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Task 1 (25%):
The four fundamental subspaces

Assume given a matrix, A ∈ Rm×n, and a linear equation, Ax = b, where
vectors, x, and, b, have compatible dimensions.

a) What is the dimensions of the vectors x and b ?
Solution: Dimensions x ∈ Rn and b ∈ Rm.

b) What is meant with the rank, r, of the matrix A ?.
Solution: The rank, r, of a matrix A ∈ Rm×n satisfy 0 ≤ r ≤ min(m,n).
If m ≥ n then the rank r is the number of linearly independent columns.
In general the rank r is the number of linearly independent rows or
columns of the matrix A. Furthermore the rank, r of matrix A is equal
to the number of pivots (p. 144) and equal to the number of non-zero
singular values of matrix A.

c) Define each of the four fundamental subspaces.
Solution: Se Ch. 3.6. The row space C(AT ). The column space C(A).
The nullspace N(A) The left nullspace N(AT ).

d) Specify the dimension of each of the four fundamental subspaces.
Solution: Se Ch. 3.6. The dimension of the row space is the rank, r.
The dimension of the column space is the rank, r. The nullspace has
dimension n− r. The left nullspace has dimension m− r.

e) Give a general requirement for the linear equation, Ax = b, to have a
unique solution x.
Solution: p. 159. When A is square and invertible, then r = m = n
and Ax = b has one solution.

Task 2 (25%): Orthogonality

Assume given a matrix, A ∈ Rm×n.

a) Discuss the concept of orthogonality of the four fundamental subspaces.
Solution:
Se Ch. 4.1.

• The row space C(AT ) is perpendicular to the nullspace N(A). The
nullspace N(A) and the row space C(AT ) are orthogonal subspaces
of Rn.
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• The column space C(A) is perpendicular to the nullspace of AT

(the left nullspace N(AT )). The column space C(A) and the left
nullspace N(AT ) are orthogonal subspaces in Rm.

b) Discuss the concept of projections in connection with the linear equation,
b = Ax+ e, where, e, is the error vector.
Hint: answer should include: projection matrix P , the solution x̂, the
projection of b onto the subspace of A and the error b− Ax̂.
Solution:
Se p. 210.

• The least squares solution is, x̂ = (ATA)−1AT b.

• The projection of b onto the column space of A is b̂ = Ax̂ = p = Pb
where the projection matrix then is P = A(ATA)−1AT .

• The error ê = b− b̂ = b−Ax̂ = b− Pb = (I − P )b is perpendicular
to the column space of A. In other words: The error b − b̂ is the
projection of b onto the orthogonal complement of A.

c) Give a short description of the QR decomposition of the matrix, A.
Solution:
Se pp. 235-237.

• A matrix A may be decomposed (factorized) into A = QR where Q
is an orthogonal matrix such that QTQ = I and the columns in Q
are orthonormal vectors.

• The matrix R = QTA is upper triangular.

• The QR decomposition may be effectively computed using the Gram-
Schmidt method, p. 237.

d) Consider a linear equation, b = Ax+ e, where, A ∈ Rm×n, and m > n.

Show how the QR decomposition of the concatenated matrix[
A b

]
=
[
Q1 Q2

] [ R11 R21

0 R22

]
, (1)

can be used to find the least squares solution, x̂, to x?
Solution:
We have from Eq. (1) that A = Q1R11 and b = Q1R21 + Q2R22. Using
this in b = Ax+ e we have Q1R21 +Q2R22 = Q1R11x+ e.

Multiplying this last eq. with QT
1 gives the equation R21 = R11x because

QT
1Q1 = I, QT

1Q2 = 0 and we assume QT
1 e = 0.

Hence, the least squares solution may be computed as x̂ = R−1
11 R21.
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Notice that this is a robust and effective algorithm, in particular when
the number of rows m is much larger than the number of columns n.

Se also p. 236 (middle part) for similar details regarding the QR and
least squares.

Task 3 (25%): Singular Value Decompo-
sition (SVD), norms and linear regres-
sion

a) Discuss the singular value decomposition of a matrix, A ∈ Rm×n.
Solution:
Se Ch. 6.7 p. 363.

• The SVD of a matrix A is A = UΣV T where U is a singular vector
matrix such that UTU = I, V is a singular vector matrix such that
V TV = I and Σ is diagonal matrix with the p = min(m,n) singular
values Σi ≥ 0 on the diagonal.

• Consider the matrix AAT which is AAT = UΣ2UT . Hence, U is the
eigenvector matrix of the symmetric matrix AAT and the singular
values is the square root of the eigenvalues of the symmetric matrix
AAT .

• Similarly from the matrix ATA = V Σ2V T we se that V is the
eigenvector matrix for the symmetric matrix ATA.

• In the above discussion the eigenvalue matrix Σ2 is actually the
diagonal matrices ΣΣT and ΣT Σ, respectively.

b)

• Explain what is meant with the length (or norm), ‖E‖, of a vector,
E ∈ Rm.
Solution:
Se p. 12. The length or norm of a vector is ‖E‖ =

√
ETE.

• Explain what is meant with the Frobenius norm, ‖E‖F , of a matrix,
E ∈ Rm×n.
Solution:
Se p. 475 Ch. 9.7 where we find the only place where the Frobenius
norm is described.

The Frobenius norm is equal to the square root of the sum of the

square of all the elements of A, i.e. ‖E‖F =
√∑m

i=1

∑n
j=1 a

2
ij =√

trace(ATA).
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c) Consider a linear equation, Y = XB+E, where, X ∈ RN×n, and N > n
and, r = rank(X) < n, and where we assume that Y is a vector.

Show how the Singular Value Decomposition (SVD) of the matrix, X,
can be used to find the Principal Component regression (PCR) estimate,
B̂PCR of B.
Hint: The solution should minimize the squared length (or Frobenius
norm), ‖E‖2 = ‖E‖2F when the error E = Y −XB is a vector, and where
the estimated error is Ê = Y −XB̂PCR.
Solution:
Here we take the SVD of matrix X, i.e. X = UΣV T ≈ U1Σ1V

T
1 and

solve Y = U1Σ1V1B for B which gives B̂PCR = V1Σ
−1
1 UT

1 Y .

Task 4 (25%): Eigenvalues and the QR
method

Assume given a square matrix, A ∈ Rn×n.

a) Discuss and define the eigenvalue decomposition of the matrix A.
Tips: answer should include eigenvalues, eigenvectors, the eigenvalue ma-
trix, Λ, and the eigenvector matrix, S.
Solution:

• Se p. 298 Ch. 6.2.
A square matrix A ∈ Rn×n with distinct eigenvalues λi ∀ i = 1, . . . , n
(in general, with linearly independent eigenvectors xi ∀ i = 1, . . . , n)
may be decomposed as A = SΛS−1 where S is an eigenvector matrix
with the eigenvectors xi as columns, and Λ is a diagonal eigenvalue
matrix with the eigenvalues λi on the diagonal.

• Se p. 287.
The eigenvalues λi may be computed by solving the characteristic
equation det(A− λI) = 0.
Remark: Solving the characteristic equation is equivalent of solv-
ing an nth order polynomial for the n eigenvalues λi ∀ i = 1, . . . , n.
This is an inaccurate and slow (a terrible) method of calculating
the eigenvalues (p. 487).

• Se p. 288.
Furthermore, for each eigenvalue λi, the eigenvectors xi may be
defined through the linear equation Axi = λixi.

b)
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• What is the eigenvalues of the transpose AT of the matrix A ?
Solution:
Se p. 295.
From A = SΛS−1 we find AT = S−T ΛST and hence the eigenvalues
of AT is equal to the eigenvalues of the A matrix.

• Define the trace, trace(A), as a function of the n eigenvalues of
matrix A?
Definition: The sum of the entries of the main diagonal is called
the trace of A, i.e. trace(A).
Solution:
Se p. 289.
We have trace(A) =

∑n
i=1 λi, i.e., the trace is equal to the sum of

the eigenvalues.

• Define the determinant, det(A), as a function of the n eigenvalues
of the matrix A?
Solution:
Se p. 295.
We have det(A) =

∏n
i=1 λi, i.e. the determinant of A is equal to the

product of the n eigenvalues.

c) Discuss the QR method for calculating the eigenvalues. Solution:
Se p. 287.
The QR method for calculating the n eigenvalues λi ∀ i = 1, . . . , n is one
of the most amazing algorithms in the history of linear algebra.

The algorithm is briefly as follows:

• Factor A into A = QR where Q has orthonormal columns and R is
upper triangular.

• Reverse Q and R and form a new matrix A1 = RQ. Notice that A
and A1 has the same eigenvalues because they are similar matrices
and A1 = Q−1AQ , because R = Q−1A.

• Factor A1 into the QR decomposition A1 = Q1R1

• Reverse the matrices and form the new matrix A2 = R1Q1. Notice
that A1 and A2 has the same eigenvalues because they are similar
matrices and A2 = Q−1

1 A1Q1.

• Continuing this iterative process for a number i of iterations, until
convergence. Then the eigenvalues are located on the diagonal of
Ai if the eigenvalues are real. If complex eigenvalues they may be
located as 2 × 2 blocks on the diagonal of Ai. Remark that Ai

usually is real and upper block triangular and that we may take
T = Ai and that we at this stage have computed the amazing block
real Schur decomposition A = QTQT .
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A MATLAB function implementation is given below in order to illustrate
the QR method.

function [T,Qt]=qr_it2(A);

% QR_IT2 Given an (n x n) matrix A.

% This function are using QR iterations in order to calculate the

% amazing block real Scur decomposition A=Q*T*Q’.

% on output.

% [T,Q]=qr_it2(A)

% ON INPUT

% A - An (n x n) matrix with real eigenvalues

% ON OUTPUT

% T - An (n x n) diagonal or upper triangular matrix similar to A,

% i.e. with the n-eigenvalues of A on the diagonal.

% Q - An orthogonal matrix such that A=Q*T*Q’

% Written: November 10 2011 by David Di Ruscio

n=size(A,1);

Qt=eye(n);

max_it=100;

for i=1:max_it

[Q,R]=qr(A);

A=R*Q;

Qt=Qt*Q;

end

T=A;
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