THE QR ALGORITHM

After a brief sketch of the early days of eigenvalue hunting, the author describes the QR
Algorithm and its major virtues. The symmetric case brings with it guaranteed convergence
and an elegant implementation. An account of the impressive discovery of the algorithm
brings the article to a close.

assume you share the view that the rapid

computation of a square matrix’s eigenval-

ues is a valuable tool for engincers and sci-

entists.! The QR Algorithm solves the
cigenvalue problem in a very satisfactory way,
but this success does not mean the QR Algo-
rithm is necessarily the last word on the subject.
Machines change and problems specialize, What
makes the experts in matrix computations happy
is that this algorithm is a genuinely new contri-
bution to the field of numerical analysis and not
just a refinement of ideas given by Newton,
Gauss, Hadamard, or Schur.

Early history of eigenvalue
computations

Matrix theory dramatically increased in im-
portance with the arrival of matrix mechanics
and quantumn theory in the 1920s and 1930s, In
the late 1940s, some people asked themsclves
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how the digital computer might be employed to
solve the matrix eigenvalue problem. The obvi-
ous approach was to use a two-stage method.
First, compute the coefficients of the character-
istic polynomial, and then compure the zeros of
the characteristic polynomial,

There are several ingenious ways to accomplish
the first stage in a number of arithmetic opera-
tions proportional to #* or #*, where # is the order
of the matrix.? 'The second stage was a hot topic of
research during this same time. Except for very
small values of n, 7 < 10, this two-stage approach
is a disaster on a computer with fixed word length.
"I'he reason is that the zeros of a polynomial are,
in general, incredibly sensitive to tiny changes in
the coefficients, whereas a matrix’s cigenvalues are
often, but not always, insensitive to small uncer-
tainties in the %’ entries of the matrix. In other
words, the replacement of those #” entries by the
characteristic polynomials # cocfficients is too
great a condensation of the data.

A radical alternative to the characteristic poly-
nomial is the use of similarity transformations to
obtain a nicer matrix with the same cigenvalues.
The more eniries that are zero, the nicer the ma-
trix. Diagonal matrices are perfect, but a trian-
gualar matrix is good enough for our purposes be-
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cause the eigenvalues lic on the main diagonal.
For deep theoretical reasons, a triangular matrix
is gencrally not attainable in a finite number of
arithmetic operations. Fortunately, one can get
closc to triangular form with only O(»*) arith-
metic operations. More precisely, a matrix is said
to be upper Hessenberg if it is upper triangular with
an extra set of nonzero entries just below the di-
agonal in positions (/+ 1,4),7=1,2,...,2—1,and
these are calied the subdiagonal entries. What is
more, the similarity transformations needed to
obtain a Hessenberg form (it is not unique) can
be chosen so that no computed matrix entey ever
exceeds the norm of the original matrix. Any
proper norm, such as the square root of the sum
of the squares of the entries, will do.

This property of keeping intermediate quan-
tities from becoming much bigger than the orig-
inal data is important for computation with
fixed-length numbers and is called stbility. The
hard task is to find similarity transformations
that both preserve Hessenberg form and elimi-
nate those subdiagonal entries. ‘This is where the
QR Algorithm comes to the rescuc. The sub-
routine DHSFEQR in the Lapack library em-
bodies the latest implementation.’

Let us try to put the improvement based on
QR in perspective. It has reduced the time for
standard eigenvalue computations to the time
required for a few matrix multiplics.

The LU and QR Algorithms

Suppose B = XV, with X invertible. Then the
new matrix € := ¥X is similar to £, because C' =
YX = X"'BX. Although intriguing, this observa-
tion does not appear to be of much vse to eigen-
value hunters. Let us recall two well-known ways
of factoring a matrix;

o Triangular factorization (or Gaussian elimi-
nation), B = LU, where L is lower trianguolar
with 1’s along the main diagonal and Uis up-
per triangular, This factorization is not al-
ways possible. The multipliers in the reduc-
tlon are stored in L, the reduced matrix in U,

o QR (or crthogonal triangular) factorization,
B = QR, where Q is unitary, Q'= Q'(conju—
gate transpose of Q), and R is upper wian-
gular with nonnegative diagonal entries.
This factorization always exists. Indeed, the
columns of Q are the outputs of the Gram-
Schmidt orthonormalizing process when
it is executed in exact arithmetic on the
colummns of B = (&, by, ..., b,)-

FEach factorization leads to an algorithm by iter-
ation.

The LU transform of Bis UL = {,7'BL, and the
QR transform of B is RQ = Q"'BQ = Q'BQ. In
general, the LU or QR transform of B will not
have more zero entrics than B. The rewards of
using this transform come only by repetition.

Theorem 1 (Fundamental Theorem}. If 8's eigen-
values have distinct absolute values and the QR trans-
form is iterated indefinitely starting from B, = 8,

Factor B = QR
Form B = RQ; j=1,2, ...

then, under mild conditions on the eigenvector ma-
trix of B, the sequence {B} converges to the upper
triangutar form {commonly called the Schur form) of
B with eigenvalues in monotone decreasing order of
absolute value down the diagonal.

This result is not obvious; see James Hardy
Wilkinson’s article for proofs.* The procedure that
generates {Bj} is called the basic QR Algorithm,

A similar theorem holds for the basic LU al-
gorithm, provided all the transforms exist, It
takes several clever observations to turn this sim-
ple theory into the highly successful QR Algo-
rithm of today.

Invariance of the Hessenberg form

If B is an upper Hessenberg matrix (entry {7, 7)
vanishes if > 7 + 1), then so are all its QR iterates
and LU iterates. This useful result is casy to see
because it depends only on the pattern of zeros
in the matrices and not on the values of the
nonzero entries, If Bj is Hessenberg, then so is
Q;, because le is triangular. Consequently, R(Q;
= (Bj,;) 1s also Hessenberg. The cost of comput-
ing the QR factorization falls from O@*) to
O(n?) when the matrix is Hessenberg and # x
n. A similar result holds for LU iterates.

Fortunately, any matrix can be reduced by siti-
{aritiés to Hessenberg form in O(°) arithmetic op-
erations in a stable way, and from this point on we
will asswne this reduction has been performed as
an initial phase. The mild conditions mentioned in
the Fundamental Theorem arc satisfied by upper
Hessenberg matrices with nonzero subdiagonals.S

Accelerating convergence

The Hessenberg scquences {5} and {C}} pro-
duced by the basic algorithms converge linearly,
and that is too slow for impatient customers. We
can improve the situarton by making a subtle
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change in our goal. Instead of locking at the ma-
trix sequence (B}, we can focus on the (n, n—1)
entry of each matrix, the last subdiagonal entry.
When the (n, 7 — 1) entry is negligible, the (z, n)
entry is an cigenvalue——to within working pre-
cision—and column z does not influence the re-
maining eigenvalues. Consequently, the variable
# can be reduced by 1, and computation contin-
ues on the smaller matrix. We say that the nth
eigenvalue has been deflated. The top of the ma-
trix need not be close to triangular form. Thus,
convergence refers to the scalar sequence of (n, #
— 1) entries. "The rate of convergence of this se-
quence can be vastly improved, from lincar to
quadratic, by using the shifted QR Algorithm:

Let By =B.Fori=1,2, ... until convergence,

Select a shifts;
Factor B;— s = Q:R;
Form BI+[ = R,‘Q,‘ + .fiI = Q‘,‘*BT'Q;.

In principle, each shift strategy has a different
convergence theory. Tt is rare that more than 2»
QR iterations are needed to compute all the
eigenvalues of B.

The double shift implementation for real
matrices

There is a clever variation on the shifted QR
Algorithm that I should mention. In many appli-
cations, the initial matrix is real, but some of the
cigenvalues are complex. The shifted algorithm
must then be implemented in complex arithmetc
to achieve quadratic convergence. The man who
first presented the QR Algorithm, J.G.F Francis,”
showed how to keep all arithmetic in the real ficld
and still retain quadratic convergence.

Let us sce how it is done. Without loss, take
7 =1. Consider two successive steps:

Bl —.!'1[ :QlRl
Bz =R|Q| +.§'11
By—s] =R,
B3 =R3Q2 +j‘217.

It turns out, after some manipulation, that

(Q QDR Ry) = (B~ 511) (By = 5,0)
and

By = (Q1Q2) By(Q Q).

Suppose s, and s; are either both real or a com-
plex conjugate pair. Then (B — s )(By — 5:D) is
real. By the uniqueness of the QR factorization,

1@, is the Q factor of (B — 5 1{B; —5:1) and so
is real orthogonal, not just unitary, Hence, 85 is
a product of three real matrices and thus real.

The next challenge is to compute By from B,
and s (complex) without constructing B;, The so-
lution is far from obvious and brings us to the
concept of bulge chasing, a significant component
of the QR success stoty.

Bulge chasing
The theoretical justification comes from the
Implicit (Q or Uniquencss of Reduction property.

Theorem 2 (Uniqueness), If Q is orthogonal, Bis real,
and H= Q'BQis a Hessenberg matrix in which each
subdiagonal entry h;,; ;> 0, then H and Q are deter-
mined uniquely by Band ¢, the first column of Q.

Now return to the equations above and sup-
pose sy =5, 5 =% # 5. If By is Hessenberg, then so
are all the B/s. Supposc that By has positive sub-
diagonal entries. By Theorem 2, both B and
10z are determined by column 1 of Q,Qs,
which we'll call ¢. Because RyR) is upper trian-
gular, g is a multiple of the first column of

B2-2(ResHB, + I5I°1,

Because B is Hessenberg, the vector g is zero
cxcept in its top three entries.

The following three-stage algorithm computes
B;. It uses orthogonal matrices Hyj=1,2, .. n—
1, such that H; is the identity except for a 3 x 3
submiatrix in rows and columnsy, j+ 1,7+ 2. H,_;
differs from [ only in its trailing 2 X 2 matrix,

1. Compute the first three entries of .

2. Compute a matrix H, such that Hig is a
multiple of e, the first column of . Form
€y = "B H;. It turns out that () is upper
Hessenberg except for nonzeros in positions
(3, 1}, (4, 1), and (4, 2). This little submatrix
is called the budge.

.Compute a sequence of matrices F, ...,
H, yand G = /G Hyy j=2,...,n— 1 such
that Cﬁ—l = Htukl HZlclHZ anl isa
Hessenberg matrix with positive subdiago-
nal entries. More on H; below.

(%]

We claim that C,_; = B;. Recall that column 1
of H;is e forj>1.Thus, H|H; ... H,..e; = Hye,
= gilqll = (Q:Qpe;. Now €, = (H,

H, )'By(H, ... H,_)), and By = (1 Q) B1(Q: Q)
The Implicit Q Theorem cnsures that By and
C,_1 are the same. Morcover, if s is not an cigen-

40

COMPUTING IN SCIENCE & ENGINEERING



value, then €, | must have positive subdiagonal
entrics in exact arithmetic,

Step 3 involves » — 2 minor steps, and at each
one only three rows and columns of the array are
altered. The code is elegant, and the cost of form-
ing C,_, is about 5% operations. The transforma-
tion C; — H,'C H, pushes the bulge into posi-
tions (4, 2), (5, 2), and (5, 3), while creating zeros
in positions (3, 1} and (4, 1). Subscquently, each
operation with an A matrix pushes the bulge one
row lower until it falls off the bottom of the ma-
trix and the Iessenberg forn is restored. The
transformation By — B; is called a double step.

Itis now necessary to inspect entry (n— 1, n—2)
as well as (, 7 — 1) to sce whether a deflation is
warranted. For complex conjugate pairs, the (n— L,
#—2) entry, not (i, #— 1), becomes negligible.

"The current shift strategies for QR do not guar-
antee convergence in all cases. Indeed, examples
are known where the sequence {B} can cycle. To
guard against such misfortunes, an ad hoc excep-
tional shift is forced from time to titme. A more
complicated choice of shifts might produce a nicer
theory, but practical performance is excellent.?

The symmetric case

The QR transform preserves symmetry tor real
matrices and preserves the Ilermitian property
for complex matrices: B — Q"BQ. Tt also preserves
Hessenberg form. Because a symmetric Iessen-
berg mamix is widiagonal {that means entry @ 5)
vanishes if[7 - j1 > 1), the QR Algorithm pre-
serves symmetric tridiagonal form and the cost of
a transform plunges from O(x?) to O(x) apera-
tions. In fact, the standard estimate for the cost of
computing all the eigenvalues of an »# x # sym-
metric tridiagonal matrix is 107° arithmetic op-
erations. Recall that all the eigenvalues are real.

One reason this case is worthy of a section to
itsclf is its convergence theory. Theorem 1 tells
us that the basic algorichin (all shifts are wero)
pushes the large cigenvalues to the top and the
small ones to the bottom. A shift strategy
Wilkinson suggested in the 1960s #fways makes
the (n, 7 — 1) entry converge to zero. Moreover
canvergence is rapid. Everyone believes the rate
is cubic (very fast), although our proofs only
guarantee a quadratic rate (such as Newton’s it-
eration for polynomial zeros).”

The implementation for symmetric tridiagonals
is particularly elegant, and we devote a few lines to
evoke the pracedure. The bulge-chasing method
described earlier simplifics, because the bulge con-
sists of a singlc entry on cach side of the diagonal.

There is one more twist to the implementa-
tion that is worth mentioning. The code can be
rearranged so that no square roots need to be
computed.”

The discovery of the algorithms

There is no obvious benefit in factoring a
square matrix 8 into B = QR and then forming a
new matrix RQ = €'BQ. Indeed, some structure
in B might be lostin Q'BO.

So how did someone come up with the idea of
iterating this transformation? Major credit is due
to the Swiss mathematician and computer scientist
H. Rutishauser. His doctoral thesis was not con-
cerned with eigenvalues but rather with a more
general algorithm he invented, which he called the
Quotient-Difference (QD) Algorithm.!* This
procedure can be used to find zeros of polynomi-
als or poles of rational functions or to manipulate
continued fractions. The algorithin transforms an
array of mumbers, which Rutishauser writes as

Z= (ql’ 13425 €25 voes Fnts s qn)

N
into another one, Z, of the same form.
Let us define two bidiagonal matrices associ-
ated with Z. For simplicity, take z = 5; then

1 q 1
e 1 q; 1
I= ey 1 U= g 1
ey 1 g4 1
eq 1 qs

Rutishauser observed that the rhombus rules he
discovered for the QD transformation, namely

€ ¥ Girt = Givt T i
€ = 4in%i
admit the following remarkable interpretation;
LU=UL,

Note that UL and LU are tridiagonal matrices
with all superdiagonal entries equal to one. In
other words, the QI Algorithim is equivalent to
the following procedure on tridiagonals 7 with
unit superdiagonals:

Factor 7=LUj,

Form F=UL.
Thus was the LU transform born. It did not
take Rutishauser a moment to sce that the idea
of reversing factors could be applied to a dense
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matrix or a banded matrix. Although the QD Al-
gorithm appeared in 1953 or 1954, Rutishauser
did not publish his LU algorithin until 1958.'%!!
He called it LR, but I use LU to avoid confusion
with QR.

Unfortunately, the LU transform is not always
stable, so the hunt was begun for a stable variant,
This variant was found by a young computer sci-
entist J.G.F Francis, greatly assisted by his men-
tor Christopher Strachey, the first professor of
computation at Oxford University. Independent
of Rutishauscr and Francis, Vera Kublanovskaya
in the USSR presented the basic QR Algorithm
in 1961.'2 Towever, Francis not only gave us the
basic QR Algorithm, but at the same time ex-
ploited the invariance of the Hessenberg form
and gave the details of a double step 1o avoid the
usc of complex arithmetic,

n 19535, the calculation of the cigenvalues

and eigenvectors of a real matrix that was

not symmetric was considered a formida-

ble task for which there was no reliable
method. By 1965, the task was routine, thanks
to the QR Algorithm. However, there is more
to be done, because of accuracy issucs. The
eigenvalues delivered by QR have errors that are
tiny, like the errors in rounding a number to 15
decimals, with respecet to the size of the munbers
in the original matrix. Thart is good news for the
large eigenvalues but disappointing for any that
are tiny. In many applications, the tiny cigenval-
nues are important hecause they are the deminant
eigenvalues of the inverse,

Tor a long time, this limitation on accuracy
was regarded as an intrinsic limitation caused by
the limited number of digits for cach number.
Now we know that there are important cascs
where the data in the problem do define all the
eigenvalues to high relative accuracy, and cur-
rent work seeks algorithms that can deliver an-
swers to that accuracy.

The QR Algorithm was aimed at matrices
with at most a few hundred rows and columns.
Its success has raised hopes. Now customers
want to find a fcw eigenpairs of matrices with
thousands, even hundreds of thousands, of rows.
Most of the entries of these matrices are zero,

and they are called sparse. The QR Algorithm
is not wel suited for such cases. It destroys spar-
sity and has difficulty finding selected eigenpairs,
Sinee 1970, research has turned toward these
challenging cases.!” &
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