �a�bT .\Good" here means that the resulting ontroller settings yield aeptable performane and robustness. Notethat approximations 1 and 2 are asymptotially orret (and best) at high frequeny, whereas approximation3 is assymptotially orret (and best) at low frequeny. Approximation 4 is is asymptotially orret atboth high and low frequenies.Furthermore, for ontrol purposes it is most ritial to have a good approximation of the plant behaviorat about the bandwidth frequeny. For our model this is approximately at ! = 1=� where � is the e�etivedelay. From this we derive:1. If T0 is larger than all denominator time onstant (�0) use Approximation 1 (this is the only approxi-mation that applies in this ase and it is always safe).2. If �0 � T0 � 5� use Approximation 2. (Approximation 2 is \unsafe", but with T0 � 5� the resultinginrease in Ms with the suggested SIMC-settings is less than about 0.3).3. If the resulting �3 = �0 � T is smaller than � use Approximation 3.4. If the resulting �4 is larger than � use Approximation 4The �rst three approximations have been the basis for deriving the orrespodning rules T1-T3 givenin the paper. The rules have been veri�ed by evaluating the resulting ontrol performane when using theapproximated model to derive SIMC PID settings. Some spei� omments on the rules:25



� Sine the loss in auray when using Approximation 3 instead of Approximation 4 is minor, evenfor ases where Approximation 4 applies, it was deided to not inlude Approximation 4 in the �nalrules.� Approximation 1, (T0s+ 1)(�0s+ 1) � kwhere k = T0�0 � 1 is good for �0 � �. It may be safely applied also when �0 < �, but then givesonservative ontroller settings beause the gain k = T=�0 is too high at the important frequeny1=�. This is the reason for the two modi�ations T1a and T1b to Approximation 1. For example,for the proess g0(s) = 2s+1(0:2s+1)2 e�s, Approximation 1 gives k0:2s+1e�s with k = T=�0 = 10. With� = � = 1 the SIMC-rules then yield K = 0:01 and �I = 0:2 whih gives a very sluggish reponse withIAE(load)=20 and Ms = 1:10. With the modi�ation k = T0=� = 2 (Rule T1a), we get K = 0:05whih gives IAE(load)=4.99 and Ms = 1:84 (whih is lose to the IAE-optimal PI-settings for thisproess).� The introdution of ~�0 instead of �0 in Rule T3, gives a smooth transition between Rules T2 and T3,and also improves the auray of Approximation 3 for the ase when �0 is large.� We normally selet �0 = �0a (large), exept when �0b is \lose to T0". Spei�ally, we selet �0 = �0b(small) if T0=�0b < �0a=T0 and T0=�0b < 1:6. The fator 1.6 is partly justi�ed beause 8�=5� = 1:6,and we then in some important ases get a smooth transition when there are parameter hanges inthe model g0(s).Example E2. For the proessg0(s) = k (�0:3s+ 1)(0:08s + 1)(2s+ 1)(1s + 1)(0:4s + 1)(0:2s + 1)(0:05s + 1)3 (41)we �rst introdue from Rule T3 the approximation0:08s + 10:2s+ 1 � 10:12s + 1Using the half rule the proess may then be approximated as a �rst-order delay proess with� = 1=2 + 0:4 + 0:12 + 3 � 0:05 + 0:3 = 1:47; �1 = 2 + 1=2 = 2:5or as a seond-order delay proess with� = 0:4=2 + 0:12 + 3 � 0:05 + 0:3 = 0:77; �1 = 2; �2 = 1 + 0:4=2 = 1:2Remark: We here used �0 = �0a = 0:2 (the losest larger time onstant) for the approximation of the zeroat T0 = 0:08. Atually, this is a borderline ase with T0=�0b = 1:6, and we ould instead have used �0 = �0b =0:05 (the losest smaller time onstant). Approximation using Rule T1b would then give 0:08s+10:05s+1 � 1, butthe e�et on the resulting models would be marginal: The resulting e�etive time delay � would hange from1.47 to 1.50 (�rst-order proess) and from 0.77 to 0.80 (seond-order proes), whereas the time onstants(�1 and �2) and gain (k) would be unhanged.Example E6. For the proess (Example 6 in Astrom et al. (1998)),g0(s) = (0:17s + 1)2s(s+ 1)2(0:028s + 1) (42)26



we �rst introdue from Rule T3 the approximation(0:17s + 1)2(s+ 1) � 1(1� 0:17 � 0:17)s + 1 = 10:66s + 1Using the half rule we may then approximate (42) as an integrating proess, g(s) = k0e��s=s, withk0 = 1; � = 1 + 0:66 + 0:028 = 1:69or as an integrating proess with lag, g(s) = k0e��s=s(�2s+ 1), withk0 = 1; � = 0:66=2 + 0:028 = 0:358; �2 = 1 + 0:66=2 = 1:33Example E13. For the proess g0(s) = 2s+ 1(10s+ 1)(0:5s + 1)e�s (43)the e�etive delay is (as we will show) � = 1:25. We then get ~�0 = min(�0; 5�) = min(10; 6:25) = 6:25, andfrom Rule T3 we have 2s+ 110s+ 1 � (6:25=10)(6:25 � 2)s+ 1 = 0:6254:25s+ 1Using the half rule we then get a �rst-order time delay approximation withk = 0:625; � = 1 + 0:5=2 = 1:25; �1 = 4:25 + 0:5=2 = 4:5
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Case Proess model, g0(s) Approximation, g(s) || SIMC settings PerformaneSetpoint (1) Load disturbanek � �1 �2 K �I �D (3) Ms IAE(y) TV(u) IAE(y) TV(u) IAEIAEmin(2)E1 (PI) 1(s+1)(0:2s+1) 1 0.1 1.1 - 5.5 0.8 - 1.56 0.36 12.7 0.15 1.55 1E2 (PI) (�0:3s+1)(0:08s+1)(2s+1)(1s+1)(0:4s+1)(0:2s+1)(0:05s+1)3 1 1.47 2.5 - 0.85 2.5 - 1.66 3.56 1.90 2.97 1.26 1.39E2 (PID) 1 0.77 2 1.2 1.30 2 1.2 1.73 2.73 2.84 1.54 1.33 1.99E3 (PI) 2(15s+1)(20s+1)(s+1)(0:1s+1)2 1.5 0.15 1.05 - 2.33 1.05 - 1.55 0.46 4.97 0.45 1.30 3.82E3 (PID) 1.5 0.05 1 0.15 6.67 0.4 0.15 1.47 0.25 15.0 0.068 1.45 64E4 (PI) 1(s+1)4 1 2.5 1.5 - 0.3 1.5 - 1.46 5.59 1.15 5.40 1.10 1.93E4 (PID) 1 1.5 1.5 1 0.5 1.5 1 1.43 4.31 1.27 3.13 1.12 3.49E5 (PI) 1(s+1)(0:2s+1)(0:04s+1)(0:008s+1) 1 0.148 1.1 - 3.71 1.1 - 1.59 0.45 0.30 8.1 1.48 4.1E5 (PID) 1 0.028 1.0 0.22 17.9 0.224 0.22 1.83 0.23 49.8 0.012 1.97 6.2E6 (PI) (0:17s+1)2s(s+1)2(0:028s+1) 1 1.69 (�) - 0.296 13.5 - 1.48 6.50 0.67 45.7 1.55 10.1E6 (PID) 1 0.358 (�) 1.33 1.40 2.86 1.33 1.23 1.95 3.19 2.04 1.55 1E7 (PI) �2s+1(s+1)3 1 3.5 1.5 - 0.214 1.5 - 1.66 7.28 1.06 8.34 1.28 1.23E7 (PID) 1 2.5 1.5 1 0.3 1.5 1 1.85 5.99 1.02 6.23 1.57 1.22E8 (PI) 1s(s+1)2 1 1.5 (�) - 0.33 12 - 1.76 6.47 0.84 36.4 1.78 3.2E8 (PID) 1 0.5 (�) 1.5 1.5 4 1.5 1.79 2.02 4.21 2.67 1.99 40E9 (PI) e�s(s+1)2 1 1.5 1.5 - 0.5 1.5 - 1.61 3.38 1.31 3.14 1.15 1.34E9 (PID) 1 1 1 1 0.5 1 1 1.59 3.03 1.29 2 1.10 1.60E10 (PI) e�s(20s+1)(2s+1) 1 2 21 - 5.25 16 - 1.72 6.34 12.3 3.05 1.49 2.9E10 (PID) 1 1 20 2 10 8 2 1.65 4.32 22.8 0.80 1.37 4.9E11 (PI) (�s+1)(6s+1)(2s+1)2 e�s 1 5 7 - 0.7 7 - 1.63 11.5 1.59 10.1 1.20 1.37E11 (PID) 1 3 6 3 1 6 3 1.66 9.09 2.11 6.03 1.24 1.86E12 (PI) (6s+1)(3s+1)e�0:3s(10s+1)(8s+1)(s+1) 0.225 0.3 1 - 7.41 1 - 1.66 1.07 18.3 0.15 1.39 2.1E13 (PI) 2s+1(10s+1)(0:5s+1)e�s 0.625 1.25 4.5 - 2.88 4.50 - 1.74 2.86 6.56 1.61 1.20 3.39E14 (PI) �s+1s 1 1 (�) - 0.5 8 - 2 3.59 2.04 17.3 3.40 3.75E15 (PI) �s+1s+1 1 1 1 - 0.5 1 - 2 2 1.02 2.85 3.00 1.23Table 4: Approximation g(s) = k e��s(�1s+1)(�2s+1) , SIMC PI/PID-settings (� = �) and performane summary for 15 proesses.(1) The IAE- and TV-values for PID ontrol are without derivative ation on the setpoint.(2) IAEmin is for the IAE-optimal PI- or PID-ontroller.(3) The derivative time for the series form PID ontroller in eq.(1).(*) Integrating proess, g(s) = k0 e��ss(�2s+1) .
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Setpoint Load disturbaneMethod K � k0� �I=� �D=� (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC (� = �) 0.5 8 - 1.70 3.92 1.22 16.0 1.55IMC (" = 1:7�) 0.59 1 - 1.75 2.14 1.32 1 1.24Astrom/Shei (Ms = 1:7) 0.404 7.0 - 1.70 4.56 1.16 13.0 1.88ZN-PI 0.71 3.33 - 2.83 3.92 2.83 5.61 2.87Tyreus-Luyben 0.49 7.32 - 1.70 3.95 1.21 14.9 1.59ZN-PID 0.471 1 1 2.29 2.88 2.45 3.32 3.00Table 5: Tunings and performane for integrating proess, g(s) = k0e��s=s(1) The derivative time is for the series form PID ontroller in eq. (1).(2) The IAE- and TV-values for PID ontrol are without derivative ation on the setpoint.Setpoint(2) Load disturbaneMethod K � k KI � k�(�) �D=� (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC (� = �) 0 0.5 - 1.59 2.17 1.08 2.17 1.08IMC-PI (" = 1:7�) 0.294 0.588 - 1.62 1.71 1.22 1.71 1.22Astrom/Shei (Ms = 1:6) 0.200 0.629 - 1.60 1.59 1.08 1.59 1.08Pessen 0.25 0.751 - 1.80 1.45 1.30 1.45 1.30ZN-PI 0.45 0.27 - 1.85 3.70 1.53 3.70 1.53Tyreus-Luyben 0.313 0.071 - 1.46 14.1 1.22 14.1 1.22IMC-PID (" = 0:8�) 0 0.769 0.5 2.01 1.90 1.06 1.38 1.67ZN-PID 0.3 0.6 0.5 UnstableTable 6: Tunings and performane for pure time delay proess, g(s) = ke��s.(�) KI = K=�I is the integral ontroller gain.(1) The derivative time is for the series form PID ontroller in eq.(1).(2) The IAE- and TV-values for PID ontrol are without derivative ation on the setpoint.Setpoint (2) Load disturbaneMethod K �I �D (1) Ms IAE(y) TV(u) IAE(y) TV(u)SIMC-PI (� = �) 3.72 1.1 - 1.59 0.45 8.2 0.296 1.41Astrom/Shei (Ms = 1:6) 2.74 0.67 - 1.60 0.58 6.2 0.246 1.52ZN-PI 13.6 0.47 - 11.3 1.87 207 0.137 13.9Tyreus-Luyben 9.46 1.24 - 2.72 0.50 35.8 0.131 2.91SIMC-PID (� = �) 17.9 1.0 0.22 1.58 0.27 43.3 0.056 1.49ZN-PID 9.1 0.14 0.14 2.39 0.24 39.2 0.025 3.09Table 7: Tunings and performane for proess g(s) = 1(s+1)(0:2s+1)(0:04s+1)(0:008s+1) (E5)(1) The derivative time is for the series form PID ontroller in eq.(1).(2) The IAE- and TV-values for PID ontrol are without derivative ation on the setpoint.29


