
KRYLOV SUBSPACE ITERATION 
This survey article reviews the history and current importance of Krylov subspace iteration 
algorithms. 

ince the early 18OOs, researchers have 
considered iteration methods an attrac- 
tive means for approximating the soln- S tions of large linear systems. They make 

these solutions possible now that we can do re- 
alistic computer simulations. The classical itera- 
tion methods typically converge very slowly (and 
often not at  all). Around 1950, researchers real- 
ized that these methods lead to solution se- 
quences that span a subspace-the I(rylov suh- 
space. It was then evident how to identify much 
better approximate solutions, without much ad- 
ditional computational effort. 

When simulating a continuous event, such as 
the flow of a fluid through a pipe or of air around 
an aircraft, researchers usually impose a grid over 
the area of interest and restrict the simulation to 
the computation of rclcvaut parameters. An ex- 
ample is the pressure or velocity of the flow or 
temperature inside the gridpoints. Physical laws 
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lead to approximate relationships between these 
parameters in neighboring gridpoints. Together 
with the prescribed behavior at  the boundary 
gridpoints and with given sources, this leads 
eventually to vcry large linear systems of equa- 
tions, Ax = b. The  vector x is the unknown para- 
meter values in the gridpoints, b is the given in- 
put, and the matrixA describes the relationships 
between parameters in the gridpoints. Because 
these relatiomhips are oftcn restricted to nearby 
gridpoints, most matrix elements are zero. 

The  model becomes more accurate when we 
refine the grid-that is, when thc distance hc- 
tween gridpoints decreases. In a 3D simulation, 
this easily leads to large systems of equations. 
Even a few hundred gridpoints in each coordi- 
nate direction leads to systems with millions of 
unknowns. Many other problems also lead to 
large systems: electric-circuit simulation, mag- 
netic-field computation, weather prediction, 
chemical processes, semiconductor-device s i r -  
dation, nuclear-reactor safety problems, me- 
chanical-structure stress, and so on. 

The  standard numerical-solution methods for 
these linear systems are based on clever imple- 
mentations of Gaussian elimination. These 
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methods exploit the sparsc linear-system striic- 
nire as much as possible to avoid coinputations 
with zero elements and zero-element storage. 
But for large systems these methods are often 
too cxpensive, even on today’s fastest supcrcon- 
pnters, except wherc A has a special Struchlre. 
For many of thc problems previously listed, wc 
can mathematically show that the standard so- 
lution methods will not lead to solutions in any 
reasonahle amount of time. So, researchers liave 
long tried to iteratively approximate the solution 
x. We start with a good guess for the solntioii- 
for instance, by solving a much easier ncarby 
(idealized) problem. W e  then attempt to i n -  
prove this guess by reducing the error with a 
convenicnt, cheap approximation for A-an it- 
eratiue solnrion method. 

Unformnately, defining suitable nearby linear 
systems is difficult-in the sense that each step 
in the iterative process is cheap, and most im- 
portant, that thc iteration converges sufficiently 
fast. Suppose that we approxiniatc then x n ma- 
trix A of the linear system Ax = h by the simpler 
matrix K. Then, we can formulate the above 
sketched iteration process as follows: in step i + 
1, solve the new approximation xj+l for the soln- 
tion x ofAx = b, from 

Kxj+I= ICV~ + b -Ax; 

For arbitrary inidal start xo, this processk con- 
vergence rcqnirement is that the largest cigen- 
value, in modulus, of the iiiatrix I - K-’A is less 
than 1. The  smaller this eigenvalue is, the fastcr 
the convergence will be (if K =  A, we have coiiver- 
gence in one step). For most maaices, this is prac- 
tically itnpossiblc. For instancc, for the discretized 
Poisson cquation, the choice K= diag(A) leads to a 
convergciice rate I - qh’), where h is thc distance 
between gridpoints. Even for the morc modern 
incomplete JSJ decompositions, this convergence 
rate is the same; which prcdicts a very marginal 
improvement per iteration step. We get reason- 
able fast convergence only for strongly diagonally 
dominant matrices. In thc mid 1950s, this led to 
the observation in Ewald Ilodewigk tcxthook that 
iteration methods were not useful, except when A 
approaches a diagonal matrix.’ 

Faster iterative solvers 
Despite thc negative fcclings about iterative 

solvers, researchers continued to design fastcr 
iterative methods. 

T h e  developments of modern and niorc suc- 

cessful method classes started at  abont the same 
time, intercstingly, in a way not appreciated a t  
the time. Tlie first and truly iterativc approach 
tried to idcntify a trend in the snccessivc ap- 
proxiinants and to extrapolate on the last itcra- 
tion results. This led to the successive nuerrelax- 
atinn methods, in which an overrelaxation (or 
extrapolation) parameter steered thc iteration 
process. For interesting classes ofliroblems, such 
as convection-diffusion problems and the new 
troii-difhsion equation, this led to attractivc 
computational methods that could cotnpetc with 
direct methods (maylie not so much in commit- 
ing time, but certainly because 
of the minimal computer 
memory requircments). David 
Young*,’ and Richard Varga4 
wcre important researchers 
who helpcd make thesc tneth- 
ods attractive. T h e  SOR mc- 
thods were intensively used by 
engineers until inorc success- 
ful methods gradually replaced 
them. 

T h c  early computers had 
relatively small memories that 
made iterative methods still 
attractivc, because you had to store only the 
nonzcro matrix elements. Also, iterativc soln- 
tion, although slow, was the only way out for 
many PDh-elated lincar systems. Including it- 
eration parameters to kill dominant factors in 
the iteration errors-as in SOR-made the so- 
lution of large systems possible. 

Varga reports that by 1960, Laplacian-type 
systems of 20,000 could he solved as a tlailyrou- 
tine on a Philco-20000 computer with 32,000 
words of core h tor age.^ This would havc been 
impossible with a direct method on a similar 
computer. However, thc iterative mctbods of 
that timc rcquired careful tuning. For example, 
for the Chebyshev acceleratcd iteration mcth- 
ods, you needcd accurate guesses for the matrix’s 
extrema1 cigenvahies. Also, for the overrelax- 
ation methods, you needed an overrelaxation pa- 
rameter that was estimatctl from thc largest 
eigenvalue of some related iteration matrix. 

Another iterative-method class that hccatne 
popular in thc mid 1950s was the Alternating Di- 
rection inetliod, which attempted to solve dis- 
cretizcd PDF.s over grids in morc dimensions hy 
successively solving 1D problems in each coordi- 
nate dircction. Iteration parameters stcered this 
process. Varga’s book, Matrix Itemtiue Analysis, 
gives a good overview of  the statc of the art in 



Figure 1. The conjugate gradient algorithm. 

Figure 2 GMRES(m) of Saad and Schultz. 

1960.4 It even mentions a system with 108,000 
degrees of freedom. Many other problems with a 
variation in matrix coefficients, such as electron- 
ics applications, could not hc solved at  that time. 

Because of the nonrobustness of the early it- 
erative solvers, research focused on more effi- 
cient direct solvers. Especially for software used 
hy nonnumerical cxperts, the direct methods 
have the advantage of avoiding convergence 
problems or difficult decisions on iteration pa- 
ramcters. T h c  main problem, however, is that 
for general PDE-related problems discrctized 
over grids in 3D domains, optimal direct tcch- 
niques scale B(&~)  in floating-point opcrations, 
so they are of limited use for the larger, realistic 
3D problems. The  work pes iteration for an it- 
crative method is proportional to n, which 
shows that ifyou succeed in finding an iterative 
technique that converges in considerably fewer 
than n iterations, this tccbniqne is more efficient 
thau a direct solvcr. 

For many practical problems, researchers 
have achieved this goal, but through clever 
combinations of modern iteration methods 
with (incomplete) direct techniques: the ILU 
preconditioned Krylov subspace solvers. With 
proper ordering techniques and appropriatc 
levels of incompleteness, rcsearchers have re- 
alized itcration counts for convection-diffusion 
problems that are practically independent of 
the gridsize. This implies that for snch prob- 
lems, thc required number of flops is propor- 
tional with n (admittedly with a fairly large 
proportionality constant). The  other advantage 
of iterative methods is that they need modest 
amounts of computer storage. For many prob- 
lems, modern direct methods can also be very 
modest, but this depends on the system's ma- 
trix structure. 

The Krylov subspace solvers 
Cornelins Lanczos' and Walter Arnoldi' also 

cstahlishcd the basis for very succcssful incth- 
ads in the early 1950s. The  idea was to keep all 
approximants computed so far in the iteratiou 
process and to recombine them to a better so- 
lution. This task might seem enormous, bnt 
1,anczos recognized that the basic iteration (for 
convenience wc will take K =  I )  leads to approx- 
imants x, that arc in nicely strnchired subspaces. 
Namely, these subspaces are spanned by the 
vectors r,,, AY", Azro, ..., A'%o, wherc ro = b - 
Axo. Such a subspace is a Krylov subspace of di- 
mension i for A and m. 
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Laiiczos showed that you can generate an or- 
thogonal basis for this subspace with a veiy siin- 
plc three-term rccnrrcnce relation if the matrix 
A is symmetric. This simplified the optimal- 
solution computations in the K~ylov subspace. 
T h e  attractive aspect is thai yon can obtain 
these nptinial solntinns for approximately the 
same computational costs as the approximants 
for the original iterative process, which was i n -  
tially not recognized as a breakthrough in iter- 
ative processes. 1 B e  early observation was that, 
after n - 1 steps, this process must  terminate 
because the I(rylov subspace is of dinicnsion n. 
For that reason, this Lanczos process was re- 
garded as a direct-solution method. Re- 
searchers tested the mctlind nn tough (although 
low-dimensional) prolilems and soon nbserved 
that  after 72 - 1 steps thc approxiniant xn could 
he quite far away frnni the solution x, with 
which it should coincide at  that point. This 
made potcntial users suspicious. 

Meanwhile, Magnus Hestencs and Eilnard 
Stiefe17 had propnseed a very clcgant method fnr 
sy~nniewic psirive definite systems, based nn the 
same ICrylov subspace principles: the conjugate 
gradient method. This method suffered from the 
same lack of exactness as Lanczos' method and 
did nut receive much recognition in its first 
20 years. 

The conjugate gradient method 
It took a few years for researchers to realizc 

that it was more fniitfiil to consider the conjii- 
gate gradient incthnd truly iterative. In 1972, 
John Reid was one of thc first to point in this di- 
rection.* Meanwhile, atialysis liad already shown 
that a factor involving the ratio of the largest and 
smallest eigenvalue of A dictated this method's 
convergence and that the actnal values of these 
eigenvalues play no role. 

About the same time, researchers recognized 
that they could construct good approximations 
Kfor 4 with the property that the eigenvalues 
of K-'A were clustered around 1. This implied 
that the ratio of these eigenvalues was moderate 
and so led to fast convergence of conjugate gra- 
dients when applied to K-'As = K-'b when Kis  
also symmetric positive definite. 'nlis process is 
called prcconditioncd c07zjugate gradients. Figtire 1 
descrihcs the algorithm, where s * y denotes the 
innerproduct of two vectors x and y (complex 
conjugate if the system is complex). 

David Kershaw was one of the first to expcri- 
nient with tlie conjugate gradient method, with 
incomplete Cholcsly factorization ofA as a prc- 

Table 1. Kershaw's results for a fusion problem. 

Method Number of iteration$ 

Block successive overrelaxation methods 765 
Incomplete Cholesky conlugate gradients 25 

Gauss Seidel 208,000 

conditioner for tough prnhlerns related to hision 
pr~hlems.~Tablc  1 quotes iteration ntnnhcrs for 
the hasic Gauss-Seidel iteration (that is, tlie ha- 
sic iteration for Kthe lower triangular part of A') 
the accelerated version SOR (acttially, a slightly 
faster variant, Block SOK4), and conjugate gra- 
dients preconditioncd with incntnplete Cholcsky 
(also known as ICCG). The iteration nuinhers 
were necessary to reduce the initial-residual 
tiorin by a factor oc I@. 

Tahk 1 shows the sometimes gigantic im- 
provements kotn the (preconditioned) conjugate 
gradients. These and other results also motivated 
the search for other powerfiil IGylov subspace 
methods for a inore general equation system. 

CMRES 
Researchers have proposed quite a few spe- 

cialized IGylov methods, including Bi-CG and 
QMR for unsyinmetric A; MINRES and 
SYMMLQ for symmcil.ic-iiidefitlitc systems; 
and Orthornin, Orthodir, and Orthores for gcn- 
era1 unsyininetric systems. T h e  current de f x t o  
unsyinmetric-systetnn standard is thc GMRES 
method, proposed in 1986 by Yonccf Saad and 
Martin Schiiltz." In this mcthnd, the x, in tlie 
dimension i E y l o v  subspace is constructed for 
which the norm II L - A.YJ is minimal. This 
builds on an algorithm, prnposed by Amoldi,6 
that constriicts an orthonormal basis for the 
Krylov suhspace for unsyinnictric A. 

T h e  price for this ideal siniation is that yon 
have to store a full orthogonal basis for the 
Ioy.lov snhspace, which means tlie more itcra- 
tinns, the inure basis vcctnr~ you mis t  store. 
Also, the work per iteration increases linearly, 
which makes the method attractive only if it con- 
verges really fast. For inany practical problems, 
GMRES takes a few tens of iterations; for many 
other problems it can take hundreds, which 
makes a full GMKES nnfcasable. 

Figtire 2 shows a GMRES version in which a 
restart occurs after evcrym iterations to limit tlie 
memory requirements and the work per itera- 
tion. T h e  application for a preconditioned sys- 
tem K-'Ax = K ' h  is straightforward. 
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In the inid 19805, Peter Sonneveld rccog- 
nized that you caii use the A' opcration for a 
further residual reduction through a ininor 
modification to the BI-CG xhcnie, alinost 
withouc atlditioii,il computmonal co5t5. Thi5 
CGS inethod was often faster but significantly 
niore irregular, which led to a precison loss. In 
1992, I shnwcd that BI-CG could be made faster 
and smoother, at almost no additioiial cmt, with 
ininniial residual steps." Figure 3 scheiiiatically 
slinws the resulting BI-CGSThB algorithm, for 
the 5olution nfAx = b with preconditioner I<. 

It IS difficult to make a general statement 
about how quickly thcse Krylov methods con- 
verge. Although they certainly converge much 
faster than the classical iteration schemes dnd 
convergeiicc takes place lor a niuch wider class 
of matrices, inany practical systems still cannot 
he satisfactorily 5olved. Much depend5 on 
whethcr you are able to define a nearliy matrix 
Kthat will serve as a preconditioner. Recent re- 
search is more oriented in that direction than in 
trying to improve the Krylov subspace inetli- 
oda, altlinugh we might see some iniproveineiits 
for thcse methods a5 well. Effective aiid efiucnt 
prechditioner construction is lai gely problem- 
dependent, a pieconditioncr is considered as ef- 
fective i f  the number ot iteration 5teps nf the 
preconditioncd I(rylov subspace method IS ap- 
prm" te ly  100 or Icss. 

Compute = b - A 
Choose 6, for exani 

j 

p,-, = @-,/P&-L,/Q-t) 
p ,  = r*-, +a,@,-, - %U,,) 

endif 
Solve j from G=P, 

Y, = A i  

i(') = #-') + a$ and stop 
Solve z frbm KZ = 5 
t E A Z  
0, = s*t/t*t 

Figure 3. The Bi-CGSTAB algorithm. 

Bi-CGSTAB 
The  GMRES cost per iteration has also led to 

a search for cheaper near-optimal methods. 
Vance Fahcr and Thomas Manteuffel's fainous 
result showed that constructing optiinal s o h -  
tions in the Krylov subspace for nnsymmetric A 
hy short recurrences, as in the conjugate gradi- 
ents method, is generally not possible. The gen- 
eralization of conjugate gradients for unsyn- 
metric systcms, Bi-CG, often displays an 
irregular convergence behavior, inchiding a pos- 
sible hreakdown. Roland Freund and Noel 
Nachtigal gave an elegant remedy for both phe- 
nomena in their QMR method, BiCG and 
QMR have the disadvantage that they reqnire an 
operation withATper iteration step. This addi- 
tional operation does not lead to a further resid- 
ual reduction. 

n this contrihutinn, I have highlighted 
some of the Krylov subspace methods that 
researchers have accepted as powerful 
tools for thc iterative solution of veiy large 

linear systems with millions of unknowns. l l iese 
methods are a breakthrough in iterative solution 
inethods for linear systems. I have mentioned a 
few names that were most directly associated 
with the develop~nent of the most characteristic 
and powerfill methods-CG, GMRES, and Bi- 
CGSTAB-hut these only represent the tip of 
the iceberg in this lively research area. For more 
information, see the "Further reading" sidebar. 

Another class of accclcration methods that has 
hccn developed since around 1980 are tlic inulti- 
grid or multilevel nicthods. These inethods ap- 
ply to grid-oriented prnblems, and the idea is to 
work with coarse and fine grids. Smooth solu- 
tion coinponents arc largely determined on the 
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coarse grid; the fine grid is for the inorc locally 
varying components. When thcsc mcthods work 
for regular priiblcins ovcr rcgnlar grids for 
PDEs, they can be very l a s t  and are much intire 
efficient than preconditioned I(Iylov solvers. 
However, there i s  n o  clear separation between 
the two camps: you can use multigrid as a pre- 
ciinditioncr for IGylnv nicthotls for lcss regular 
problems aiid t h e  K ry lov  techniques as 
smoiitliers hir multigrid. This i s  a fniitfid direc- 
t ion for fiirther exploration. OL 
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