
THE DECOMPOSITIONAL APPROACH 
TO MKTRIX COMPUTATION 
The introduction of matrix decomposition into numerical linear algebra revolutionized 
matrix computations. This article outlines the decompositional approach, comments on its 
history, and surveys the six most widely used decompositions. 

11 1951, Paul S. Dwyer pnblishcd I,inenr 
Comptntions, perhaps the first hook dc- 
voted cntirely to numerical linear algebra.' 
Digital conipiiting was in its infancy, and 

Dwyer focused on computation with tncchani- 
cal calculators. Nonctheless, the hook was state 
of the art. Figurc 1 reproduces a pagc of thc 
book dealing with Gaussian elimination. In 
1954, Alston S. Householder published Prim+ 

p b  nf Nzc"cn1 Ann1ysi.r; one of the first mod- 
crn treatments of high-spccd digital coinputa- 
tion. Figure 2 rcproduccs a page from this hook, 
also dealing with Gaussian elimiiiation. 

The contrast between tlicse two pages is strik- 
ing. l'he most obvious difference is that Ilwyer 
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used scalar equations whereas Householder used 
partitioned matriccs. Rut a d e e p  difference is 
that while Dwyer started from a system of equa- 
tions, I-Iouseholder worked with i\ (block) LU 
decoinpiisition-the factorization of a matrix 
into the product of lower and upper triangular 
matrices. 

Gencrally spcaking, a decomposition is a fac- 
torization of a inatrix into simpler factors. T h e  
undcrlying principlc of thc decompositional ap- 
proach to matrix computation is that it is not the 
husiness of tlic matrix algorithmists to solve par- 
ticular problems hut to construct computational 
platforms from which a variety of problems can 
be solvcd. 'rliis approach, which was in full 
swing by thc inid-l960s, has revolutionized ina- 
trix computation. 

To illustrate tlic nanirc of tlic decompositional 
approach and its cousequcnces, I begin with a 
discussion of the Cholesky decotnpositioii and 
the solution of linear system-essentially the 
decoiiiposition that Gauss computed in his dim- 
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Figure 1. This page from Linear computations 
shows that Paul Dyer 's  approach begins with a 
system of scalar equations. Courtesy of John Wiley 
6r Sons. Craw-Hill. 

Figure 2. On this page from Principles ofNumerical 
Analysis, Alston Householder uses partitioned 
matrices and LU decomposition. Courtesy of Mc- 

ination algorithm. 'l'his article also provides a 
tour of the five other major matrix decomposi- 
tions, including thc pivoted I,U decomposition, 
the QR decomposition, the spectral decompo- 
sition, the Schur decomposition, and the singu- 
lar value decomposition. 

A disclaiiner is in order. This article deals pri- 
marily with dense matrix computations. N- 
diough tlic decompositional approach has greatly 
influcnced iterativc and dircct methods for sparse 
matrices, the ways in which it has affected thctii 
are differcnt from what I describe here. 

The Cholesky decomposition and 
llnear systems 

solve the system 
We caii nse the decompositionill approach to 

A x = b  (1) 

where A is positive defiiiitc. It is wcll known that 

A caii be factored in thc form 

A = R% (2) 

where R is an upper triangular iuatrix. T h e  fac- 
torization is called the Cholesky decomposition of 
A. 

The factorizatioii in Equation 2 caii be used 
to solvc linear systems ;is follows. Ifwc write thc 
system in thc form R"Rx = b and sety = R-Th, 
then x is the solution of thc triangnlar system 
Rx =y. IIowever, by clefinitioiiy is the solution of 
thc systeiii R'ry = b. Coiisequently, we havc re- 
duced the prnhlein t~ the solutim of two trian- 
gular systems, iis illustrated in the following al- 
gorithm: 

1 ,  Solve the system R-5 = b. 
2 .  Solve the system &. =y. (3) 

Bccansc triaiigiilar systcins arc easy to solvc, the 
introduction of thc Cholesky dccoiiipositioii has 
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Figure 3. These varieties of Gaussian elimination are all numerically 
equivalent. 

transformed our problem into one for which the 
solution can be readily coniputed. 

We can nse such decompositions to solve 
innre than one problem. For example, the fol- 
lowing algorithm solves thc systetnATx = b: 

1. Solvc the system Ry = b. 
2 .  Solve the systcin d S x  =y.  (4) 

Again, in many statistical applications wc want 
to coinputc the qnantity p = xTAA'r. Because 

we can compute p as follows: 

1. Solve the system R'y = x. 
2 .  p = j 'y. (6) 

The  dccoinpoaitional approach can also save 
computation, For example, the Cholesky de- 
composition requires O(n') operations tn com- 
pute, whereas the solution of triangular systcins 
requires only O(nz) operations. Thus, if you rec- 
ognizc that a Cholesky decomposition is beiug 

used to solve a system at one point in a compu- 
tation, yon can rensc the decomposition to do 
the same thing later without having to recon- 
pnte it. Historically, Gaussian elimination and 
its variants (including CholcskyS algorithm) have 
solved tlie systcin in Equation 1 by rcducing it 
to an equivalent triangular system. This mixcs 
tlie computation of the decomposition with the 
solution of the first triangular system in Equa- 
tion 3 ,  a i d  it is not obvious how to reuse the 
elimination when a new right-hand side presents 
itself. A naive programmer is in danger of pcr- 
forming the reduction from the hcginning, thus 
repeating the IionTs share of the work. On the 
other hand, a program that knows a decoinpnsi- 
tion is in the background can reuse it as needed. 

(By tlie way, the problem of recomputing dc- 
compositions has not gone away. Some matrix 
packages hide the fact that they repeatedly coin- 
pnte a decoiiiposition by providing drivers to 
solve linear systems with a call to a single row 
tine. If the program calls the routine again with 
the same matrix, it recomputes thc decoinposi- 
tion--unnecessarily. Interpretive matrix system 
snch as Matlab and Nlatheniatica have the same 
problem-they hide decompositions behind op- 
erators and function calls. Such arc the conse- 
quences of not strcssing the decoinpositional ap- 
proach to the consumers of matrix algorithms.) 

Another advantage ofworking with decoinpo- 
sitions is unity. There are differcnt w"ys of or- 
ganizing the operations involved in solving lin- 
ear systems by Gaussian elimination in general 
and Cholcskyh algorithm in particular. Figme 3 
illustrates some of these arrangcinents: a white 
area contains clenients froin the original matrix, 
a dark area contains the factnrs, a light gray 
area contains partially processed elements, and 
the boundaiy strips contain clciiients about to 
he processcd. Most of these variants were origi- 
nally presented in scalar form as new algorithms. 
Once you recognize that a dccomposition is in- 
volved, it is easy to sec the essential niiity of the 
various algorithms. 

All the variants in Fignre 3 are numerically 
equivalent. This means that one rounding-error 
analysis serves all. For example, the Choleslcy al- 
gorithm, in whatever guise, is backward stable: 
the computed factor R satisfies 

(A + E )  = R ~ R  (7 )  

where E is of the size of the rounding unit rela- 
tivc to A. Establishing this backward is usually 
the most difficult part of an analysis of the use 
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of a decomposition to solve a prohlem. For cx- 
ample, oncc Equation 7 has Iiccn estahlishetl, the 
ruunding errors involved in the solutions of the 
triangiilar systems in Equation 3 can bc incor- 
porated in E with relative ease. Thus, another 
advantage of the decoinpositional approach is 
that it concentrates the most difficult aspects of 
rounding-error analysis in one place. 

In general, if yon change the elements of a 
positive definite matsix, yon must recompute its 
Cholesky decomposition from scratch. 1 Iowever, 
if the change is strnchlred, it tilay he possihlc to 
compute the ncw deconipositinn dircctly froni 
the old-a process known as zqdnt iq .  For ex- 
aniplc, you caii cotnpute the Cholesky dccom- 
position of A + S S ~  froin that of A in O ( 2 )  01’- 
eratioris, a n  enormous savings over the nb initio 
computation of the decoinposition. 

Finally, the decompositional approach has 
greatly affected the development of software for 
matrix computation. Instead of wasting energy 
developing code for a variety of specific applica- 
tions, the producers of a niatrix pachgc can con- 
centrate (in the decompositions themselves, pcr- 
haps with a few auxiliary routines to handle the 
most importmt applications. This apprmach has 
informed the major public-domain packages: the 
IIandbook series,’ Eispack? Linpack,’ atid 1,a- 
pack.6 A consequence of  this emphasis on dc- 
conqinsitions is that software developers have 
found that most algorithms have hroatl coniliu- 
tatioiial featurcs in cornnion-features than can 
he relegated tn liasic linear-algebra subprograms 
(such 21s Blas), which caii then lie optimized for 
specific ~nach ines . ’~~  

For easy reference, the sidebar “Benefits of thc 
decompusitional approach” summarizes the ad- 
vantages of dccomposition. 

History 
All the widely used decompositions had niadc 

their appcarance by 1900, when Schur intro- 
dnced the ilecomposition that now bears his 
name. However, with the exception ofthc Schur 
decomposition, they were nnt cast in tlic Iaii- 

p a g e  ofmatrices (in spite of the fact that matri- 
ccs h a d  been introduccd in  1858“’). I provide 
some historical background for thc individual 
decoiupositions later, but it is instructivc here to 
consider how the originators proceeded in the 
absence o f  matriccs. 

Gauss, who worked with positivc definite sys- 
tems defined by the nornial equations for least 
squares, described his elimination procedure as 

Benefits of the decompositional 
approach 

A matrix decomposition solves not one but many problems. 
A matrix decomposition, which is generally expensive to 
compute, can be reused to solve new problems involving the 
original matrix. 
The decompositional approach often shows that apparently 
different algorithms are actually computing the same object. 
The decompositional approach facilitates rounding-error 
analysis. 
Many matrix decompositions can be updated, sometimes 
with great savings in computation. 
By focusing on a few decompositions instead of a host of 
specific problems, software developers have been able to 
produce highly effective matrix packages. 

the reduction of a quadratic form q(x) = i’hx 
(I ani simplifying a little here). In terms of the 
Cholesky factorization A = R”R, Ganss wrotc 
q(x) in the form 

(8) = p:(x)+p:(x)+K 

where t:r is the ith row of R.  Thus Gauss re- 
duced &) to a sum of squares oflinear lunctioils 
pk Because R is uppcr triangular, the fiinctinn 
p;(x) depciids only on the cotnpunents s;, . . .x. 
 of.^ Sincc the coefficients in the linear hisins 
p; arc the eleincnts ofR, Gauss, by showing how 
to compute the pi, effectively computed the 
Cholcsky decomposition ofA. 

Other decotnpositions were introduced in 
other ways. For example, Jacobi introduced thc 
LU decomposition as a decomposition of a h -  
linear form into a slim (if products of  linear f~nic- 
tions having an apprnpriate triangularity with 
respect tii the variahlcs. T h e  singular valnc de- 
composition madc its appearance as an orthogo- 
nal change ofvariables that diagonalizcd a bilin- 
ear form. Eventually, all these decompositions 
found expressions as factorizations of matrices.“ 

T h c  process by which decomposition bcc2iine 
so important to matrix computations was slow 
and increincntal. Gauss certainly had the spirit. 
H e  used his decomposition to perform many 
tasks, such as computing variances, and even 
used it to update Icast-sqnares solutions. But 
Gauss never regarded his dccnmposition as a 
niatrix factorization. atid it would lie anachro- 



nistic to consider hiin the father of thc decom- 
positional approach. 

In the 1940s, awareness grew that the usual al- 
gorithms for solving linear systems involved m -  
trix factorization.Lz~l' John Von Neuniann and 
H.H. Goldstine, in their ground-breaking error 
analysis of the solution of linear systems, pointcd 
out the division of labor between computing a 
factorization and solving the sys tc~n: '~  

We may therefbre interpret the elimination 
method as one which bascs the invcrting of an 
arbitrary matrix A on the coinbination of two 
tricks: First it decomposes A into the product of 
two semi-diagonal matrices C, I . . ., and conse- 
qucntly tlic invcrsc of A obtains imnicdiately 
from those of C and B .  Second it f o r m  their iu- 
verses by a simple, explicit, indoctive process. 

In the 1'950s and early 1960s, Householdcr 
systematically explored the rclation between var- 
ious algorithms in matrix terms. His book The 
Theory of Matrices irz Nwnerical Analysis is the 
mathenlatical epitome of the decoinpositional 
approach." 

In 1954, Givens showed how to reduce a syn-  
metric matrix A to tridiagonal form by orthogo- 
nal transformation.'6 The  reduction was merely 
a way station to the computation of the eigcii- 
values ofA, and a t  the time no one thought of it 
as a decomposition. However, it and othcr in- 
termcdiate f o r m  have proven useful in their 
owii right and have become a staple of thc de- 
compositional approach. 

In 1961,Jamcs Wilkinson gave thcfirst back- 
ward rounding-error analysis of the solutions of 
linear systems." Here, the division of labor is 
complete. I Ie  givcs one analysis of the compn- 
tation of the LU decomposition and another of 
the solution of triangular systems and then com- 
bines the two. Wilkinson continncd analyzing 
various algorithms for computing decomposi- 
tions, introducing uniform techniques for dcal- 
ing with the transformations used in the coni- 
pntations. By the time his hook Algebraic 
Bigenvalm Problem" appeared in 1965, the de- 
compositional approach was firmly estahlished. 

The big six 
There are many matrix decompositions, old 

and new, and the list of the latter seeins to grow 
daily. Nonetheless, six decompositions hold the 
center. 'The reason is that they are useful and sta- 
ble-they have important applicatiotis and the 

algorithms that compute them have a satisfac- 
tory backward rounding-error analysis (see 
Equation 7). In this hrief tour, I provide refer- 
ences only for details that cannot he found in the 
many cxcellent texts and monographs on nu- 
merical lincar algcbra,18-26 the IIandbook se- 
ries,' or the LINPACK Users' Guide.' 

The Cholesky decomposition 
Desripion. Givcn a positive definite matrix 

A ,  tlicre is a uniquc upper triangular matrix R 
with positivc diagonal elements such that 

A = KTK. 

In this form, the decomposition is known as the 
Cholcsky decomposition. It is often written in 
the form 

A = LDLT 

wherc D is diagonal and L is onit lower triangxi- 
lar (that is, L is lower triangolar with ones on the 
diagonal). 

Applications. The  Cholesky decomposition is 
used primarily to solve positive definite lincar 
systems, as in Equations 3 and 6. It can also be 
employed to compute quantities usefiil in statis- 
tics, as in Equation 4. 

Algorithms. A Cholcsky decomposition can 
be computed using any of the variants of Gauss- 
ian elimination (see Figure 3 tmod i f i ed ,  of 
course, to take advantage of symmetry. All these 
algorithms take approximately n'/6 floating- 
point additions atid multiplications. The  algo- 
rithm Cholesky proposed corresponds to thc di- 
agram in the lower right of Figurc 3. 

Updating. Given a Cholesky decomposition 
A = R"K, you can calculate the Cholcsky dc- 
composition of A + xxT from R and x in O(n') 
floating-point additions and multiplications. The 
Cholesky decomposition ofA -xi" can he cal- 
culated with the same nnmher of operations. 
The  latter process, which is called downdating is 
numerically less stable than updating. 

The pivoted Cholesky decomposition. If P 
is a permutation matrix and A is positive dcfi- 
nite, then PTAP is said to he a diagonal permu- 
tation of A (among other things, it permutes the 
diagonals of A). Any diagonal permutation ofA 
is positive definite and has a Cholesky factor. 
Such a factorization is called a pivoted Cholesky 
factorization. There are many ways to pivot a 
Cholesb decomposition, hut the most common 
one produces a factor satisfying 
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(9) 

In particular, if A is positive semidefinite, this 
stratem will assure that R has the form 

where R, I is nonsinplar and has tlie same order 
as the rank of A.  Hence, the pivoted Cliolcsky 
decomposition is widely used for rank deternii- 
nation. 

History. The Cholesky decomposition (more 
precisely, an LDL'" decomposition) was the dc- 
composition of Gauss's cliniination algorithm, 
which he sketched in 1809*' and presented in 
fiill in 1810.*8 Benoit publishctl Cholcsky's vari- 
ant  posthuinously in 1924.'' 

The pivoted LU decomposition 

there are permutations P and Q such that 
Description. Givcn a matrix A of order n, 

P ~ A Q  = LU 

.where L is unit lower triangular and Uis upper 
triangnlar. T h e  matsices P atid Q are not unique, 
and tlie process of selecting them is known as 
pivoting. 

Applications. Like the Choleslty decompc~si- 
tion, the L U  deconiposition is used primarily for 
solving linear systems. However, since A is a 
general matrix, this application covers a wide 
range. For example, the L U  decomposition is 
used to compute the steady-state vector ofMarkov 
chains and, with the inverse power method, to 
compute eigenvectors. 

Algorithms. T h e  basic algorithm for c o n -  
puting L U  decompositions is a generalization of 
Gaussian elimination to nonsymmetric matrices. 
When and how this generalization arose is ob- 
scure (see D y e r '  for comments and references). 
Except for special matrices (such as positive def- 
inite and diagonally doininant matrices), the 
method requires some tiorin of pivoting for sta- 
bility The most coninion form is partial pivot- 
ing, in which pivot elements are chosen from the 
column to be eliminated. This algorithm re- 
quires about n'/3 additions and ~ndtiplications. 

Certain contrived examples sliow that Gauss- 
ian elimination with partial pivoting can be un- 
stable. Nonctlieless, it works well for the over- 
wheliniiig majority of real-life proble~ns. '~~' '  
Why is an open question. 

History. In estalilishing the existence of the 
LU decomposition, Jacobi that undcr 
certain conditions a bilinear form Hx, y) can he 
written in the form 

d%Y) = P l ( 4 m  + PZ(x)dY)  + . , , + p,(x)o,LY) 

where p; and q arc linear tiinctions that depend 
only on the last (n - i + 1) components of their 
argnments. T l i c  coefficients of the functions are 
the elements o f L  and U. 

The Q R  decomposition 
Description. Let A be an m x VI matrix with 

m t n. l'liere is an orthogonal matrix Q such that 

QTA = 

where R is upper tsiangnlar with nonnegative di- 
agonal elements (or positive diagonal elements 
if A is of rank n). 

If we partition Q in tlic form 

Q = (QA Q3 

where Q, has n columns, then we can write 

A = QAR. (10) 

This is soinctiines called the QRficto&mun of 
A. 

Applications. When A is of rank n, the 
columns of Q, form an orthonormel basis lor 
the ctilunm space %A) ofA, and the columns of 
QL form an orthonormal basis of the orthogo- 
nal complenmit of %A). In particular, QnQZ is 
the orthogonal projection onto NA).  For this 
reason, tlic QR decomposition is widely uscd in 
applications with a geometric flavor, especially 
least squares. 

Algorithms. lPierc are two distinct classes of 
algorithms for computing the QR decotnposi- 
tion: Gran-Schmidt algorithms and orthogonal 
triangnlarization. 

Gram-Schmidt algorithms proceed stcpwisc 
liy orthogonalizing the kth columns ofA against 
the first (k - 1) columns of Q to get the kth 
column o f  Q. There arc LWO f o r m  of the 
Gram-Schmidt algorithm, thc classical and the 
modified, and they both compute only the 
factorization in Equation I O .  The classical 
Grain-Schmidt is unstable. T h e  modified form 
can produce a matrix Q, whose columns deviate 
from orthogonality. But the deviation is 
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botiiided, and the compntcd factorization can he 
used in certain application-notably comput- 
ing least-sqnares solutions. i f  the orthogonaliza- 
tion step is repeated a t  cach stage-a process 
known as ~.eorthu~onulizutiun-lioth algorithms 
will produce a fiilly orthogonal factorization. 
When n s m, the algorithms without reorthogo- 
nalizatioti require abont mnz additions and mil- 
tiplications. 

Tlie method of orthogonal trianpilarization 
proceeds by preniultiplying A by certain simple 
orthogonal matrices until the elcinents below 
the diagonal are zero. The  product of the or- 
thogonal matrices is Q, a d  R is the upper triaii- 
gular part of the rcduced A. Again, there are ~ w o  
versions. The  first reduces the matrix by IIouse- 
holdcr transformations. 'Tlic method has the ad- 
vantage that it represents the entire matrix Q in 
the same amount of memory that is required to 
hold A, a great savings when n >> p. Tlie second 
method reduces A by plane rotations. It is less 
efficient than the first method, lint is hetter 
suited for matrices with structured patterns of 
nonzero elements. 

Relation to the Cholesky decomposition. 
Froin Equation 10, it follows that 

A ~ A  = R ~ R .  (11) 

In other words, the triangular factor of the QR 
decomposition ofA is the triangular factor of the 
Cholesky decomposition of the cross-product 
matrix A''A. Consequently, many probIeins- 
particularly least-squares prohlcm-can be 
solved using either a QR decoiiipositioii from a 
least-squares niatrix or the Cholesky decompo- 
sition from tlie noriiial cqiration. ?'he QR de- 
composition nsually gives more accurate results, 
whereas the Cholesky decoinposition is often 
faster. 

Updating. Given a QK factorization of A ,  
there are stable, efficient algnrithms for rcconi- 
puting the QR factorization after rows and 
columns have been added to or rcinovcd from 
A. In addition, the QR decomposition of the 
rank-one nuidification A + .tyT can be stably 
updated. 

T h e  pivoted QR decomposition. i f  P is a 
periiiutation matrix, then APis a permutation of 
the columns of A ,  and (PIP)~(AP) is a diagonal 
perniutatioti of  ATA. In view of the relation of 
the QR and the Choleslty decompositions, it is 
not surprising that there is a pivoted QR factor- 
ization whose triangular factor R satisfies Eqna- 
tion 9. In particular, ifA has rank k, then its piv- 

oted QR factorization has the form 

It follows that either Q, or the lint k columns of 
AP form a basis for the colmiin space of A .  
Thus, the pivoted QR decomposition can he 
used to extract a set of linearly independent 
columns from A. 

History. The  QR factorization first appeared 
in a work by Erhard Schmidt 011 integral equa- 
t iow3'  Specifically, Schmidt showed how to or- 
thogonalize a sequence of functions by what is 
now known as the Gram-Schmidt algorithm. 
(Curionsly, Laplace produced the liasic formu- 
l a ~ ~ '  but had no notion of orthogonality.) T h e  
name QR comes from the QR algorithm, named 
by Francis (see the history notes for the Schur 
algorithm, discussed later). Householder intro- 
duced Honscholdcr transformations to matrix 
computations and showed how they could be 
used to triaiibdarizc a general ~natrix.~'  Planc 
rotations were introduced hy Givens,16 who used 
them to reducc a symmetric matrix to tridiago- 
nal form. Bogert and Rurris appear to lie the first 
to use them in orthogonal triangiila~ization.~~. 
Tlie first updating algorithm (adding a row) is 
due to Goli~h,~'  who also introduced the idea of 
pivoting. 

The spectral decomposition 
Description. Let A he a symmetric matrix of 

order n. Therc is a t i  orthogonal matrix Vsnch 
that 

If vi denntes the ith column of V, thenAvi = &vi, 
Thus (Ai, vi) is an cigenpair of A,  and tlie spectral 
decomposition shown in Equation 12 exhibits the 
eigenvalues ofA along with completc orthonor- 
mal system of eigenvectors. 

Applications. Thc spectral decomposition 
finds applications wherever the eigcnsystein o f  
a syinmetric matrixis needed, which is to say in 
virtually a11 technical disciplines. 

Algoritluns. Therc are three classes nf algo- 
rithms to compute the spectral decomposition: 
the QR algorithm, the divide-atid-conquer al- 
gorithm, and Jacobi's algorithm. T h e  first two 
require a prcliinitiary reduction to tridiagonal 
forni by orthogonal similarities. I discuss the QR 
algorithm in the next section 011 tlie Schur de- 
composition. T h e  divide-and-conquer algo- 
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r i t h~ i i ' ~ . ' ~  is comparatively recent and is usnally 
faster than the QR algorithm when both eigeii- 
values and cigenvectors are dcsired; Iiowevcr, it 
is not suitable for probleins in which tlie eigen- 
values vary widely in magnintde. T h c  Jacolii al- 
gorithm is much slower than the other two, but 
for positivc dcfiiiite matriccs it may hc more 
accurate."' All these algorithm require O(n') 
nperations. 

Updating. The spectral decomposition can be 
updated. Unlike the Clioleslcy and QR decoiii- 
positions, thc algorithm does not result i n  a re- 
duction in the order of thc work-it still remains 
O(n'), although the order constant is lower. 

History. T h c  spectral dccomposition dates 
back to a n  1829 paper by Cauchy," who intro- 
duced the eigenvectors as solutions of equations 
of thc hirm Ax = /Lr at id  proved tlic orthogonal- 
ity of eigenvcctnrs belonging to distinct cigen- 
values. In 1846, Jacobi" g-avc his fainous algo- 
rithm for spectral decomposition, which iter- 
atively reduces the matrix in question to diago- 
nal  form by a special type of planc rotations, 
now called Jacnbi rotatioiis. T h e  reduction to 
tridiagonal form hy plane rotations is due to 
GivensL6 and hy Householder traiisforiiiations 
to H~uselioldcr."~ 

The Schur decomposition 

There is a unitary matrix Usuch that 
Desmption. Let A hc a matrix of order n. 

A = 

where T i s  upper triangular and H means con- 
jugxtc transpose. The  diagonal elemcnts of Tare 
the cigcnvalues of A ,  which, by appropriatc 
clioicc nf U, can be made to appcar i n  any order. 
l'his decomposition is callcd a Schzir clecimqiosi- 
tion o f A .  

A real matrix can have complex eigenvalues 
and hence a complex Schur fnrin. By allowing T 
to have rcal2 x 2 blocks on its diagonal that coli- 
tain its coniplcx eigenvalucs, the eiitirc dccom- 
position can be madc rcal. This is sometimes 
callcd a rcal Schzcrfom. 

Applications. An important use of the Sclmr 
foriii is as an intermediate form from which the 
eigenvalues aiid eigenvectors of a matrix can he 
computed. O n  the other hand, the Schur (le- 
composition can nften be nsed in place ofa cnin- 
plcte system of eigenpairs, which, in fact, may not 
exist. A gnod exainplc is the solutioii of Sylvestcr's 
equation aiid its reIati~es.*,'~ 

Algorithms. After a preliminary reduction to 

Hcssctiberg form, which is usually done with 
Householder transforimtions, the Scliur from is 
computed using the QR algorithm."6 Elsewhere 
in this issue, nercsford Parlctt discusses the 
modern form of the algorithm. It is one of the 
most flcxihlc algorithms in tlie rcpertoirc, having 
variants for tlie spectral dccomposition, the sill- 
gular valncs decomposition, a n d  tlie generalized 
eigenvalue problcm. 

History. Schur introduced his dccnmposition 
in 1909?' It was tlic nnly onc of the big six to 
havc been derived in teriiis of matrices. It was 
largely ignorcd until Francis's QK algorithm 
pushed it into the limcliglit. 

The singular value decomposition 
Desmption. Let A bc an ?n x n matrix with 

m t 12. Tlicre are orthogonal matrices U a n d  V 
such that 

where 

C = diag(q,  ..., oJ, 0, t o2 2 ... 2 qz t 0. 

This dccomposition is called thc sinplar uaLe 
decampposition o f A .  If U, consists of thc first n 
columns of U, we can write 

A = U,Z V" (13) 

which is sometirnc.s called thc sin,plur vukiie/ic- 
tnrizntion of A. 

The diagonal clctiients of oare called thcsinp- 
filr u a l w  of A. l l i e  corrcspntiding columns of U 
and Vare called leftandri~yht siizgulurncctors o f A .  

Applications. Most of the applications of tlic 
QR decomposition can also he handlcd by thc 
siugular valuc decomposition. In addition, thc 
singular value decoinpnsition gives a hasis for the 
row space ofA and is more re1ial)le in deterinin- 
iiig rank. It can also be uscd to computc optimal 
low-rank approximations and to computc angles 
between suhspaces. 

Relation to the spectral deconzposition. T h e  
singular value factorization is related to tlie spec- 
tral decomposition in much the same way as tlic 
QR factorizatioo is rclated to the Cholesky de- 
compnsition. Specifically, from Equation 13 it 
follows that 

l'hus the eigenvalues of the cross-product ma- 
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trix A"A arc the squares of the singular vectors 
of A and the eigenvectors of ATA are right sin- 
pilar vectors ofA. 

Algorithms. As with the spectral decomposi- 
tion, there arc thrce classes of algorithms for 
computing the singiilar value decomposition: the 
QR algorithm, a divide-and-conquer algorithm, 
and a Jacobi-likc algorithm. T h e  first two re- 
quire a rcdnction ofA to bidiaganal form. l h e  
divide-and-conquer a l g o r i t h ~ n ~ ~  is oftcn fastcr 
than the QR algorithm, and the Jacobi algorithm 
is the slowest. 

Histoiy. The singular value decomposition was 
introduced indcpendently by Bcltrdnii it? 18735u 
and Jordan in 1874.5' The reduction to bidiago- 
i d  form is dne to Golnb and ICahan," as is the 
variant of the QR algorithm. The first Jacobi-like 
algorithm for computing the singular value de- 
composition was given by I<ogbctIiantz.'3 

hc big six are not the only decompo- 
sitions in use; in fact, there are many 
more. As mentioned earlicr, certain 
intermediate forins-such as tridi- 

agonal and Hessenherg form-have come to be 
regarded as decompositions in their own right. 
Since the singular valuc decomposition is ex- 
pensive to c o m p t e  and not readily updated, 
rank-revealing alternatives haw received coii- 
sidcrahle a t t e n t i o ~ i . ~ ~ ~ ~ ~  There are also general- 
izations of the singular value dccotnposition and 
the Schnr decomposition for pairs of matri- 

NI crystal halls become cloudy when 
they look to thc fiimrc, but it seems safe to say 
that as long as new matrix problems arisc, new 
decompositions will be devised to solve thcni. % 
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