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Abstract

In this paper it is shown that the Partial Least-Squares (PLS) algorithm for univariate data is equivalent to using a truncated
Cayley}Hamilton polynomial expression of degree 14a4r for the matrix inverse (XTX)~13RrCr which is used to compute the
least-squares (LS) solution. Furthermore, the a coe$cients in this polynomial are computed as the optimal LS solution (minimizing
parameters) to the prediction error. The resulting solution is non-iterative. The solution can be expressed in terms of a matrix inverse
and is given by B

PLS
"K

a
(KT

a
XTXK

a
)~1KT

a
XT> where K

a
3RrCa is the controllability (Krylov) matrix for the pair (XTX,XT>). The

iterative PLS algorithm for computing the orthogonal weighting matrix =
a

as presented in the literature, is shown here to be
equivalent to computing an orthonormal basis (using, e.g. the QR algorithm) for the column space of K

a
. The PLS solution can

equivalently be computed as B
PLS

"=
a
(=T

a
XTX=

a
)~1=T

a
XT>, where=

a
is the Q (orthogonal) matrix from the QR decomposition

K
a
"=

a
R. Furthermore, we have presented an optimal and non-iterative truncated Cayley}Hamilton polynomial LS solution for

multivariate data. The free parameters in this solution is found as the minimizing solution of a prediction error criterion. ( 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Partial Least-Squares (PLS) algorithm and its
solution has received great attention and is widely used
in chemometrics, which has been de"ned as `The use of
mathematics and statistics on chemical dataa in Martens
and Nvs (1989).

PLS was introduced by Wold (1975,1985) as an algo-
rithm for computing a solution B

PLS
for the regression

coe$cients B in a linear model>"XB#E from known
data matrices X and>. One of the main purpose of using
the PLS algorithm is to handle multicollinearity prob-
lems, i.e. problems where there are (approximate) linear
dependencies between the columns of X which results in
a (nearly) rank de"cient data matrix X. An unbiased LS
solution may in such situations have large variances and
may therefore not be a reliable solution. The PLS algo-
rithm is a tool to introduce a (small) bias and thereby

reduce the variance. The PLS algorithm is analyzed and
reviewed in some detail in among others, Nvs and
Martens (1985), Manne (1987), Lorber, Lawrence and
Kowalski (1987), Helland (1988), HoK skuldsson
(1988,1996), Frank and Friedman (1993), Phatak (1993),
Burnham, Viveros and MacGregor (1996), de Jong and
Phatak (1997), Phatak and de Jong (1997), and ter Braak
and de Jong (1998).

While PLS has been used in many applications in
chemometrics, there have been few applications to sys-
tem parameter identi"cation. PLS has traditionally been
used on data from steady state systems, and for the
problem of constructing a predictor for the output of
a system. However, PLS was used in subspace (dynamic)
system identi"cation in Di Ruscio (1997) in order to
compute a basis for the observability matrix which is the
basis of most subspace identi"cation algorithms.

PLS is presented in the literature as an iterative algo-
rithm, i.e. partial or piece-wise linear regression. One of
the main contributions in this paper is to give a new
interpretation and description of the basic PLS solution.
We will show that the basic PLS algorithm is non-
iterative and can be computed as the optimal solution to
a prediction error minimization problem. This is believed
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to be of interest to researchers working with system
identi"cation in general, as well as to chemometricians.

We will try to give a simple description. We believe
that this can only be done by introducing as few de"ni-
tions and variables as possible. In the PLS literature, the
algorithm and its solution are usually presented in terms
of the so called score vectors, loading vectors, weighting
vectors, and various iterative orthogonalization (de#a-
tion) processes, in addition to the solution for the matrix
of regression coe$cients. This work shows that there
exists a very simple and non-iterative algorithm for com-
puting the PLS solution. It will be shown that the PLS
solution can be expressed in terms of some weighting
vectors only. We will therefore concentrate our dis-
cussion on these weights. However, for the sake of com-
pleteness, a discussion of the relationship between the
weight vectors and the score vectors and loading vectors,
which are usually de"ned in connection with the PLS
algorithm, are presented. Further details can be found
elsewhere.

The rest of this paper is organized as follows. Some
basic system de"nitions are presented in Section 2.1.
A basic preliminary result concerning the latent variable
LS solution is presented in Section 2.2. The PLS algo-
rithm is reviewed and some new results are presented
in Section 3.1. The main contributions concerning the
interpretation of the PLS solution are presented in
Sections 3.2 and 4. Some additional results concerning
LS and PLS are presented in Section 5. Some discussions
follow in Section 6. Two real-world examples from the
pulp and paper industry are presented in Section 7 and
some conclusions follow in Section 8.

2. System de5nitions and preliminary results

2.1. System dexnitions

De"ne y
k
3Rm as the vector of output variables at

observation number k. The output variables are some-
times referred to as response variables. Similarly, a vector
x
k
3Rr of input variables (or regressors) is de"ned. It is

assumed that the vector of output variables y
k

are lin-
early related to the vector of input variables x

k
as follows:

y
k
"BTx

k
#e

k
, (1)

where e
k
is a vector of white noise with covariance matrix

E(e
k
eT
k
) and k is the observation index. With N observa-

tions k"1,2,N we de"ne an output data matrix
>3RNCm and an input data matrix X3RNCr as follows:

>"C
yT
1
F

yT
N
D, X"C

xT
1
F

xT
N
D. (2)

The data matrices > and X are assumed to be known.
The linear relationship (1) can be written as the following
linear matrix equation:

>"XB#E, (3)

where B3RrCm is a matrix of regression coe$cients.
E3RNCm is in general an unknown matrix of noise vec-
tors, de"ned as follows:

E"C
eT
1
F

eT
N
D. (4)

The linear relationship between the output (response)
and the input data (or regressors) is an important as-
sumption and condition for the PLS as well as any LS
algorithm to work. In this work we will analyze systems
with multiple output variables in the data matrix>. This
is often referred to a multivariate (or multivariable)
system.

If we are only interested in the matrix of regression
coe$cients B, and that the LS solution is linear in >,
i.e. computed as (XTX)sXT> where (XTX)s denotes a
pseudo-inverse of XTX, and that this matrix is indepen-
dent of >, then one should note that (for steady-state
systems) it su$ces to consider one output at a time and
only investigate single output systems. This means that
the multivariable LS problem can be solved from m single
output LS problems, i.e. each column in B is estimated
from a separate univariate LS problem. However, this is
in general not true if (XTX)s is computed by the use of
both X and >, i.e. if the LS solution is non-linear in >.

Note also that instead of modeling one output variable
at a time, Eq. (3) can be transformed into an equivalent
model with one output in di!erent ways. Two possible
models with one output, which are equivalent to the
multivariable model (3), are presented as follows:

vec(>)"(I
m
?X)vec(B)#vec(E), (5)

vec(>T)"(X?I
m
)vec(BT)#vec(ET), (6)

where vec( ) ) is the column string (vector) operator and
? is the Kronecker product. vec(>)3RNm is a column
vector constructed from > by stacking each column of
> onto another. We also have (I

m
?X)3RNmCrm and

vec(B)3Rrm. Note that (6) can be constructed directly
from (1) by "rst writing (1) as

y
k
"(xT

k
?I

m
)vec(BT)#e

k
(7)

and then combine all N equations (k"1,2,N) into
a matrix equation of the form (3). Note that the variance
of the noise terms in the univariate models (5) and (6) is
related to the covariance matrix of the noise term in the
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models (1) and (3) as

lim
N?=

vec(E)Tvec(E)

mN
" lim

N?=

vec(ET)Tvec(ET)

mN

"

1

m
trace(E(e

k
eT
k
)).

This can be proved by using that the noise term in (3) has
the asymptotic covariance E(e

k
eT
k
)"lim

N?=
(1/N)ETE.

However, for the sake of completeness we will, in
general, consider multivariate (multiple output) systems
of the form (3). One important application of the PLS
algorithm is to compute projections. An example is the
problem of computing the projection of the row space of
a matrix >T onto the row space of XT, or equivalently,
the projection of the column space of > onto the column
space of X). For this problem it is convenient with
a multivariate description. In the literature, PLS is usu-
ally presented as two algorithms, PLS1 and PLS2. PLS1
is concerned with univariate >3RN, and PLS2 is con-
cerned with multivariate >3RNCm. We will follow this
de"nition. The following de"nition is frequently used
throughout the paper. The squared Frobenius norm of
a matrix A3RmCn is equal to the trace of the product
ATA, and de"ned as follows:

DDADD2
F
"trace(ATA)"

m
+
i/1

n
+
j/1

a2
ij
.

2.2. Preliminary results

In this paper we will consider Least-Squares solutions
which may be regularized approximations to the Ordi-
nary Least-Squares (OLS) solution, as de"ned below.

De5nition 2.1. Consider a Least-Squares solution of the
form

B
M
"=

a
pH (8)

where=
a
3RrCa is a weighting matrix, a is the number of

signi"cant components (latent variables) which is re-
stricted to 14a4r and pH3RaCm is the LS solution to

pH"arg min
p

DD>!X
BM (p)def
=

a
p DD2

F
, (9)

where p3Ra]m. Furthermore, pH and the LS solution
B
M

corresponding to the particular weighting matrix
=

a
, are given by

B
M
"=

a
(=T

a
XTX=

a
)~1=T

a
XT> (10)

and

pH"(=T
a
XTX=

a
)~1=T

a
XT>, (11)

where we assume that (=T
a
XTX=

a
)~1 is non-singular for

some 14a4r. The resulting prediction of > is de"ned
as

>
M
"X=

a
pH, (12)

where pH is given by (11).

Note that any square non-singular matrix=
r
gives the

OLS solution B
OLS

"(XTX)~1XT>. Hence, M"OLS in
Eq. (10). One should also note that any weighting matrix
=

m
3RrCm with the same column (range) space as the

solution B
OLS

also gives the OLS solution. This can be
proved by letting=

m
"B

OLS
R, with R3RmCm non-sin-

gular, in the solution (10). Furthermore, choosing
=

a
"<

1
where <

1
3RrCa are the "rst a columns in the

right singular vector matrix < from the SVD,

X";S<T"[;
1
;

2
]C

S
1

0

0 S
2
D[<1

<
2
]T,

where;
1
3RNCa and S

1
3RaCa is non-singular, gives the

Principal Component Regression (PCR) solution (trun-
cated SVD solution), B

PCR
"<

1
S~1
1
;T

1
>. This can be

proved by letting =
a
:"<

1
and X :";

1
S
1
<T

1
in solu-

tion (10). PCR is frequently used when the X data are
multicollinear, i.e. when the columns in X are linearly or
nearly linearly dependent. In this paper we will show that
the PLS solution can be de"ned similarly. The key is to
understand how the PLS algorithm de"nes=

a
and why

the parameterization =
a
p of the solution makes sense.

Note also that =
a

can be interpreted as a column
weighting matrix for X, i.e. a column weighting for X in
the LS problem (9) and a column weighting for X in
prediction (12). Furthermore, from (8) we have that the
columns in B

M
are contained in the column space of=

a
.

Hence, R(B
M

)-R(=
a
), or simply B

M
3R(=

a
) in the

univariate case. The prediction>
M

given by (11) and (12),
is the orthogonal projection of the column space of
> onto the column space of X=

a
, i.e. onto R(X=

a
).

Hence, R(>
M

)-R(X=
a
) .

3. The PLS solution

3.1. The weights used by PLS

The PLS algorithm for computing a solution to the
regression problem is presented by Wold (1975,1985).
This algorithm is an extension of the NIPALS (power
iteration) algorithm for computing principal components
presented in Wold (1966). We will also refer to Frank and
Friedman (1993) for a review and pseudo code presenta-
tion of Wolds PLS algorithm. We will below give a di!er-
ent ad-hoc description of the PLS algorithm which has
some similarities to the description by Helland (1988).
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The normal equations are of central importance in
LS problems and its solutions. Therefore it makes sense
to study the PLS algorithm with the normal equations
as a starting point. The normal equations XT>"
XTXB(=

a
) substituted for a LS solution B(=

a
)"

=
a
(=T

a
XTX=

a
)~1=T

a
XT> yields

XT>"XTX=
a
(=T

a
XTX=

a
)~1=T

a
XT>. (13)

The "rst weight vector w
1

in the PLS weighting matrix
=

a
can be taken directly as the correlation w

1
"XT>

when > is a vector. When > is a matrix then w
1

can be
taken as the left singular vector of XT> which corres-
ponds to the largest singular value. This is equivalent to
putting w

1
equal to the eigenvector corresponding to the

largest eigenvalue of the matrix XT>>TX. Power iter-
ation is a convenient tool for this computation. In the
following discussion we assume univariate >3RN. The
extension to the multivariate case will be clari"ed later.

The PLS algorithm was probably derived in a rather
ad-hoc manner (Helland, 1988). Having this in mind, it is
not unusual to choose a weight vector w

1
"XT>. For

the sake of convenience w
1

is often scaled, e.g. the choice
w
1
"XT>/DDXT>DD

F
gives an orthonormal weight vector,

i.e. wT
1
w
1
"1. However, as also pointed out in Helland

(1988), this scaling is not necessary. In order not to
complicate the discussion we chose not to use scaled
weight vectors. Substituting this and =

1
"w

1
into the

normal equations (13) gives us a residual

w
2
"w

1
!XTXB

1
,

where B
1
"=

1
(=T

1
XTX=

1
)~1=T

1
w
1

and =
1
"w

1
. (14)

Note, that B
1

is the matrix of regression coe$cients
computed by the PLS algorithm when the number of
components is equal to a"1. It is now important to note
that=T

1
w

2
"wT

1
w

2
"0, i.e. w

1
is normal to the residual

w
2
. Hence, this residual w

2
, after choosing

=
1
"w

1
"XT>, is the second weight vector used by

the PLS algorithm. We now de"ne the normal equations
for the residual, w

2
, i.e.

w
2
"XTXB

2
,

where B
2
"=

2
(=T

2
XTX=

2
)~1=T

2
w

2

and =
2
"[w

1
w
2
]. (15)

The residual w
3
, de"ned as

w
3
"w

2
!XTXB

2
(16)

is taken as the third weight vector in the PLS algorithm.
We de"ne yet a new set of normal equations

w
3
"XTXB

3
,

where B
3
"=

3
(=T

3
XTX=

3
)~1=T

3
w
3

and =
3
"[w

1
w
2

w
3
]. (17)

From this it is also simple to show that =T
2
w
3
"0

(premultiplying (16) with=T
2
). This gives wT

1
w
3
"0 and

wT
2
w
3
"0, because=

2
is normal to the residual w

3
. The

other weight vectors w
i

for i"4,2, a are de"ned sim-
ilarly. The procedure for computing the weight vectors
which is outlined above is presented in Theorem 3.1. We
can now combine the above equations to give the follow-
ing normal equations which give us an expression for the
PLS estimate of the matrix of regression coe$cients

XT>"XTX

BPLSdggggeggggf
(B

1
#B

2
#B

3
#2#B

a
) . (18)

This shows that the problem of computing the PLS
solution can be reduced to computing the weight matrix
=

a
. The procedure for computing the weight vectors,

and the PLS solution B
PLS

is presented in the following
Theorem 3.1.

Theorem 3.1 (PLS1: weight vectors and LS
solution). Given data matrices X3RNCr and univariate
>3RN. The weighting matrix =

a
3RrCa used by the PLS

algorithm can be computed as follows. The xrst weight
vector w

1
, i.e., the xrst column in matrix

=
a
"[w

1
,2, w

a
] can be taken as

w
1
"XT>. (19)

The other weights w
2
,2,w

a
are computed recursively from

w
1
,=

1
"w

1
and XTX as follows. Compute for all

i"1,2, a!1

w
i`1

"w
i
!XTXB

i

where B
i
"=

i
(=T

i
XTX=

i
)~1=T

i
w
i
, (20)

where =
i

increases by one column at each iteration, i.e.

=
i
"[w

1 2 w
i
], (21)

and =T
i
w

i`1
"0. Finally, the PLS solution for the matrix

of regression coezcients B is given by

B
PLS

"

a
+
i/1

B
i

(22)

which is equivalent to

B
PLS

"=
a
(=T

a
XTX=

a
)~1=T

a
w
1
. (23)

Proof. See Appendix B. h

Theorem 3.1 states that the PLS solution B
PLS

can be
expressed in terms of a weighting matrix =

a
3RrCa

where a is the number of components. The number of
components are usually bounded by 14a4r. We shall
here note that when a"r, then =

a
is square and non-

singular because =
a

is an orthogonal matrix, and the
PLS solution is equal to the ordinary LS estimate, i.e.
B
PLS

"B
OLS

.
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In Helland (1988) it was shown that the weight
vector can also be computed as w

i`1
"

w
1
!XTX=

i
(=T

i
XTX=

i
)~1=T

i
w

1
where w

1
"XT>.

This is di!erent from the iterations in Theorem 3.1.
However, we can show that w

i`1
can be computed from

=
i
and any of its columns w

j
, i.e. we have the following

alternative equation which can be used instead of Eq. (20)

w
i`1

"w
j
!XTXH

i
w

j
∀j"1,2, i, (24)

where

H
i
"=

i
(=T

i
XTX=

i
)~1=T

i
. (25)

The reader should note that the matrix product XTXH
i

is an oblique projection. See e.g., Phatak and de Jong
(1997) for a discussion of oblique projections and PLS.
The algorithm for computing the weighting matrix =

i
in Theorem 3.1 can be viewed as an orthogonalization
process, e.g., Gram}Smith orthogonalization, Golub
and Van Loan (1986). The weight vector w

i
computed

after the ith iteration is orthogonal to the previous weight
vectors w

1
,2, w

i~1
. This means that =T

i
w

i
"

[0 2 0 wT
i
w
i
]T. The orthogonalization process in The-

orem 3.1 is not unique. For instance, de"ne a non-
singular scaling or transformation matrix D3RaCa. It is
then evident that any weighting matrix de"ned as
=

a
:"=

a
D gives the same PLS solution. This can be

proved by substituting=
a
D for=

a
in Eq. (23).

In the literature, the PLS algorithm for multivariate
> data is denoted PLS2. In this case we have the follow-
ing result.

Theorem 3.2 (PLS2: weight vectors and LS
solution). Given data matrices X3RNCr and >3RNCm.
The weighting matrix=

a
3RrCa used by the PLS algorithm

can be computed as follows. The xrst weighting vector w
1
,

i.e. the xrst column in matrix =
a
"[w

1 2 w
a
] can be

taken as

w
1

:"u
1
, where ;S<T :"XT> and ;"[u

1 2 u
m
],

(26)

i.e., w
1

can be chosen as the left singular vector which
corresponds to the largest singular value of the matrix XT>.

The other weight vectors w
2
,2,w

a
are computed recur-

sively from=
1
"w

1
,(XT>)

1
"XT> and XTX as follows.

Compute for all i"1,2, a!1

(XT>)
i`1

"(I
r
!XTX=

i
(=T

i
XTX=

i
)~1=T

i
)(XT>)

i
(27)

and

w
i`1

:"u
1
,

where ;S<T :"(XT>)
i`1

and

;"[u
1 2 u

m
], (28)

where =
i

increases by one column at each iteration, i.e.

=
i
"[w

1 2 w
i
]. (29)

Finally, the PLS solution for the matrix of regression coez-
cients B is given by

B
PLS

"=
a
(=T

a
XTX=

a
)~1=T

a
XT>. (30)

Proof. See Appendix A. h

The resulting PLS2 solution is equivalent to the solu-
tion of the PLS2 kernal algorithm in Lindgren, Geladi
and Wold (1993), de Jong and ter Braak (1994) and the
PLS2 solution in HoK skuldsson (1988,1996). Here we will
present some alternative formulations for the problem of
computing the PLS weighting vectors. The weight vec-
tors (in Theorem 3.1) can equivalently be computed by
the following process (which is standard in the PLS
literature)

X
i`1

"X
i
!

X
i
w
i
wT
i
XT

i
wT
i
XT

i
X

i
w
i

X
i
, (31)

with w
1
"XT>, X

1
"X and w

i`1
"XT

i`1
> in The-

orem 3.1. Furthermore, the weight vectors in
Theorem 3.2 can equivalently be taken as the left singular
vectors of XT> and XT

i`1
> ∀i"1,2, a!1 where

X
1
"X and X

i`1
is de"ned in (31). See Appendix A for

further details. The following formulation can also be
used in the univariate case (m"1).

w
i`1

"w
i
!XTXw

i

wT
i
w

i
wT
i
XTXw

i

, (32)

where w
1
"XT>. Note however that the weight vectors

computed from this last process may di!er from that
presented in Theorem 3.1 by a di!erent scaling.

The PLS algorithm can be implemented with di!erent
formulations of the orthogonalization process, as pointed
out above. However, it is important that these weight
vectors span the same subspace. The subspace spanned
by these weight vectors will be pointed out further in the
next section.

3.2. Relationship between PLS and a controllability matrix

It is important to recognize a relationship between the
weight matrix =

a
and a so called Krylov matrix. It is

known that the problem of computing many orthogonal
decompositions have an equivalent problem of comput-
ing subspaces for a Krylov matrix. Correspondence with
Krylov matrices and orthogonal decompositions are
pointed out in Golub and Van Loan (1986). In the con-
trol literature the Krylov matrix is known as the control-
lability matrix. Krylov subspaces and PLS is discussed in
Helland (1988). We have the following de"nition.
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De5nition 3.1 (Controllability (Krylov) matrix). Given
matrices X3RNCr and >3RNCm. The controllability
(Krylov) matrix K

r
3RrCrm for the pair (XTX,XT>) is

de"ned by

K
r
"

[XT> XTXXT> (XTX)2XT> 2 (XTX)r~1XT>].

(33)

We will later present the relationship between the PLS
solution and the problem of computing the subspace
spanned by the columns of a controllability matrix. First
let us illustrate how the ordinary LS solution is related to
a controllability matrix of the pair (XTX,XT>). We have
the following proposition.

Proposition 3.1. Given matrices X3RNCr and >3RN. The
ordinary LS solution B

OLS
can be expressed in terms

of the controllability matrix of the pair (XTX,XT>) and
the coezcients of the characteristic polynomial
det(jI

r
!XTX)"jr#p

2
jr~1#2#p

r
j#p

r`1
. As-

sume that XTX is non-singular, then

B
OLS

"(XTX)~1XT>"K
r
p, (34)

where K
r
3RrCr is the controllability matrix for the pair

(XTX,XT>) as dexned in (33) and p3Rr is a vector formed
from the coezcients of the characteristic polynomial.

Proof. From the Cayley}Hamilton Theorem we have
that XTX satis"es its own characteristic equation, i.e.

(XTX)r#p
2
(XTX)r~1#2#p

r
XTX#p

r`1
I
r
"0,

(35)

where p
2
,2, p

r`1
are the coe$cients of the character-

istic polynomial det(jI
r
!XTX). This can be used to

form the matrix inverse

(XTX)~1"!

1

p
r`1

(p
r
I
r
#p

r~1
XTX#2

#p
2
(XTX)r~2#(XTX)r~1), (36)

which is derived by post-multiplying (or equivalently,
pre-multiplying) (35) with (XTX)~1 and then solving for
the inverse. Substituting (36) into the LS solution gives
Eq. (34) where

p"!

1

p
r`1

[p
r

p
r~1 2 p

2
1]T (37)

and the proposition follows. h

A consequence of Proposition 3.1 is that the ordinary
LS solution for univariate > data can be expressed as
a linear combination of the columns in the controllability
matrix (the multivariate case will be discussed in the next

Section 4). The coe$cient p
r`1

in the characteristic poly-
nomial can be computed as p

r`1
"det(XTX)"

?j
1
j
2
2j

r
. If XTX is singular (rank de"cient) or nearly

rank de"cient, then, p
r`1

"0 or approximately zero. The
problem of computing the vector p given by Eq. (37) may
in this case be ill-conditioned. This illustrates the prob-
lem with the OLS solution when XTX is nearly rank
de"cient. We can instead look for a regularized solution
in the subspace spanned by the reduced controllability
matrix K

a
3RrCa, where 14a4r. The matrix K

a
is in

general (i.e., for m51) de"ned as follows.

De5nition 3.2 (Reduced controllability (Krylov)
matrix). Given data matrices X3RNCr and >3RNCm,
the reduced controllability (Krylov) matrix K

a
3RrCam

for the pair (XTX, XT>) is de"ned by

K
a
"

[XT> XTXXT> (XTX)2XT> 2 (XTX)a~1XT>],
(38)

where 14a4r.

Consider the univariate case. The number of columns,
a, in the reduced controllability matrix K

a
can in prin-

ciple be taken as the (e!ective) rank of the Krylov matrix
K

r
, i.e., a"rank(K

r
). In fact, we will now show that the

column space of the weighting matrix=
a

computed by
the PLS1 algorithm and the column space of the reduced
controllability matrix K

a
coincide.

Proposition 3.2. The weighting matrix =
a

which results
from the PLS algorithm is related to the controllability
(Krylov) matrix K

a
of the pair (XTX,XT>). The weight

matrix=
a

is given by the following QR decomposition

K
a
"=

a
R

1
, (39)

where K
a
3RrCa is the controllability matrix and R

1
3RaCa

is an upper triangular matrix. The weight vectors
w
i
, i"1,2, a, are a linear combination of the columns of

the controllability matrix, i.e.

=
a
"K

a
R~1

1
, (40)

where R~1
1

is upper triangular. Furthermore, the following
are equivalent.=

a
is an orthogonal/orthonormal basis for

the column space of K
a
. The columns of=

a
span the same

space as the columns of K
a
.

Proof. This result follows from that in Helland (1988)
where it is pointed out that the space spanned by the
columns in the PLS weighting matrix=

a
and the space

spanned by the Krylov sequence XT>,2,(XTX)a~1XT>
is the same.

This proposition can be proved from the weight vec-
tors as computed in Theorem 3.1 and the controllability
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matrix K
a
. We simply have to prove that R

1
"=T

a
K

a
is

upper triangular or that =
a
"K

a
R~1

1
. A proof is pre-

sented in Appendix C. h

De"ne now the QR decomposition of the controllabil-
ity matrix as

K
a
"Q

a
R, (41)

where Q
a
3RrCa is orthogonal and R3RaCa is upper

triangular. A QR decomposition of the relationship (39)
is then given by

=
a
"Q

a
R

2
, (42)

where R
2
"RR~1

1
(usually diagonal and R

2
"I) is also

upper triangular.
This implies that the weighting matrix=

a
, computed

by any PLS implementation, irrespective of scaling, etc.,
has the same column space as Q

a
. Furthermore, this

column space can be computed from the QR decomposi-
tion of the controllability matrix K

a
. An orthogonal PLS

weighting matrix is then de"ned as =
a
:"Q

a
. This im-

portant result is presented in Theorem 3.3.

Proposition 3.3 (PLS: a QR decomposition of a control-
lability matrix). Given data matrices X3RNCr and>3RN,
dexne the reduced controllability (Krylov) matrix K

a
from

X, Y and the number of components 14a4r as in (38). The
column space of the weighting matrix=

a
and the controlla-

bility (Krylov) matrix K
a

coincide. The QR decomposition is
a numerically stable method for computing the column
space. We have

K
a
"Q

a
R, (43)

where R3RaCa is upper triangular and Q3RrCa is ortho-
gonal. A Controllability based PLS solution is then given by

B
QPLS

"Q
a
(QT

a
XTXQ

a
)~1QT

a
XT>. (44)

Furthermore, for univariate Y, i.e. when m"1, then the
orthogonal weighting matrix =

a
which results from the

PLS algorithm is identical to Q
a
, up to within sign diwer-

ences. I.e., the PLS weighting matrix is given by

=
a
"Q

a
(45)

and hence when m"1

B
PLS

"B
CPLS

. (46)

Proof. This result follows from Theorem 3.1, Proposi-
tion 3.2 and (42). h

We have de"ned the LS solution de"ned in Theo-
rem 3.3 for the QR-based PLS solution (QPLS). The
reason for this is that the solution di!ers from PLS when
> is multivariate, i.e. when m'1. Theorem 3.3 states
that the weighting matrix=

a
can be computed directly

from a single QR decomposition of one single data
matrix. This data matrix is the controllability (Krylov)
matrix which is de"ned in terms of X and >. Further-
more, the matrix Q

a
XTXQ

a
is tridiagonal since

Q
a
"K

a
R~1 is an (orthogonal) basis for R(K

a
) (Parlett,

1998, Section 12.7) and Golub and Van Loan (1986,
Sections 7.4 and 9.1). Note also that letting =

a
:"K

a
gives the same PLS1 solution. This can be proved by
substituting=

a
"K

a
R~1

1
into solution 23 and using the

assumption that R
1

is non-singular. We have the follow-
ing proposition.

Proposition 3.4 (PLS1: a non-iterative solution). Given
data matrices X3RNCr and >3RN, the PLS solution is
given by

B
PLS

"K
a
pH, (47)

where K
a
3RrCa is the reduced controllability matrix for

the pair (XTX,XT>) dexned in (38) and the polynomial
coezcient vector pH3Ra is determined as the LS solution to

pH"arg min
p

DD<(p)DD2
F
, (48)

where

<(p)"DD>!X
BPLS (p)def
K

a
p DD2

F
. (49)

Hence,

pH"(KT
a
XTXK

a
)~1KT

a
XT>, (50)

which gives the PLS solution

B
PLS

"K
a
(KT

a
XTXK

a
)~1KT

a
XT>, (51)

where we have assumed that (KT
a
XTXK

a
)~1 is non-singular

for some 14a4r. The PLS prediction of Y is given by

>
PLS

"XK
a
pH, (52)

where pH is given by (50). Furthermore, the minimum is

<(pH)"trace(>T>)

!trace(>TXK
a
(KT

a
XTXK

a
)~1KT

a
XT>). (53)

Proof. A truncated Cayley}Hamilton polynomial ap-
proximation of the matrix inverse in Eq. (36) is de"ned as

(XTX)~1 :"p
1
I
r
#p

2
XTX#p

3
(XTX)2#2

# p
a
(XTX)a~1 (54)

when 14a4r, which when substituted into the OLS
solution (XTX)~1XT>, gives the truncated solution

B(p)"K
a
p, (55)

where K
a

is the controllability matrix and p3Ra is the
coe$cient vector. Instead of putting the vector p equal
to the coe$cients in the truncated characteristic
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polynomial, the vector p is taken as the LS solution
to the squared Frobenius norm of the prediction error.
Hence,

pH"arg min
p

<(p), (56)

where the PE criterion for the coe$cient vector is given
by

<(p)"DD>!X
B(p)def
K

a
p DD2

F

"trace(>T>)!2trace(pTKT
a
XT>)

# trace(pTKT
a
XTXK

a
p). (57)

Letting the gradient

d<(p)

dp
"!2KT

a
XT>#2KT

a
XTXK

a
p (58)

equal to zero gives the optimal solution (50) which, when
substituted into (47) gives (51). Furthermore, the min-
imum value (53), can be found by substituting the opti-
mal truncated polynomial coe$cients pH into (57). h

Proposition 3.4 and Theorem 3.3 are believed to be
important for their simple and non-iterative interpreta-
tion and implementation of the PLS algorithm. The
problem of computing the PLS solution to the LS prob-
lem is presented in the literature as an iterative algorithm,
or as a piecewise linear regression algorithm. The explicit
formulation (51) of the solution is presented in Helland
(1988) but the prediction error interpretation of the solu-
tion is new.

The PLS algorithm is in the literature usually present-
ed in terms of a score vector matrix ¹3RNCa, a loading
matrix C3RmCa for>, a loading matrix P3RrCa for X, in
addition to the weighting matrix =

a
. This notation is

similar as in Helland (1988) and Lindgren et al. (1993).
Furthermore, the a columns in ¹ represents the latent
variables. > is decomposed as >"¹CT#E where
C"(¹T¹)~1¹T> and E is the prediction error. X is
decomposed as X"¹PT#E

X
where P"(¹T¹)~1¹TX

and E
X

is a residual. One should note that these de"ni-
tions of the loading matrices ensures that the score vector
matrix is normal to the prediction error and the residual,
i.e. ¹TE"0 and ¹TE

X
"0. Furthermore, the PLS

solution can be expressed as B
PLS

"=
a
(PT=

a
)~1CT

(Manne, 1987; Helland, 1988). This is an alternative to
(23), (44) or (51). It follows from Proposition 3.4 that
the PLS1 algorithm decomposes > as >">

M
#E

where the prediction is given by >
M
"

XK
a
(KT

a
XTXK

a
)~1KT

a
XT> and whereE is the prediction

error. Comparing the column space of this and the col-
umn space of the prediction >

M
"¹CT we have that the

PLS score vector matrix ¹ is related to XK
a

as

¹"XK
a
D for some non-singular matrix D3RaCa.

Choosing D"I
a

gives a score matrix ¹ :"XK
a
. This

shows that X can be decomposed as X"

(XK
a
(KT

a
XTXK

a
)~1KT

a
XTX#E

X
.

From this it is clear that the columns in XK
a

are
a basis for the score vector matrix. See de Jong (1993).
Consider now the QR decomposition

QI RI "XK
a
, (59)

which gives an orthonormal basis for the range of XK
a
.

Hence, QI is an orthogonal (with orthonormal columns)
score vector matrix and we can let ¹ :"QI . See, e.g.
Martens and Nvs (1989) for a PLS1 algorithm with
orthogonal scores. Substituting (59) and the QR de-
composition (41) into the solution (51) gives

B
PLS

"Q
a
(QI TXQ

a
)~1QI T>, (60)

where QI XQ
a
is (upper) bidiagonal (Golub and Van Loan,

1986, Sections 6.5 and 9.3; Manne, 1987). Hence, the
loadings can be de"ned as PT"QI X and CT"QI >. The
PLS1 solution turns out (Wold, Ruhe, Wold & Dunn,
1984) to be similar to the bidiagonalization LS algorithm
in Paige and Saunders (1982). Note that (59) can be
changed to QI RI "X=

a
in the PLS2 algorithm. Substitu-

ting this into (30) gives B
PLS

"=
a
(QI TX=

a
)~1QI T>

where QI TX=
a
"RI is upper triangular.

It is interesting to recognize the relationship between
the PLS1 solution in (44) and the Lanczos method for
tridiagonalizing a symmetric matrix (QT

a
XTXQ

a
tridiag-

onal). See Golub and Van Loan (1986) and in particular
Algorithm 9.3.1 where Lanczos tridiagonalization is used
to iteratively solve LS problems. A truncated version of
this iterative LS algorithm results in a PLS1 algorithm.
Furthermore, this algorithm is similar to the method of
conjugate gradients, Algorithm 10.2.13 in Golub and
Van Loan (1986) (a truncated version of this algorithm
gives the PLS1 solution).

One should note that it is possible to modify the
solution in Proposition 3.4 in order to incorporate a pos-
sible known row weighting matrix Z3RNCN, by letting,
e.g. pH"arg min

p
DDZ1@2(>!XK

a
p)DD2

F
which gives the

non-iterative PLS solution with row weighting
B
PLS

"K
a
(KT

a
XTZXK

a
)~1KT

a
XTZ>. This is equivalent

to the Best Linear Unbiased Estimator (BLUE), (see, e.g.
SoK derstroK m and Stoica (1989) for further details) i.e.
B
BLUE

"(XT&~1X)~1XT&~1> when a"r, K
r

non-
singular and Z"&~1 where &"E(EET)'0.

4. Multivariate extensions

In this section we will propose a new latent variable
regression method for multivariate > data. The solution
reduces to the PLS1 solution for univariate > data. The
new method is an extension of PLS1 to incorporate

838 D. Di Ruscio / Automatica 36 (2000) 831}850



multivariate > data. The method is found to be optimal
compared with PLS2. Consider the OLS solution sub-
stituted into the model, i.e.

>"X
BOLSdgegf

(XTX)~1XT> #E, (61)

where E is the prediction error. Let us, instead of using
the inverse (XTX)~1 as in the OLS solution, use a trun-
cated Cayley}Hamilton series approximation for the in-
verse, i.e.

(XTX)~1 :"p
1
I
r
#p

2
XTX#p

3
(XTX)2#2

#p
a
(XTX)a~1, (62)

where a is the number of components which we will
restrict to be bounded by 14a4r. Hence, we have the
following prediction error:

E">!X
BCPLS (p)dggggggggggeggggggggggf

(p
1
I
r
#p

2
XTX#p

3
(XTX)2#2#p

a
(XTX)a~1)XT> ,

(63)

which can be expressed as

BCPLS (p)
dggggggggeggggggggf

E">!X

Ka

dgggggggegggggggf

[XT> (XTX)XT> 2 (XTX)a~1XT>] C
p
1
I
m

p
2
I
m

F

p
a
I
m
D .

(64)

Let us now "nd the coe$cients p
1
, p

2
,2, p

a
that minim-

ize a norm of the prediction error and use these optimal
coe$cients in the expression for the truncated LS solu-
tion. De"ne this solution for the truncated
Cayley}Hamilton PLS solution, or Controllability PLS
solution. We have the following theorem.

Theorem 4.1 (CPLS: Controllability PLS solution).
Given data matrices X3RNCr and >3RNCm and a number
of components 14a4r, the optimal solution is

B
CPLS

"

Ka

dgggggggegggggggf
[XT> (XTX)XT> 2 (XTX)a~1XT>]

]C
p
1
I
m

p
2
I
m

F

p
a
I
m
D

"(p
1
I
r
#p

2
XTX#p

3
(XTX)2#2

# p
a
(XTX)a~1)XT>

"

a
+
i/1

p
i
(XTX)i~1XT>, (65)

where the vector of polynomial coezcients

pH"[p
1

p
2 2 p

a
]T3Ra (66)

is found from the solution to the LS problem

pH"arg min
p

DDvec(>)!X
p
pDD2

F
. (67)

The minimizing solution is given by

pH"(XT
p
X

p
)~1X

p
vec(>), (68)

where

X
p
"

[vec(XXT>) vec(XXTXXT>) 2 vec(X(XTX)a~1XT>)]

3RNmCa. (69)

Proof. The prediction error, Eq. (63), can be written as

vec(E)"vec(>)

Xp

dgggggggggggegggggggggggf
vec(XXT>) vec(XXTXXT>) 2 vec(X(XTX)a~1XT>)] p,

(70)

where p is de"ned in (66). Using that <(p)"DDEDD2
F
"

DDvec(E)DD2
F

where E is the prediction error (i.e. a real
matrix), gives the optimal LS solution (68) by letting the
gradient d<(p)/dp"0. See also Appendix D for an alter-
native proof. h

The above method denoted CPLS is clearly a latent
variable method for multivariate > data. All variables in
> are used to identify a common vector p3Ra of latent
variables. The CPLS solution for multivariate> data can
be expressed as a linear combination of the r]m block
columns in the reduced controllability matrix K

a
3RrCma.

The CPLS solution is identical to the PLS1 solution
for univariate data. The solution for univariate data
can be expressed as a linear combination of the columns
in the controllability matrix K

a
3RrCa. Note also that

the CPLS algorithm gives the same solution as the
univariate PLS1 algorithm applied to the model (5). In
order to give further insight into the CPLS solution in
Theorem 4.1 and to present an alternative method for
de"ning the coe$cient vector p we have the following
proposition.

Proposition 4.1 (Coe$cient vector in CPLS
solution). The coezcient vector p3Ra in Theorem 4.1 can
be dexned by the linear equation

Hp"f, (71)
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1Note that if > is a matrix then the matrix model >"XB#E can
be written as a vector model.

where the matrix H3RaCa and the vector f3Ra are given
by

H"

C
trace(>TXXTXXT>) 2 trace(>TX(XTX)aXT>)

F } F

trace(>TX(XTX)aXT>) 2 trace(>TX(XTX)2a~1XT>)D, (72)

and

f"C
trace(>TXXT>)

F

trace(>TX(XTX)a~1XT>)D. (73)

Furthermore, when H is non-singular we have the solution
pH"H~1f.

Proof. The squared Frobenius norm of the prediction
error (63) can be written as

<(p)"DD>!X(p
1
I
r
#p

2
XTX#p

3
(XTX)2#2

# p
a
(XTX)a~1)XT>DD2

F

"trace(>T>)!2f Tp#pTHp, (74)

where H and f are de"ned in (72) and (73), respectively.
Letting the gradient d<(p)/dp"0 gives the condition
(71). Furthermore, the optimal solution is pH"H~1f
when the Hessian matrix d2<(p)/dp2"H is non-
singular. h

The reader should note that, in the univariate case,
Proposition 4.1 reduces to (KT

a
XTXK

a
)p"KT

a
XT>

where K
a

is the reduced controllability matrix as de"ned
in (38). This results in a coe$cient vector which is identi-
cal to the PLS1 coe$cient vector, p, in Eq. (50). This
shows that, for univariate data, the CPLS solution
reduces to the PLS1 solution.

5. Generalized eigenvalue problem and LS solutions

5.1. Optimal weights

From the previous discussion we have shown that the
PLS estimate B

PLS
can be expressed in terms of X, > and

a weighting matrix=
a
3RrCa, which is a function of a set

of polynomial coe$cients. Di!erent LS regression
methods use di!erent weighting matrices, thus leading to
di!erent least-squares regression methods. We will now
show that there exists an optimal weighting matrix, i.e.
a weighting matrix =

a
which minimizes the squared

Frobenius matrix norm of the residual>!XB(=
a
). We

will also show that there exists a minimum number a of
columns in the weighting matrix. The resulting optimal
LS solution is, identical to the OLS solution. However,

this result is believed to be of interest and will be used
in the next section in order to develop a regularized
estimator for the PLS weighting matrix.

Theorem 5.1 (The estimate of the matrix of regression
coe$cients). Assume that >3RNCm and X3RNCr are the
known data matrices. Given a weighting matrix=

a
3RrCa

where a is the number of components which is bounded by
14a4r. The solution B(=

a
) of the matrix of regression

coezcients B is given by

B(=
a
)"=

a
(=T

a
XTX=

a
)~1=T

a
XT>3RrCm, (75)

where we have assumed that =T
a
XTX=

a
3RaCa is non-

singular, and satisxes the weighted normal equations

=T
a
XT>"=T

a
XTXB(=

a
). (76)

Proof. Theorem 5.1 can be proved by substituting the LS
solution B(=

a
) de"ned in (75) into the weighted normal

equations (76). h

It is obvious that when =
a

is equal to the identity
matrix and XTX is non-singular then B(=

a
) is identical

to the ordinary least-squares estimate. We will now
search for the weighting matrix =

a
which is optimal in

the sense that it minimizes the Frobenius norm of the
residual. Assume for simplicity that=

a
is equal to a vec-

tor w3Rr. The general case will be discussed and present-
ed later. The squared Frobenius norm of the residual is in
this case given by

<(w)"DD>!XB(w)DD2
F
">T>!

>TXwwTXT>

wTXTXw

">T>!
wTXT>>TXw

wTXTXw
, (77)

where B(w)"w(wTXTXw)~1wTXT>. For the sake of sim-
plicity we have also assumed that > is a vector.1 The
minimizing weight vector w can be found by putting
the gradient of <(w) with respect to w equal to zero. The
gradient is given by

d<(w)

dw
"

!

2XT>>TXw(wTXTXw)!wTXT>>TXw(2XTXw)

(wTXTXw)2
.

(78)

Letting the gradient equal to zero gives

XT>>TXw"

wTXT>>TXw

wTXTXw
XTXw. (79)
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This is a generalized eigenvalue problem, i.e. j
1
"

wTXT>>TXw/wTXTXw is a generalized eigenvalue of the
square matrices XT>>TX and XTX and w is the corre-
sponding generalized eigenvector. From this we have
that a solution in general can be computed by a general-
ized eigenvalue problem as stated in the following
theorem.

Theorem 5.2 (Generalized eigenvalue problem). The op-
timal weighting matrix =

a
3RrCa where the number of

components is bounded by 14a4r, which minimizes the
PE (dexned here as the squared Frobenius matrix norm)

<(=
a
)"DD>!XB(=

a
)DD2

F
"trace(>T>)

!trace(>TX=
a
(=T

a
XTX=

a
)~1=T

a
XT>) (80)

can be computed by the following generalized eigenvalue
problem

XT>>TX=
a
"XTX=

a
"

a
, (81)

where

"
a
"(=T

a
XTX=

a
)~1=T

a
XT>>TX=

a
3RaCa (82)

is a diagonal matrix with the generalized eigenvalues on the
diagonal, and where =

a
is the corresponding generalized

eigenvector matrix. Furthermore, the minimum value of
the PE

<(=
a
)"DD>!XB(=

a
)DD2

F
"trace(>T>)!trace("

a
).

(83)

Proof. We will prove the Theorem from an expression of
the covariance matrix of XT>. Using the LS solution
B(=

a
), gives the normal equations

XT>"XTX=
a
(=T

a
XTX=

a
)~1=T

a
XT>. (84)

Post-multiplication with >TX=
a

gives

XT>>TX=
a
"

XTX=
a

"a

dgggggegggggf
(=T

a
XTX=

a
)~1=T

a
XT>>TX=

a
, (85)

which is equivalent to the following generalized eigen-
value problem:

XT>>TX=
a
"XTX=

a
"

a
, (86)

where =
a

is the generalized eigenvector matrix of the
square matrices XT>>TX and XTX and

"
a
"(=T

a
XTX=

a
)~1=T

a
XT>>TX=

a
(87)

is the corresponding generalized eigenvalue matrix. Note
that the above is equivalent to formulating the correla-
tion matrix of XT> given by the normal equation, i.e.

XT>(XT>)T"XTX=
a
(=T

a
XTX=

a
)~1

]=T
a
XT>>TX=

a
(=T

a
XTX=

a
)~1=T

a
XTX. (88)

Post-multiplying with =
a

gives Eqs. (86) and (87). The
minimum value can be found as follows:

<(=
a
)"DD>!XB(=

a
)DD2

F
"trace(>T>)

!trace(>TX=
a
(=T

a
XTX=

a
)~1=T

a
XT>)

"trace(>T>)

!trace(=T
a
XT>>TX=

ahgigj
X

T
XWa"a

(=T
a
XTX=

a
)~1).

(89)

Substituting for the stationary condition Eq. (81) gives

<(=
a
)"DD>!XB(=

a
)DD2

F

"trace(>T>)!trace("
a
). h (90)

The generalized eigenproblem in Theorem 5.2 can be
solved by the QZ algorithm (Golub, 1983). The weighting
matrix =

a
can be computed in MATLAB as

[Aa,Bb, q, Z,<]"qz(XT>>TX, XTX) and putting
=

a
"<(:, 1 : a). Note that = and " can also be com-

puted by the MATLAB function eig( ) , ) ), i.e.
[=,"]"eig(XT>>TX,XTX). The weight matrix corre-
sponding to the "rst a generalized eigenvalues is then
given by=

a
:"=(:,1:a). Note that it is possible to com-

pute only the a "rst generalized eigenvectors. However,
we recommend to use the MATLAB function qz( ) , ) )
instead of using the function eig( ) , ) ). Investigations of
the above result indicate that the resulting optimal LS
solution is the same for all m4a4r, and that this
solution is the same as the OLS solution. The question is
whether the minimum number of components is a"m or
not. In the case when XTX is non-singular the above
corresponds to taking the weights from the column space
of the OLS solution (XTX)~1XT>. In the next section we
will use the results presented in this section to develop
a regularized estimator for the PLS weights.

5.2. An estimator for the PLS weights

The number of parameters in the PLS weighting
matrix=

a
is ra but there are rm parameters in the PLS

solution B
PLS

. Assume the existence of a parameter es-
timator for the PLS algorithm. It makes sense that in
order for this parameter estimator to have a unique
optimum, it must be a function of at least rm parameters,
and not a function of all ra unknown parameters in=

a
,

where we assumed that 14m4a. In order to formulate
the PLS algorithm as an estimator we must "nd the
relationship between the PLS solution and the rm un-
known parameters. This relationship is presented in the
following theorem.

Theorem 5.3 (The number of unique PLS para-
meters). Assume that a weighting matrix =

a
with
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m4a4r for the PLS solution B
PLS

is given. The PLS
solution can be expressed in terms of X3RNCr, >3RNCm,
and a weighting matrix w3RrCm with only rm parameters
as follows:

B
PLS

"w(wTXTXw)~1wTXT>, (91)

where the weighting matrix w is composed of the eigenvec-
tors of=

a
(=T

a
XTX=

a
)~1=T

a
XT>>TX corresponding to

the m largest eigenvalues, i.e., w is a solution to the follow-
ing eigenvalue problem:

=
a
(=T

a
XTX=

a
)~1=T

a
XT>>TXw"wj, (92)

where

j"(wTXTXw)~1wTXT>>TXw3RmCm. (93)

Proof. Assume "rst that there exists an equivalent
weighting matrix w. Putting the two expressions for the
same solution equal to each other gives

BPLS (Wa )
dggggeggggf
=

a
(=T

a
XTX=

a
)~1=T

a
XT

"

BPLS (w)
dgggegggf
w(wTXTXw)~1wTXT> . (94)

Post-multiplication with >TXw gives an eigenvalue
problem Zw"jw, i.e.,

Z
dgggggegggggf
=

a
(=T

a
XTX=

a
)~1=T

a
XT>>TXw

"w

j
dggggeggggf
(wTXTXw)~1wTXT>>TXw . (95)

A basis for the weighting matrix w can be taken from
the column space of the solution B

PLS
"

=
a
(=T

a
XTX=

a
)~1=T

a
XT>, i.e. R(w)-R(B

PLS
). This

gives a solution of the form B
PLS

(p)"wp where p3RmCm.
Solving for p in a LS optimal sense (as in De"nition 2.1)
gives (91). Hence, there exists an equivalent weighting
matrix w 3 RrCm. h

We can now present the PLS algorithm as an es-
timator. The following result is presented for the univari-
ate case. The extention to the multivariate case is clari"ed
later.

Theorem 5.4 (PLS1 optimization criterion). The PLS es-
timate B

PLS
of the matrix of regression coezcients B can be

expressed in terms of X3RNCr, >3RN, and an estimate
w( of a single weight vector w3Rr. The PLS estimate is given
by

B
PLS

"w( (w( TXTXw( )~1w( TXT>, (96)

where

w("argmin
w

<(w), (97)

where

<(w)"trace(>T>)!j, (98)

where

j"
wT(XT>!z)(>TX!zT)w

wTXTXw
, (99)

and for PLS we choose

z"w
a`1

"XT>!XTXH
a
XT>,

H
a
"K

a
(KT

a
XTXK

a
)~1KT

a
, (100)

where a is the number of components and K
a

is the control-
lability matrix for the pair (XTX,XT>). The vector
w
a`1

can also be computed from Theorem 3.1. Further-
more, this can be written as

<(w)"trace(>T>)!
wTXT>>TXw

wTXTXw

#

wT(2XT>zT!zzT)w

wTXTXw
, (101)

and

<(w)"DD>!XB(w)DD2
F
#

wT(2XT>zT!zzT)w

wTXTXw
, (102)

where

B(w)"w(wTXTXw)~1wTXT>. (103)

Proof. Note that the second term in the PE criterion is
equal to zero if the weight w is orthogonal to the residual
z. Hence, the estimator attracts weighting matrices such
that zTw"0. For the rest of the proof, see Theorems 5.3
and 5.5 and the comments at the end of this section.

Theorem 5.4 is important from a statistical point of
view. It implies that PLS is a regularized prediction error
estimator. It implies that it is only a single weight vector
w which has to be estimated. The theorem also de"nes
a class of regularized LS estimators, i.e. one estimator for
each choice of vector z3Rr. Note that z"0 or
z"XT(>!XB

OLS
) gives the ordinary LS estimator and

that z"XT(>!XB
PCR

) gives the PCR estimator. The
vector z can be viewed as regularization parameters
which attracts the parameter estimator to a point in the
parameter space. The solution to the optimization prob-
lem can be found from a generalized eigenvalue problem
and presented in the next theorem.

Theorem 5.5 (PLS as a generalized eigenvalue problem).

(XT>!z)(>TX!zT)w"XTXwj, (104)

where w3Rr is the generalized eigenvector corresponding
to the generalized eigenvalue

j"
wT(XT>!z)(>TX!zT)w

wTXTXw
, (105)
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where

z"w
a`1

. (106)

Finally, the PLS estimate of the matrix of regression coez-
cients B can be computed from the generalized eigenvector
w,X, and > as follows:

B
PLS

"w(wTXTXw)~1wTXT>. (107)

Proof. We have that the residual of the normal equations
are

z"XT>!XTX=
a
(=T

a
XTX=

a
)~1=T

a
XT>, (108)

where z is the residuals of the normal equations, e.g.
z"w

a`1
. We have shown that =

a
can be replaced by

a weight matrix=
m

when m4a. This gives

XT>!z"XTX=
m
(=T

m
XTX=

m
)~1=T

m
XT>. (109)

The covariance matrix of XT>!z, post-multiplied by
=

m
, is expressed as

(XT>!z)(XT>!z)T=
m

"XTX=
m

"m

dggggggeggggggf
(=T

m
XTX=

m
)~1=T

m
XT>>TX=

m
, (110)

which is a generalized eigenvalue problem for =
m

and "
m
. h

Consider the following regularized PE criterion:

<(=
m
)"DD>!XB(=

m
)DD2

F

#trace(=T
m
(2XT>!z)zT=

m
(=T

m
XTX=

m
)~1),

(111)

which can be written as

<(=
m
)"trace(>T>)

!trace(=T
m

X
T
XWm"mdgggegggf

(XT>!z)(XT>!z)T=
m

(=T
m
XTX=

m
)~1)

"trace(>T>)!trace("
m
). (112)

For univariate data, this reduces to the results in The-
orem 5.4. Note that the second term in the PE is equal to
zero if the weighting matrix =

m
is orthogonal to the

residual z. Hence, the estimator attracts weighting ma-
trices such that zT=

m
"0.

6. Discussion

6.1. Weights =
a

from the SVD of the controllability
matrix K

a

In Burnham et al. (1996) an Unde#ated PLS like solu-
tion (UPLS) was proposed in order to illustrate the need
for the de#ation process in PLS. It was proposed that the

weighting matrix =
a

should be taken as the "rst a left
singular vectors of XT>. We have in this paper proved
that the PLS solution in general is related to the control-
lability matrix K

a
of the pair (XTX, XT>). In the univari-

ate case we have B
PLS

"K
a
pH (Theorem 3.3) and in the

multivariate case

B
CPLS

"

Ka

dggggggggeggggggggf
[XT> (XTX)XT> 2 (XTX)a~1XT>]

]C
p
1
I
m

p
2
I
m

F

p
a
I
m
D

as presented in Theorem 4.1. A more general alternative
to UPLS is then to take the weighting matrix=

a
equal

to the "rst a left singular vectors of K
a
, i.e.=

a
";(:, 1 : a)

where ;S<T"K
a
.

Another choice is to choose=
a

equal to a controlla-
bility matrix of the pair (XTX,w

1
) where w

1
is equal to

the "rst singular vector of XT>. We have found that this
basis (=

a
from SVD of K

a
) for multivariate > data, in

some cases gives smaller prediction errors compared
to the multivariate CPLS solution in Theorem 4.1.
However, note that CPLS is the minimizing solution
to a well de"ned prediction error, but the above solution
has di!use statistical properties. We mention this as a
comment to the UPLS solution, but we will not elaborate
this further.

6.2. Prediction, bias and variance

In chemometrics one is often only concerned with the
prediction properties of the model. One of the main
points for using PLS instead of PCR (truncated SVD
solution) is that PLS usually gives a smaller prediction
error compared to PCR, for the same number of compo-
nents. This is also illustrated in Examples 7.2 and 7.3. The
reason for this is that PCR uses only information in X in
order to construct the pseudo inverse, but as shown in
this paper, the parameters in the approximate inverse
used by PLS1 are taken as the minimizing parameters of
the prediction error. One should note that PLS2 is usu-
ally not optimal on the identi"cation data, i.e. not opti-
mal with respect to minimizing (a norm) of the prediction
error. However, as claimed in the PLS literature, PLS2
may be good for predicting validation (independent out-
put) data.

Like PCR, PLS gives bias free estimates in case of
measurement noise only (noise on >), assuming that
the rank of X actually is a4r and that a su$cient
number of components is used in the two algorithms, i.e.
a"rank(X) components are used in PCR and
a"rank(K

r
) components are used in PLS. In order to

illustrate the di!erence, note that if X is orthogonal, then
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only one (a"1) component is needed in PLS1 but that
a"r components has to be used in PCR (Frank and
Friedman, 1993). For PLS2 one has to use a"m compo-
nents in order for the solution to be identical with the
OLS solution.

PLS may give a bias on the parameter estimates in case
of an errors-in-variables model, i.e. in the case when X is
corrupted with measurements noise. Note also that OLS
and PCR gives bias in this case. An interesting solution
to the errors-in-variables problem is the Total Least
Squares (TLS), (Van Hu!el and Vandewalle, 1991), and
the Truncated Total Least Squares (TTLS) solution, (De
Moor & David, 1996; Fierro, Golub, Hansen & O'Leary,
1997; and Hansen, 1992). The TTLS solution can be
computed as B

TTLS
"!<

12
<s

22
where <

12
3RrCr`m~a

and <
22

3RmCr`m~a are taken from the SVD of the
compond matrix

[X >]";S<T"[;
1
;

2
]C

S
1

0

0 S
2
DC
<

11
<

12
<

21
<

22
D

T
.

In MATLAB notation, <
12

:"<(1 : r, a#1 : r#m)
and <

22
:"<(r#1 : r#m, a#1 : r#m). This is the

solution to the problem of minimizing DD[X >]!
[X

TTLS
>

TTLS
]D D2

F
"D DX!X

TTLS
DD2
F
#DD>!>

TTLS
DD2
F

with respect to X
TTLS

and >
TTLS

where >
TTLS

"

X
TTLS

B
TTLS

is the TTLS prediction.
Based on our simulation experiments, we believe that

PLS is a valuable tool in order to stabilize the solution in
case of a rank de"cient or nearly rank de"cient data
matrix X. The problem of choosing the number of com-
ponents 14a4r is in general a trade-o! between bias
and variance, and model validation, e.g. cross validation.
The number of components a used to compute the PLS
solution is a regularization parameter. The bias and
variance properties of the PLS solution should be investi-
gated further. However, we will refer to Johansen (1997)
for a discussion of bias and variance when using regular-
ization in system identi"cation. The exact statistical
properties like mean and variance of the PLS solution is
hard to derive due to the fact that B

PLS
is non-linear in

> when 14a(r. Approximations based on 1. order
derivatives are presented in Pathak (1993).

6.3. SIMPLS

We are aware of the variant of PLS which is denoted
by SIMple PLS presented in de Jong (1993) and dis-
cussed further in ter Braak and de Jong (1998). SIMPLS
gives the same solution as PLS for univariate> data, but
in general gives di!erent solutions for multivariate
> data. This is illustrated in Examples 7.2 and 7.3. Like
PLS, the "rst weight vector w

1
in SIMPLS can be taken

as the left singular vector of XT>, i.e. w
1
";(:, 1) where

;S<T"XT>. The next weight vectors are computed
iteratively as follows. Let w

i
"w

1
and for all i"2,2, a

construct a projection matrix P
i
"XTXw

i
/(wT

i
XTXw

i
).

The weight vector w
i

can be taken as the "rst left
singular vector of (I

r
!P

i
)XT>, i.e. w

i
";(:,1) where

(I
r
!P

i
)XT>";S<T. As also pointed out by ter Braak

and de Jong (1998), SIMPLS may in some cases give
a smaller PE than PLS2 (for multivariate > data and the
same number of components). In our Example 7.2
SIMPLS gives equal or larger PE compared to PLS.
However, the CPLS solution which is presented in this
work gave smaller PE than both PLS and SIMPLS.
Note that a well de"ned PE criterion is de"ned for the
CPLS solution, but such a PE criterion does not exist for
PLS2 and SIMPLS.

7. Examples

Example 7.1. Consider the following example from
Hansen (1992)

Ydef

C
0.27

0.25

3.33D "

Xdgegf

C
0.16 0.10

0.17 0.11

2.02 1.29D
Bdef

C
1.00

1.00D#
Edgegf

C
0.01

!0.03

0.02D . (113)

The problem addressed is to "nd the best estimate of
B from the given data matrices X and > and the know-
ledge of the model structure (3).

B
OLS

"C
7.01

!8.40D, DDB
OLS

DD
F
"10.94,

DD>!XB
OLS

DD
F
"0.02. (114)

B
PLS

"C
1.1703

0.7473D, DDB
PLS

DD
F
"1.3885,

DD>!XB
PLS

DD
F
"0.0322. (115)

B
TTLS

"C
1.1703

0.7473D, DDB
TTLS

DD
F
"1.3885,

DD>!XB
TTLS

DD
F
"0.0322. (116)

A major di$culty with the above ordinary least
squares solution B

OLS
in (114) is that its norm is signi"-

cantly greater than the norm of the exact solution, which

is DDBDD
F
"J2. One component (a"1) was speci"ed for

the PLS and TTLS algorithms. See, e.g. Fierro et al.
(1997) for a description of regularization and the Trun-
cated Total Least Squares (TTLS) solution. The PLS and
TTLS solutions are almost similar for this example. The
e!ect of the latent variable (a"1) solution is that regu-
larization is introduced in order to stabilize the solution.
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Table 1
Comparison of the multivariate regression method CPLS against PLS,
SIMPLS (see Section 6.3) and PCR!

a CPLS PLS SIMPLS PCR

1 194.798 195.103 195.103 196.027
2 185.171 186.621 186.714 193.759
3 174.322 176.327 178.369 188.108
4 68.795 68.795 68.795 68.795

!The norm DD>!XB
M

DD
F

where B
M

is the solution from the particular
Method, is taken as our PE criterion and is presented in the table.

Table 2
Comparison of the univariate regression methods PLS, PCR
and TSVD!

a PLS PCR TTLS

1 79.13 79.14 84.18
2 74.44 78.83 220.2
3 66.42 71.02 124.6
4 64.43 64.51 137.7
5 57.31 57.31 124.7

!u
1
, u

2
, u

3
, u

4
and y

2
are used as regressors, i.e., in order to

de"ne the X data matrix. y
1

is used as the response variable, i.e.
in order to de"ne >. The norm DD>!XB

M
DD
F

where B
M

is the
solution from the particular Method, is taken as our PE cri-
terion and is presented in the table.

Example 7.2 (Real world data from a pulp and paper
mill I). A re"ner experiment at Union Co, Skien, Nor-
way, was designed in order to investigate the relationship
between re"ner manipulable variables and the freeness of
the pulp. The freeness is one of the main variables which
are frequently used as a measure of the quality of the
pulp. The four input variables used in the experiment are
the re"ner plate gap u

1
(mm), the #ow of dilution water

u
2

(kg/s), the re"ner casing pressure u
3

bar and the dos-
age screw speed u

4
(1000 kg/h). The sampling rate for the

experiment was one hour. N"16 samples of the freeness
was measured in the blow-line and in the latency chest.
The freeness in the blow-line y

1
was analyzed in the

laboratory from samples which were taken each hour.
The freeness in the latency chest y

2
was measured by

a Pulp Expert analysator with one hour sampling rate.
The data is organized into data matrices X3R16C4 and
>3R16C2 as follows.

9.3 0.54 4.5 13.0
8.3 0.64 4.0 13.0
9.3 0.54 4.0 13.0
8.3 0.64 4.5 13.0
8.3 0.54 4.5 13.0
9.3 0.64 4.5 13.0
8.3 0.54 4.0 13.0

X" ,9.3 0.64 4.0 13.0
7.0 0.70 4.5 11.0
8.0 0.60 4.0 11.0
8.0 0.70 4.5 11.0
8.0 0.70 4.0 11.0
7.0 0.60 4.0 11.0
8.0 0.60 4.5 11.0
7.0 0.70 4.0 11.0
7.0 0.60 4.5 11.0

181 167
241 206
161 172
230 198
154 157
231 209
154 145

>" ,203 220
216 185
135 152
257 223
185 208
102 131
156 155
204 182
141 164

(117)

The X and > data were centered (sample mean removed
from each variable) prior to identi"cation. The data is
"rst used to compare the multivariate algorithms CPLS,
PLS, SIMPLS and PCR. The results are illustrated in
Table 1.

This example clearly illustrates the optimality (minim-
izing PE for the same number of components) of CPLS
compared to PLS, SIMPLS and PCR.

Assume now that we are only interested in a god model
for the freeness y

1
in the blow-line. The model predic-

tions will in this case be improved by including y
2

in the
X data matrix, i.e. as an additional regressor.

Table 2 shows that the prediction of y
1

is improved by
incorporating y

2
as an regressor. This is quite expected

since the regressor y
2

is an indirect measure of the re-
sponse (output) y

1
. We also note that the Truncated

Total Least Squares (TTLS) method gives larger PE
compared to PLS and PCR. This is also quite expected

since TTLS are minimizing an objective function
DDX!ZDD2

F
#DD>!ZB

TTLS
DD2
F
, which is a solution to

the errors-in-variables regression problem where not
only > is subject to errors but also X is assumed
to be subject to errors. Note that PLS and PCR gives
biased solutions for B in case of an errors-in-variables
model.

Example 7.3 (Real world data from a pulp and paper
mill II). The variables tensile, y

1
, and tear, y

2
, are impor-

tant for describing the quality of the paper. These vari-
ables are usually measured in the laboratory. It is of
interest to predict these variables from the X data mea-
sured from a Pulp Expert (PEX) online analysator. The
(input) data measured by the PEX are the freeness, x

1
,

the "ber length distribution (x
2
, x

3
,x

4
and x

5
) and the

shive contents, x
6
, of the pulp. The length distribution is

classi"ed according to the Bauer 30, 100, 200 and !200
fractions. The data (which are from Union Co, Skien,
Norway) are ordered into X and >matrices as presented
in Appendix E. The re"ner manipulable variables (earlier
in the process) were perturbed in order to ensure su$-
cient variability in the X and > data. Furthermore, when
the length distribution is exactly measured we have a lin-
ear dependency, x

2
#x

3
#x

4
#x

5
"100. It is also

a common belief in the pulp and paper industry that the
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Table 3
Comparison of the multivariate regression methods CPLS, PLS2,
SIMPLS, PCR and PLS1 (for each output) on the identi"cation data!

a CPLS PLS2 SIMPLS PCR PLS1

1 1.0038 1.0266 1.0266 1.0422 1.0029
2 0.9627 0.9923 0.9922 1.0098 0.9416
3 0.9381 0.9343 0.9355 0.9895 0.9268
4 0.9217 0.9236 0.9235 0.9708 0.9217
5 0.9216 0.9216 0.9216 0.9216 0.9216

!The norm DD>!XB
M

DD
F

where B
M

is the solution from the particular
Method, is taken as our PE criterion and is presented in the table.

Table 4
Comparison of the multivariate regression methods CPLS, PLS2,
SIMPLS, PCR and PLS1 (for each output) on the validation data!

a CPLS PLS2 SIMPLS PCR PLS1

1 0.3837 0.3774 0.3774 0.3782 0.3874
2 0.3956 0.3963 0.3963 0.4014 0.3556
3 0.3395 0.3438 0.3444 0.3974 0.3427
4 0.3453 0.3465 0.3465 0.3681 0.3455
5 0.3457 0.3457 0.3457 0.3457 0.3457

!The norm DD>!XB
M

DD
F

where B
M

is the solution from the parti-
cular Method, is taken as our PE criterion and is presented in the
table.

freeness, x
1
, can be described by the length distribution,

the shive content and the #exibility of the "bers (not
a measured variable). Hence, from this aprior knowledge,
the e!ective rank of X is believed to be close to four. The
data were both centered and scaled for unit variance
prior to identi"cation. Hence, the sample mean were "rst
removed from the data. Then the columns in the centered
data were divided by the Frobenius norm of the respect-
ive columns. The observations used for identi"cation
were taken from row number 5 to row number 34 in the
data matrices, i.e. N"30 observations. The rest were
used for validation, i.e. 8 observations. The results (norm
of the PEs) based on the identi"cation data are presented
in Table 3. We can see that CPLS is optimal compared to
the other multivariate methods. PLS2 and SIMPLS gave
almost similar results. PCR gave the largest PEs. How-
ever, the strategy by modeling each output at a time with
PLS1 gave the smallest PEs on the identi"cation data.
The results from the validation are presented in Table 4.
Successive use of PLS1 gave worse results than the multi-
variate CPLS method for prediction on the validation
data (eccept for a"2). All methods gave a minimum for
a"3 components and CPLS produced the model with
the smallest PEs. However, the methods produced very
simila(r models. We can conclude that PLS2 is not neces-
sarily optimal for prediction on validation data. The

tensile, y
1
, were well described by the model. The tear,

y
2
, were also reasonable described. The resulting a"3

component model is promising and inspires for
more work on model validation and online implementa-
tion.

8. Conclusions

The PLS solution for univariate > data is equivalent
to using a truncated Cayley}Hamilton series approxima-
tion to the matrix inverse (XTX)~1 in the OLS solution.
This implies that the PLS solution can be written as
B
PLS

"K
a
pH where K

a
is the controllability matrix for

the matrix pair (XTX,XT>). Furthermore, the poly-
nomial coe$cients (in vector pH3Ra), are determined as
the optimal LS solution to the squared Frobenius norm
of the prediction error, i.e. pH"arg min

p
DD>!XK

a
pDD2

F
.

Furthermore, this implies that the controllability matrix
K

a
is a valid weighting matrix for the PLS solution.

Hence, the PLS solution for univariate > can be com-
puted directly as B

PLS
"K

a
(KT

a
XTXK

a
)~1KT

a
XT>. We

have proved that the PLS solution for univariate > data
is non-iterative. Hence, there is no need for any de#ation
(rank one reduction) process for computing the PLS
solution.

The optimal polynomial coe$cient vector pH may be
a function of both> as well as the X matrix, i.e., it results
in the minimal PE. This is probably the reason for why
PLS often gives a smaller PE than the corresponding PE
by using a PCR solution, assuming the same number of
components. In PCR the approximate inverse of XTX is
constructed from information in X only.

The usual algorithm for computing the PLS weighting
matrix =

a
presented in the literature is equivalent to

computing an orthogonal basis matrix (with orthonor-
mal columns) for the column space of the controllability
(Krylov) matrix. This basis is equivalent to the Q-ortho-
gonal matrix Q

a
from the QR decomposition of the

controllability matrix., i.e. a Gram}Schmidt procedure
can be used to compute orthogonal Q

a
that satisfy

K
a
"Q

a
R, where R is upper triangular. Furthermore,

an orthogonal PLS weighting matrix is =
a
:"Q

a
, and

the solution can equivalently be computed as
B
PLS

"Q
a
(QT

a
XTXQ

a
)~1QT

a
XT>.

A QR updating technique (one column at a time) can
be used to compute the QR decomposition of K

a
, thereby

avoiding explicit formulation of the controllability
matrix K

a
. The problem of computing an orthogonal

basis for the controllability subspace may be better con-
ditioned compared to explicitly forming the controllabil-
ity matrix. The problem of forming the controllability
matrix may be ill-conditioned due to round o! errors
when computing powers of XTX. The so called Arnoldi's
method to construct the basis for the Krylov subspace
should be considered.
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The PLS solution is not optimal for multivariate
> data. This is shown by a counterexample. An optimal
latent variable LS solution B

CPLS
has been presented

in the paper. This optimal solution follows from an
extension of the non-iterative Cayley}Hamilton series
approach that we derived for the PLS1 algorithm to
account for multivariate data. The optimality was
illustrated by real world data from the pulp and paper
industry.

Appendix A. Proof and implementation of
Theorem 3.2

A procedure for updating the inverse of the matrix
=

i
XTX=

i
is needed in order to e$ciently implement

the PLS2 iteration algorithm in Theorem 3.2. Assume
that the QR decomposition of the matrix X=

i
,

i.e. ¹
i
R

i
"X=

i
, can be computed in parallel and

in the same iteration loop as the weights are compu-
ted. Here, ¹

i
"[t

1 2 t
i
]3RNCi is orthogonal and

R
i
3RiCi is upper triangular. Substituting this into

(27) gives

(XT>)
i`1

"(XT>)
i

!XT¹
i
(=T

i
XT¹

i
)~1=T

i
(XT>)

i
, (A.1)

where =T
i
XT¹

i
"RT

i
is lower triangular. The weight

vectors, w
j

∀j"1,2, i!1, are normal to the resi-
duals (XT>)

i
. This property follows by premultiplying

(27) with =T
i

which gives =T
i
(XT>)

i`1
"0

iCm
. This,

gives that

=T
i
(XT>)

i
"C

0
i~1Cm

wT
i
(XT>)

i
D.

Hence, it is only the lower left element in RT
i

which is
needed, and has to be inverted. This element is given by
r
ii
"wT

i
XTt

i
, and we have

(=T
i
XT¹

i
)~1=T

i
(XT>)

i
"C

0
i~1Cm

wT
i
(XT>)

i
wT

i
XTt

i
D

and

¹
i
(=T

i
XT¹

i
)~1=T

i
(XT>)

i
"

t
i
wT
i
(XT>)

i
wT
i
XTt

i

.

This gives the residual update equation

(XT>)
i`1

"(XT>)
i
!

XTt
i
wT
i
(XT>)

i
wT
i
XTt

i

. (A.2)

The orthogonal (score) vector t
i

can be computed
by

t
i
"X

i
w

i
, t

i
:"

t
i

(tT
i
t
i
)1@2

, (A.3)

where X
1
"X and where X

i`1
is computed by projec-

ting the column space of X
i
onto the orthogonal comp-

lement of the column space of t
i

(Gram}Schmidt
orthogonalization), i.e.

X
i`1

"X
i
!

t
i
tT
i

tT
i
t
i

X
i
. (A.4)

The de"nition (A.3) ensures that t
i
is normalized to give

tT
i
t
i
"1. However, (A.2) shows that the update equation

is independent of score vector, t
i
, and weight vector, w

i
,

scalings. The update Eq. (A.2) (with (A.3) and (A.4)) is
equivalent to (27).

From the rank one reduction (de#ation) process in (31)
we have

XT
i`1
>"XT

i
>!

XT
i
X

i
w

i
wT
i
XT

i
>

wT
i
XT

i
X

i
w

i

. (A.5)

Using (A.4) shows that XT
i
X

i
"XTX

i
because I

N
!

t
i
tT
i
/tT
i
t
i
is a projection matrix. Hence, (A.5) is equivalent

to the above formulation (A.3) of the iterations in The-
orem 3.2. h

Appendix B. Proof and implementation of
Theorem 3.1

The proof is divided into three parts.
Part 1 (Equivalence condition). In Helland (1988) it is

proved that the columns in the weighting matrix used by
the PLS1 algorithm (see, e.g. Wold, 1985; Nvs and Mar-
tens, 1985) span the same space as the Krylov sequence
MXT>, XTXXT>,2,(XTX)a~1XT>N.

Part 2 (Subspace spanned by =
a
). In Appendix C it is

proved that the columns in the weighting matrix=
a

as
de"ned in Theorem 3.1 span the same space as the
Krylov sequence MXT>,XTXXT>,2,(XTX)a~1XT>N.

Part 3: Since the columns in the weighting matrix
=

a
provided by Theorem 3.1 (as in Part 2) span the same

space as the columns in the weighting matrix used by the
PLS1 algorithm in Helland (1988) (as in Part 1) the
theorem is proved. h

An alternative to (20) in Theorem 3.1 can be derived as
follows. The matrix =T

i
XTX=

i
in (20) is tridiagonal

since=
i
is a basis for the Krylov matrix K

i
. Let ¹

i
R

i
be

the QR decomposition of X=
i
. Then,=T

i
XT¹

i
is lower

bidiagonal. Following the lines in Appendix A we have
that ¹

i
(=T

i
XT¹

i
)~1=T

i
w
i
"t

i
wT

i
w
i
/wT

i
XTt

i
. Hence, the
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update Eq. (20) is equivalent to

w
i`1

"w
i
!

XTt
i
wT

i
wT
i
XTt

i

w
i
, (B.1)

where the (score) vectors, t
i
, is de"ned by (A.3) and (A.4).

Appendix C. Proof of Proposition 3.2

We want to prove that =
a
"K

a
R~1

1
where R~1

1
is

upper triangular. From Theorem 3.1 we have that

w
1
"XT> (C.1)

w
i`1

"w
i
!XTX=

i
c
i
3 i"1,2, a!1 (C.2)

where it is important to note that

c
i
"(=T

i
XTX=

i
)~1=T

i
w
i
3Ra (C.3)

is a vector. This implies directly that w
i`1

is a linear
combination of the sequence w

i
, XTXw

1
, XTXw

2
,

2, XTXw
i
.

From this we can prove that w
i
is a linear combination

of the sequence w
1
, XTXw

1
, (XTX)2w

1
,2,(XTX)i~1w

1
as follows.

From the above we have that w
i
is a linear combina-

tion of the sequence w
i~1

, XTXw
1
, XTXw

2
,2,

XTXw
i~1

. Substituting for w
2
,2, w

i~1
into this se-

quence, by noting that w
2

is a linear combination of
w
1

and XTXw
1
,w

3
is a linear combination of

w
2
, XTXw

1
and XTXw

2
, and so on, proves that w

i
is

a linear combination of the columns in the controllability
matrix K

i
of the pair (XTX, w

1
). By induction, this must

also hold for i"a.
The fact that =

a
"K

a
R~1

1
where R~1

1
is upper tri-

angular follows from the fact, that as proved above, each
column w

i
in=

a
is only a linear combination of columns

1 to i in the controllability matrix.
We will illustrate the proof for a"3 and i"1,2 in the

following.
i"1

w
2
"w

1
!c

1
XTXw

1
where c

1
"

wT
1
w
1

wT
1
XTXw

1

, (C.4)

which is a linear combination of XT> and XTXXT>.
i"2

w
3
"w

2
!XTX

W2def
[w

1
,w

2
]

c2
def

C
c
21

c
22
D , (C.5)

where

c
2
"(=T

2
XTX=

2
)~1=T

2
w

2
, (C.6)

which can be written as

w
3
"

K3
dggggeggggf
[w

1
XTXw

1
(XTX)2w

1
]

]C
1

!(c
1
#c

21
#c

22
)

c
1
c
22

D. (C.7)

Hence,

W3

dggeggf
[w

1
w
2

w
3
] "

K3

dggggeggggf
[w

1
XTXw

1
(XTX)2w

1
]

]

R
~1
1

dggggggeggggggf

C
1 1 1

0 !c
1

!(c
1
#c

21
#c

22
)

0 0 c
1
c
22

D
(C.8)

and the proof is complete. h

Appendix D. Proof of Theorem 4.1

The expression for the PE, Eq. (63), gives

vec(E)"vec(>)!(I
m
?X)vec(K

a
(p)), (D.1)

where we have used that vec(AXB)"(BT?A)vec(X) for
the column string (vector) operation of the product of the
triple matrices (A,X, B) with compatible dimensions, see
e.g. Vetter (1973). Furthermore, Eq. (D.1) can be written
as

vec(E)"vec(>)!(I
m
?X)bcs(K

a
)p, (D.2)

where p3Ra, (I
m
?X)3RNmCmr and where we have de-

"ned (and introduced)

bcs(K
a
)"

[vec(XT>) vec(XTXXT>) 2 vec((XTX)a~1XT>)]

3RrmCa (D.3)

as a block column string operator. Eq. (D.2) can be
solved for p in a LS optimal sense by minimizing
<(p)"DDvec(E)DD2

F
with respect to p. This gives the optimal

parameter vector

pH"Ms vec(>), (D.4)

where we have de"ned

M"(I
m
?X)bcs(K

a
)3RNmCa (D.5)

and where Ms"(MTM)~1MT is the Moore}Penrose
pseudo-inverse of the matrix M. h
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Appendix E. Data for Example 7.3

167.00 37.90 26.90 5.80 29.40 1.62
206.00 38.60 27.30 5.50 28.60 1.48
172.00 37.80 27.80 5.80 28.60 1.41
198.00 40.80 28.00 5.70 25.50 1.68
157.00 38.60 27.50 6.00 27.90 1.20
209.00 39.60 27.50 5.70 27.20 1.68
145.00 37.60 27.70 6.10 28.60 1.27
220.00 41.00 27.60 5.60 25.80 1.87
185.00 39.30 27.70 5.80 27.20 1.42
152.00 38.50 27.90 6.20 27.40 1.55
223.00 37.80 27.30 5.90 29.00 2.06
208.00 39.40 28.50 6.40 25.70 1.72
131.00 36.70 27.40 6.40 29.50 1.40
155.00 36.70 27.10 6.50 29.70 1.31
182.00 36.70 25.80 5.80 31.70 1.32
164.00 38.50 26.50 6.30 28.70 1.41
171.00 36.60 29.80 6.50 27.10 0.94
177.00 35.80 29.70 6.10 28.40 1.16

X" ,123.00 33.20 29.90 6.70 30.20 0.69
119.00 34.50 29.60 6.80 29.10 1.17
140.00 32.90 28.10 6.40 32.60 0.90
166.00 38.00 28.50 6.10 27.40 1.36
144.00 38.10 27.00 6.20 28.70 0.98
194.00 38.50 26.90 6.00 28.60 1.37
132.00 36.20 27.30 6.30 30.20 1.18
171.00 38.10 27.40 6.50 28.00 1.26
139.00 36.30 27.40 6.50 29.80 0.92
173.00 37.80 28.40 6.70 27.10 1.25
131.00 36.80 28.40 6.80 28.00 0.96
170.00 38.20 28.30 6.30 27.20 1.36
188.00 38.80 28.00 6.60 26.60 1.18
151.00 36.30 28.20 6.70 28.80 1.06
201.00 39.70 28.90 6.60 24.80 1.32
166.00 37.60 28.60 6.50 27.30 1.18
133.00 36.20 28.00 6.90 28.90 0.84
166.00 36.10 28.50 6.60 28.80 1.08
122.00 35.50 29.90 7.10 27.50 0.77
133.00 34.50 29.20 6.80 29.50 0.72

34.10 7.60
33.00 7.37
35.10 7.57
33.40 7.69
38.00 7.64
31.70 7.73
39.00 7.37
29.50 7.35
32.60 7.52
35.10 7.33
29.30 7.49
32.30 7.25
35.10 7.81
34.00 7.47
32.60 7.68
33.70 7.36
34.60 7.12
35.30 7.15

>" .39.40 6.77
38.60 6.88
38.70 7.11
37.60 7.47
37.50 7.07
32.60 7.24
38.30 7.16
35.90 6.62
38.70 7.21
35.10 7.35
39.70 7.23
37.30 7.27
31.20 6.97
36.20 7.86
31.40 7.31
34.60 7.85
39.90 7.19
34.00 7.37
40.00 7.16
37.90 7.52
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