
Page 1 of 31

System documentation

By USN Software AS

Page 2 of 31

Table of Contents
1. Introduction ... 3

2. System Overview ... 4

2.1 Architecture ... 5

3. System Requirements.. 6

3.1 Functional Requirements .. 6

3.2 Non-functional Requirements ... 8

3.3 Graphical User Interface .. 9

3.3.1 Report module .. 9

3.3.2 Status module ... 10

3.3.3 Developer module .. 12

3.4 User Task Flow ... 16

3.5 Data Specifications .. 21

4. Database design .. 22

4.1 Database tables ... 23

5. UML ... 25

5.1 Use Case Diagram .. 25

5.2 Sequence Diagrams ... 26

5.3 Class Diagram .. 27

6. Unit Testing ... 28

7. Deployment and Maintenance .. 30

8. Security .. 31

Page 3 of 31

1. Introduction
This document presents and overview, requirements and design for a bug tracking system

which is targeted for developers needing feedback from their customers to make

improvements to the product or service they are providing. In addition to users being able to

report and send in bugs to the developers of a product or service, the developers should also

be able to post and show their users new and exciting features they have been working on.

Page 4 of 31

2. System Overview
This basic overview shown in Figure 2-1 is a simplified overview of the system and the

different modules for easy understanding of how the system is structured. The figure shows

the system tied together by the cloud, which is where all information and applications will

be stored. Users will be able to access the bug reporting section where they can submit bug

reports, and or request features. Bugs and features are separated with different forms. The

developers marked with orange will access their own module when logging in with

credentials. This module will have access to read and modify reports that’s been sent in.

Mockups for graphical user interface can be seen in chapter 3.3 below.

Figure 2-1: Basic system overview

Page 5 of 31

2.1 Architecture
The bug tracker system is built up by three modules, “Report”, “Status” and “Developer”. In

Figure 2-2 the modules are shown as web applications made using ASP.NET. To differentiate

between access levels there has been added color coding to the system sketch, which

indicates their level of permission. Administrators or Developers are marked with Orange.

Orange access level is the highest level of access for normal intended use. Normal users, bug

reporters are marked in Green. Green has access to reporting bugs, viewing status, and

looking at new features.

Developer module is where the developers have full access over the reports submitted.

Orange access level will have CRUD (Create Read, Update, Delete) access. All reports can

individually be claimed or assigned to a developer to be investigated. This will give options

for freedom and flexibility when it comes to tackling a bug report.

Users will be able to access two of the three modules, with green access level they will be

able to submit reports in the bug “Report” module while also being able to see the status of

bugs in the “Status” module. The “Status” module is used to present the submitted reports

and their current state. This sub module will also be available to those with green access

level.

Figure 2-2: General architectural overview of the system

Page 6 of 31

3. System Requirements
This chapter is about the satisfied requirements for the latest version of the product. The

following subchapters describe what functional and non-functional requirements have been

satisfied or why they have not. Further, an updated version of the “Graphical User Interface”

(GUI) and user task flow per module are explained.

3.1 Functional Requirements
Functional requirements define the function for the system or one of its components. The

following list shows how the specific requirements have been implemented:

• Data Storage

o The data for the system is being stored on a database hosted on the

Microsoft Azure cloud server. Multiple tables are used for storage of

different information, see chapter 4 more detailed description on the

database design.

• Data Collection

o Data is submitted to the database using either the “Report” or the

“Developer” modules. The “Report” module is the main source for all of

the bug reports to keep track of while the “Developer” module allows for

adding supplementary data, such as internal commentary meant to be

read only by the developers.

• Data Management

o The “Developer” module is made as the managerial module of the system

where the developers can manage incoming reports by setting levels of

priority and severity for each report, assigning a person to work on the

reported problem, add additional software that they are working on and

register other developers to expand their team. Additionally, there is a

feature for internal commentary that only “Developer” module users may

view for each of the reports.

• Viewing data

o In the current version of the application there are two sets of data views,

one designed for the regular user(s) and one designed for the

administrative user(s). The key difference is the regular user having a

more simplified view while the administrative version includes a more

detailed view and options for control.

• Search Functionality

o The final version includes search functionality by date and by software

name. The date search is done from a starting date to an end date. The

software search returns results where the software name starts by or

includes the text string used to search with.

• Sorting of viewed data

o The current version of the system has not yet implemented a freely

sortable table as other functions and features have been prioritized due to

lack of resources. Currently all views are sorted as default.

Page 7 of 31

• User login

o Due to the complexity, lack of resources, and time constraints this feature

has not been prioritized and is therefore not implemented in the latest

version of the system, however, the modules are designed with this

feature in mind for future implementation.

Page 8 of 31

3.2 Non-functional Requirements

The non-functional requirements specify features on how the system should work, such as:

• Input errors

o Error messages appear when the submission fields are not filled out and

attempts are being made to send the submission form. There are several

input fields that are missing certain check procedures, such as checking

that the string length does not exceed the set maximum of characters.

This is due to a lack of resources during the programming phase.

• Authentication

o Due to the login functionality not being implemented this feature is also

not yet implemented.

• Web browser support

o The current version of the system is working as intended on the following

browsers: MS Edge, Chrome, and Opera. This is tested and confirmed.

Other browsers are assumed to be compatible as well.

• Cross-module navigation

o As of the latest version, the “Report” and “Status” modules are tied to

each other where a user can easily navigate between them. This is

intentional as these two modules are meant to be publicly available.

• Uniform graphic design

o The current version of the system has the same general layout and style

across all the modules with minor variations, most of which are found in

the “Developer” module as it requires additional fields to display the extra

information.

Page 9 of 31

3.3 Graphical User Interface
One of the most important requirements are the graphical user interface (GUI) with the

system with a special emphasis on the graphical design, which should be simple to

understand at first glance and intuitive to use. This part of document presents the final

version of the graphical user interface for each of the modules.

3.3.1 Report module

Upon entering the web application, the user is greeted with a starting page where they can

select what kind of a report they wish to submit, see Figure 3-1.

Figure 3-1: Starting page of the “Report” module (GUI) design

When the user has chosen a report type, they are redirected a simple form to fill in, shown

in Figure 3-2, with relevant information and submitting it with the “Send Report” button

which then takes them back to the Home-page where a message thanks the user for

submitting a bug or feature. Additionally, the Home-page, shown in Figure 3-3 also offers

options to submit another report or to view submitted reports in the “Status” module. The

forms for both bug reports and feature requests are the same with only slight differences in

the form title text.

Page 10 of 31

Figure 3-2: Bug Report submission form page

Figure 3-3: “Report” module Home-page

3.3.2 Status module

The “Status” module starts off with the initial page, shown in Figure 3-4, where a list of

submitted reports is presented along with some search options. Either option takes the user

to a very similar page, however this time it features the search option for date, see Figure

3-5, or the search option for software, shown in Figure 3-6. This creates a small optical

illusion that the additional bar containing the search options appears on the original page

whenever the user is switching between the options.

Page 11 of 31

Figure 3-4: Starting page of the “Status” module

Figure 3-5: Date search option page

Figure 3-6: Software search option page

Page 12 of 31

3.3.3 Developer module

The “Developer” module starts off with its own starting page, shown in Figure 3-7, where a

list of all reports is shown. At the top of the list is a button “Add Report” which redirects the

user to the “Report” module for submissions. To the side of each report are two buttons,

one for detailed overview, which is the blue eye button, and the other one for deleting the

report, the red trashcan button. Clicking the blue button directs the user to the developer

view of the report, shown in Figure 3-8. Here the developer user has options for setting

levels of priority and severity, setting a responsible person or adding internal commentary

between developers.

Figure 3-7: Starting page of the "Developer" module

Figure 3-8: Developer report view

Page 13 of 31

Next, is the software management page, shown in Figure 3-9, where the developers can add

new software and edit or remove existing software in the database,

Figure 3-10: Software management Add new software page

 and Figure 3-11 shows the simple forms for adding new software and editing the existing

ones. Additionally, there is also a manager for the different versions for each of the software

called “Version Control” which is accessed by clicking the green button next to each

software. This then directs the user to the version control page, shown in Figure 3-12, where

the user can view, add and remove the different versions for the selected software.

Figure 3-9: Software management main page

Figure 3-10: Software management Add new software page

Page 14 of 31

Figure 3-11: Software management Edit software

Figure 3-12: Software version control

Page 15 of 31

Lastly, the “Developer” module features the User manager, shown in Figure 3-13, where the

developers can add, edit and remove users of the “Developer” module, which is done in the

same way as described in the software manager description earlier in the sub-chapter.

Figure 3-13: User management starting page

Page 16 of 31

3.4 User Task Flow
This chapter will present how the bug report system modules work using flowcharts showing

its behavior when browsing the web modules.

Starting with the “Report” module, shown in Figure 3-14, the module starts with a starting

page which allows the user to choose the report submission form for either a bug report or a

feature request. Once either of the two options is selected it leads to a form for the selected

report submission (note that both submission forms are essentially the same, except for the

form name). Here the user is required to fill out the form in its entirety before clicking the

“Send Report” button. Should one or more of the fields are left out a small message box will

appear, prompting the user to fill out the missing value. Upon a successful submission the

user is redirected to a Home page for the module with a “Thank you” message and options

to either submit another report/request or to view the reports in the “Status” module.

Figure 3-14: "Report" module user task flow

Page 17 of 31

The next module is the “Status” module, which is used to display submitted reports to the

non-developer users. The task flow for this module is shown in Figure 3-15. The module

starts at a home page which has options for search in the report list as it can be quite long.

Additionally, there is also an option which leads the user to the report module if they wish to

report a new bug or feature.

The first search option is the “Search by date” option, where the user is required to submit a

starting date and an end date. Once done, clicking the “Search” button will update the

report view bellow with reports within the date period. Choosing the same date twice will

display all reports submitted from midnight of that day to right before midnight the next

day. The second search option is “Search by Software” option, where the user is required to

enter a software name into the field. Upon clicking the “Search” button the report view is

updated with matching software. Typing in the entire software name is not necessary as the

search API will find all of the software that matches the input, even if it is only partial. The

view is then ordered alphabetically. If the user submits something other than a software

name or leaves the search field empty a warning message is prompted.

Figure 3-15: "Status" module user task flow

Page 18 of 31

Lastly, the largest module is the “Developer” module. This module is meant to only be

accessed by registered users (developers) however the login feature is not yet implemented,

and it is a standalone module for the time being.

The current module consists of three manager units, each responsible for managing a

specific part of the system. Starting with the report manager, shown in figure Figure 3-16 on

the left side, which features three core functions for reports, namely “Add Report” which

uses the “Report” module to create new reports, “Report View” which brings the user to a

more detailed overview of a specific report, shown in Figure 3-17, and “Delete Report”

which removes the selected report from the system entirely. The “Report View” has multiple

functions, as illustrated by the Figure 3-17. Here, the user has five sections of additional

information and options for setting and modifying the information.

Figure 3-16: "Developer" module user task flow

The “Details” section is the main view of the most important information on the report, such

as title, software name and version number, type of the report, status, priority/severity

levels and who is assigned to work on the problem. There is also a description section which

shows the problem description sent by the user who reported the problem, which also

features the function for assigning a responsible person to work on the report. This is done

by selecting a name from the dropdown list and clicking “Assign” button. Next, in the

“Modify” section the user can set or change the status, priority and severity of the report by

selecting an option for each from their dropdown lists and clicking “Save”. The user must

select each of the options to successfully update the “Details” section with new values. In

the case a single option being updated the remaining two should be selected the same

values as they already are before saving the changes.

Lastly, the internal comment section, which consists of the input field and the viewing field.

In the input field a developer can add internal commentary by typing text in the text field

and clicking the “Add comment” button. The added comment is then displayed in the

Page 19 of 31

commentary field view bellow (“Internal Comments” section) along with all the previously

added comments.

Figure 3-17: Developer page Report View user task flow

Moving away from the report manager to the software manager, the software manager

features a simple CRUD functionality for software and software versions. Here, the users can

see a list of software currently in the system, with options for adding a new software, editing

the name, or deleting an existing software, shown in the middle part of the Figure 3-16.

Additionally, an option to add different versions is present in the version sub manager,

which is accessed by clicking the “Version Control” button next to a selected software. In the

Page 20 of 31

version control sub manager, the developer can see all the currently registered versions for

that software and either add new or remove existing versions, shown in Figure 3-18 bellow.

Figure 3-18: Version control sub-manager user task flow

Finally, the user manager, shown on the right side of Figure 3-16, is for management of

registered users. Similar to software manager, the user manager also features a list of users

with options for creating new, editing or removing existing users.

Page 21 of 31

3.5 Data Specifications
To prevent unwanted interactions with the database, such as custom injection queries or

browsing of private data by the users (leaks), all interactions between the database and user

or management modules will transact with specified procedures that only allow for a specific

interaction (stored procedures). Viewing of multiple table content will be done in a similar

fashion by using custom view procedures.

Page 22 of 31

4. Database design
This chapter will present the current database design, a short summary on how and why the

current database has been expanded and how it is used in the system.

Figure 4-1: Current database table model

Figure 4-1 shows the current database table model used for the system while Figure 4-2

features the original design. The database expansion was implemented due to lack of details

in the original design. This is improved by adding additional tables which hold information

for software version, priority and severity levels and a table for internal developer

commentary. Additionally, some structural changes were necessary, due to flaws in the

original design, specifically for connections between REPORT and PERSON tables. The biggest

change here is that a table RESPONSIBLE PERSON was dropped completely for being

redundant and unnecessary.

Page 23 of 31

Figure 4-2: Previous database table model

4.1 Database tables
This subchapter focuses more on the functions and relations of each table in the database.

Starting with the REPORT, it holds the key information for every report which is submitted by

the user. Additionally, the table holds multiple foreign keys to the supplementary tables

SOFTWARE, VERSION, TYPE, STATUS, PRIORITY and SEVERITY. Each of these tables serve a

single purpose which is to supply the report with additional information, some of which is

exclusive for the developers. In the case of SOFTWARE and VERSION tables they have an

additional relation between each other, where the VERSION table also contains a foreign key

to the SOFTWARE table. This is so that each existing version can be identified for a specific

software, which is then done using a clever API that sorts away versions that do not match a

selected software foreign key from the VERSION table.

The INTERNAL COMMENT table supplements the REPORT table with developer commentary.

Here, the foreign key from the REPORT table also serves as a partial primary key to help

identify every comment for a specific registered report. Additionally, this table also contains

a date field for when the comment was made as well as the commentary itself.

The last supplementary table for REPORT is the REPORT PERSON table, which serves as an

identifier table for “Responsible Person” for each of the reports. This is done by placing a

report key and a person key inside REPORT PERSON table which creates a relation between a

person and a report without limiting on how many reports a single person can be assigned

to.

Page 24 of 31

Lastly the PERSON and APP USER tables. The PERSON table holds information about a

registered user in the system while the APP USER table is intended to hold the login

credentials for each of the users, however this last table is not in use as the login feature is

not implemented.

Page 25 of 31

5. UML
This chapter will present user interactions with the system via use case diagram and

sequence diagram. Additionally, this chapter will also contain a class diagram which unlike

the other two is focused more on the structure of the system.

5.1 Use Case Diagram
As mentioned in the system architecture, chapter 2.1, the entire system consists of 3

modules: Report module, Status Module and Administrative module. Figure 2-1 shows the

general interactions between the modules, the normal end user, and the developer end

user.

Figure 5-1: Use Case Diagram

Page 26 of 31

5.2 Sequence Diagrams
This subchapter will present a closer and more detailed view of interaction for the BugSpot

reporting system. The focus is to showcase how the objects interact with one another and

with the user.

Figure 5-2 shows the sequence of interactions taken by a typical user who submits a report,

gets a confirmation message that the report is successfully registered and is then able to

view the status of said report or search for a specific report which they have submitted

previously.

Additionally, the user may visit the “Features” site where they submit a request form for a

feature and browse the latest features added. Figure 5-3 show the sequence diagram for

administrators and developers.

Figure 5-2: Sequence Diagram

Figure 5-3: Sequence diagram for Administrators and Developers

Page 27 of 31

5.3 Class Diagram
The class diagram presents a detailed view of the program regarding the actual code,

specifically object classes, relationships between classes and the various properties and

methods they have.

Most of functionality of BugSpot revolves around some type of form to fill in, whether it is a

registration, login, or report, all the fill-out forms can be generalized simply as “Form”.

Figure 5-4 shows that all the different forms for use of the system are inherited from the

abstract class “Form”.

On the left side of Figure 5-4 the user and developer classes are shown to inherit from the

class “Login”. This is to differentiate between the two levels of access. An interface requiring

all sub classes who inherit from “Login” to also implement a parameter called “UserType”,

which defines the access level.

To the right side of Figure 5-4 is the report form inheritance structure. All report forms can

be generalized as “Report”. Bug reports and feature requests are very similar to each other

and as such only minor differences are noticeable. Additionally, several interfaces are bound

to both “Report” sub classes, requiring the parameters for type of report, status of the

report and responsible person for the report.

Figure 5-4: Class Diagram

Page 28 of 31

6. Unit Testing
Unit testing is used to test out functions and methods and catch potential bugs and

problems before they get released into the wild. A unit test can be created as shown in

Figure 6-1 by adding a new project to your current solution.

Figure 6-1 Showing the creation of a unit test

Figure 6-2 shows a unit test. Unique to the unit test is the two modifiers [TestClass] and

[TestMethod], this are necessary to run a test. The test in the figure shows a TestMath

method that checks if the calculation formula is correct and returns the correct result when

being used.

The TestDate method checks if the date is of the datatype DateTime and have the correct

formatting. If the datatype or formatting is not correct, the test will fail.

Figure 6-2 Showing an example unit test

To run a unit test, click on Test in the header and click run all tests as shown in Figure 6-3.

The test will be performed on the methods marked [TestMethod] you have made in the unit

test environment.

Page 29 of 31

Figure 6-3 Showing how to run a unit test

A successful unit test can be seen in Figure 6-4, In this test we can see what a passed test

looks like and see what methods passed and which failed. An example of a failed unit test

can be seen in Figure 6-5 and show the red mark with a cross, indicating it failed.

Figure 6-4 Successful unit test

Figure 6-5 Failed unit test

Page 30 of 31

7. Deployment and Maintenance
The installation of BugSpot consists of four parts. The installation demo shows how to use

Microsoft Azure to deploy the system using App Containers and how to create a database

and deploy BugSpot’s SQL script.

The installation process:

• Create App Containers for the web application in Azure

• Publish to the Azure App Container using Visual Studios Publish functionality.

• Create a database and run the SQL script using Microsoft SQL Server Management

Studio or similar service.

The installation process is the same for all modules of the system.

Maintenance of BugSpot can be done by republishing the web application using a newer

version of the system. Publishing over an existing web application will not affect the data

stored in the database.

https://web01.usn.no/~232144/index.html#installation

Page 31 of 31

8. Security
Data security is a very important aspect of any web-based application which collects user

input data. This application is no exception as certain laws and regulations, namely the GDPR

apply in this case. The core aspects of GDPR are:

• Lawful, fair, and transparent data processing

• Limitation of purpose, data, and storage

• Rights to information, access, and erasure of personal data

• Consent for data collection

• Personal data breaches, data protection, transfers, and privacy

To quickly summarize these points, the company running a data collecting website must

ensure that the user is fully aware how their shared data, such as name, phone number,

email address, location etc. will be used by the company whether it is for identification, case

study or other uses they must be transparent for the user. Data collection must be clearly

consented to and documented for both parties, such as a contract like for example a

checkbox that must be manually ticked off by the user. The end user also has the right to see

what data is collected, demand access and use of their own data and demand to erase parts

or all collected data about them. Additionally, the company who collects the data from users

must ensure that sensitive data they have collected, such as information which can help

identify the user must be secured from potential hacker attacks or leaked due to human

error, example being sending contact information of a user to the wrong email.

