Exam D0308 Matrix methods

 Monday January 16, 2012 Time: kl.

 Monday January 16, 2012 Time: kl. 9.00-13.00

 9.00-13.00}

The final exam consists of: 4 tasks.
Two pages excluding front page
The exam counts 100% of the final grade.
Available aids: pen and paper
Teacher: PhD David Di Ruscio
Systems and Control Engineering
Department of technology
Telemark University College
N-3914 Porsgrunn

Task 1 (25\%):
 The four fundamental subspaces

Assume given a matrix, $A \in \mathbb{R}^{m \times n}$, and a linear equation, $A x=b$, where vectors, x, and, b, have compatible dimensions.
a) What is the dimensions of the vectors x and b ?
b) What is meant with the rank, r, of the matrix A ?.
c) Define each of the four fundamental subspaces.
d) Specify the dimension of each of the four fundamental subspaces.
e) Give a general requirement for the linear equation, $A x=b$, to have a unique solution x.

Task 2 (25\%): Orthogonality

Assume given a matrix, $A \in \mathbb{R}^{m \times n}$.
a) Discuss the concept of orthogonality of the four fundamental subspaces.
b) Discuss the concept of projections in connection with the linear equation, $b=A x+e$, where, e, is the error vector.
Hint: answer should include: projection matrix P, the solution \hat{x}, the projection of b onto the subspace of A and the error $b-A \hat{x}$.
c) Give a short description of the QR decomposition of the matrix, A.
d) Consider a linear equation, $b=A x+e$, where, $A \in \mathbb{R}^{m \times n}$, and $m>n$. Show how the QR decomposition of the concatenated matrix

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{rl}
R_{11} & R_{21} \tag{1}\\
0 & R_{22}
\end{array}\right]
$$

can be used to find the least squares solution, \hat{x}, to x ?

Task 3 (25\%): Singular Value Decomposition (SVD), norms and linear regression

a) Discuss the singular value decomposition of a matrix, $A \in \mathbb{R}^{m \times n}$.
b)

- Explain what is meant with the length (or norm), $\|E\|$, of a vector, $E \in \mathbb{R}^{m}$.
- Explain what is meant with the Frobenius norm, $\|E\|_{F}$, of a matrix, $E \in \mathbb{R}^{m \times n}$.
c) Consider a linear equation, $Y=X B+E$, where, $X \in \mathbb{R}^{N \times n}$, and $N>n$ and, $r=\operatorname{rank}(X)<n$, and where we assume that Y is a vector.
Show how the Singular Value Decomposition (SVD) of the matrix, X, can be used to find the Principal Component regression (PCR) estimate, \hat{B}_{PCR} of B.
Hint: The solution should minimize the squared length (or Frobenius norm), $\|E\|^{2}=\|E\|_{F}^{2}$ when the error $E=Y-X B$ is a vector, and where the estimated error is $\hat{E}=Y-X \hat{B}_{\mathrm{PCR}}$.

Task 4 (25\%): Eigenvalues and the QR method

Assume given a square matrix, $A \in \mathbb{R}^{n \times n}$.
a) Discuss and define the eigenvalue decomposition of the matrix A.

Tips: answer should include eigenvalues, eigenvectors, the eigenvalue matrix, Λ, and the eigenvector matrix, S.
b)

- What is the eigenvalues of the transpose A^{T} of the matrix A ?
- Define the trace, $\operatorname{trace}(A)$, as a function of the n eigenvalues of matrix A ?
Definition: The sum of the entries of the main diagonal is called the trace of A, i.e. $\operatorname{trace}(A)$.
- Define the determinant, $\operatorname{det}(A)$, as a function of the n eigenvalues of the matrix A ?
c) Discuss the QR method for calculating the eigenvalues.

