
THE QRALGORITHM 
After a brief sketch of the early days of eigenvalue hunting, the author describes the QR 
Algorithm and its major virtues. The symmetric case brings with it guaranteed convergence 
and an elegant implementation. An account of the impressive discovery of the algorithm 
brings the article to a close. 

asstime you share the view that the rapid 
coinputatioii of a square matrix's eigenval- 
lies is a valuable tool for enginccrs and sci- 
entists.' T h e  QR Algorithm solves the 

eigenvalue prohlem in a very satisfactory way, 
bnt this success does not mean the QR Algo- 
rithm is necessarily the last word on the subject. 
Machines change and problems specialize. What 
malces the experts in matrix computations happy 
is that this algorithm is a genuinely new contri- 
bntion tn the field of nuiiicrical analysis and not 
jnst a refinement of ideas given by Newton, 
Gauss, I-ladamard, or Schur. 

Early history of eigenvalue 
computations 

Matrix theory dramatically increased in irn- 
portaiicc with thc arrival o i  matrix niechanics 
and quantum theory in thc 1920s and 1930s. In 
the late 1940s, some peoplc asked themselves 
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how the digital computer might be employed to 
solve the matrix eigenvalue problem. T h e  ohvi- 
oils approach was to use a two-stage method. 
First, compute the coefficients ofthe character- 
istic polynornial, and then compute the zeros of 
the characteristic polynomial. 

There are several ingenious ways to accomplish 
the first stage in a number of arithmetic opera- 
tions proportional to n' or n4, where n is the order 
of the inatrix? The  second stage was a hot topic of 
research during this same time. Except for very 
small values ofn, 72 5 10, this two-stage approach 
is a disaster on a computer with k e d  word length. 
'l'he reason is that the zeros of a polynomial are, 
in general, iiicredihly sensitive to tiny changes in 
the coeflicients, whereas a matrix5 eigenvalues we 
often, hnt not always, insensitive to small uicer- 
tainties in the 12' entries of the matrix. In other 
words, the replacement of those n2 entries by the 
characteristic polynornialk n coefficients is too 
great a condensation of the data. 

A radical alteriiative to the characteristic poly- 
ntimial is the use of similarity transformations to 
ohtaiti a nicer matrix with the same eigenvalues. 
The  more ciiuies that arc zero, the nicer the ma- 
trix. Diagonal matrices are pcrfcct, but a triaii- 
gular inatrix is good enough for our purposes bc- 
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causc thc cigcnvalucs lic on the main diagonal. 
For deep theoretical reasons, a tsiangular matrix 
is gciicrally not attainable in a finite numher of 
arithmetic operations. Fortunatcly, onc can get 
close to triangular form with only O(n') arith- 
metic operations. More precisely, a matrix is said 
to he u p p a  Hcssenberg if it is upper triangular with 
an extra set of nonzero entries just below thc di- 
agonal in positions (i+ 1, $1, i =  I ,  2, . . ., n - 1, and 
these are called the subdiugonnl entries. What is 
more, the similarity transformations iicedcd to 
obtain a Hesscnbcrg form (it is not unique) cau 
he choscn so that no computed matrix cntsy cvcr 
exceeds thc norm of the original matrix. Any 
proper norm, such as the square root of the sum 
of thc squares of the entries, will do. 

This property of kceping intermediate quan- 
tities from becoming much bigger than the orig- 
inal data is important for computation with 
fixed-length numbers and is called stubiliv. T h e  
hard task is to find similarity transformations 
that both preserve Hessenberg forin and elimi- 
nate those subdiagonal entries. 'rhis is where the 
Q R  Algorithm conies to thc SCSCIIC. T h e  suh- 
routine DHSEQR in the Lapack library ein- 
bodies the latest implementation.' 

Let 11s try to put the improvement hased oii 

QR in perspective. It has reduced the time for 
standard eigenvalue computations to the time 
requircd for a few matrix multiplics. 

The LU and QR Algorithms 
Suppose B = XY, with X invertible. Then  the 

new matrix C := I x i s  similar to R, because C = 

YX= X-IBX Although intriguing, this observa- 
tion does not appear to bc of much use to eigen- 
value hunters. Let us recall two well-known ways 
of factoring a matrix: 

Triangular factorization (or Gaussian elim- 
nation), B = LU, where L is lower triangular 
with 1's along thc main diagonal and Uis up- 
per triangular. This factorization is not al- 
ways possible. l h e  multipliers in the reduc- 
tion are stored in L, the reduced matsix io U. 
QR (or orthogonal triangular) factorization, 
B = QR, where Q is unitary, Q-' = Q'(conju- 
gate transpose of Q), and R is upper trian- 
gular with iionnegative diagonal entries. 
This factorization always exists. Indeed, the 
columns of Q are the outputs of the G r a n -  
Schmidt orthonormalizing process when 
i t  is executed in exact arithmetic on the 
columns of B = (b , ,  bZ, .. ., bJ. 

Each factorization leads to an algorithm by iter- 
ation. 

The  L U  transfonn of B is UL = IT'BL, and the 
QR transform of B is KQ = Q-'BQ = Q*BQ. In 
general, the LU or QR transform of B will not 
have more zero entrics than B. The  rewards of 
using this transform come only by repetition. 

Theorem 1 (Fundamental Theorem). If B's eigen- 
values have distinct absolute values and the QR trans- 
form is iterated indefinitely startingfrom B, = 6, 

Factor Bl = $Rj, 
Form El+, = RiQ, j = 1, 2, 

then, under mild conditions on the eigenvector ma- 
trix of B, the sequence ( B j }  converges to the upper 
triangular form (commonly called the Schur form) of 
B with eigenvalues in monotone decreasing order of 
absolute value down the diagonal. 

This result is not obvious; see James Hardy 
Wilkinson's article for proofs! The procedure that 
generates {Ej] is called the baric QR Algorithm. 

A similar theorem holds for the basic L U  al- 
gorithm, provided all the traiisforms exist. It 
talcs several clever observations to NII~ this sin- 
ple theory into thc highly successful QR Algo- 
rithm of today 

Invariance of the Hessenberg form 
If B is an upper Hcssenberg matrix (entry (i,j) 

vanishes if i > j  + l), then so are a11 its QR iterates 
and L U  iterates. This useful result is easy to see 
because it depends only on the pattern of zeros 
in the matrices and not on the values of the 
nonzero entries. If B; is IIessenberg, then so is 
Q;, hecause R7-I is triangular. Consequcntly, R/Qj 
= (Bj+,) is also I-Iessenherg. The  cost of compot- 
ing the QR factorization falls from 0(n3)  to 
O(n*) when the matrix is Hcssenberg and n x 
n.'Asimilar result holds for L U  iterates. 

Fortunately, any matrix caii be reduced by siini- 
larities to Hcssenberg form in O(n3) arithmetic op- 
erations in a stable way, aud from this point on we 
will assume this reduction has been performed as 
an initial phase. The mild conditions mentioned in 
the Fundamental Theorem arc satisfied hy nppcr 
Hessenherg matrices with nonzero snhdiagonals." 

Accelerating convergence 
?'he Hessenberg scquences [Ej] and [C,] pro- 

duced by the basic algorithms converge linearly, 
and that is too slow for impatient customers. Wc 
can improve thc situation by making a subtle 
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change in our goal. Instead of looking at  the ilia- 
trix sequence [!;], we can focus on the (n, n - l) 
entry of each matrix, the last snhdiagonal entry. 
When the (n, n ~ 1) entry is iiegligihlc, the (n, n) 
cnuy is an eigenvalue-to within working pre- 
cision-and coliimn 11 does not influence thc re- 
maining cigenvalucs. Consequently, the variable 
n can be reduced hy 1, and conipotation contiii- 
ues on the smaller matrix. We say that tlie nth 
eigenvalue has been deflated. T h e  top of the ma- 
trix nccd not he close to triangular form. Th i s ,  
coiivergcnce refers to the scalar sequencc of (n, n 
- 1) entries. The rate of convergence of this se- 
quence can be vastly improved, frotn linear to 
quadratic, by using tlie shifted QR Algorithm: 
Let B ,  = B. For i = 1 , 2 ,  . . . until convergence, 

Select a shift si 
Factor Hi - siI = QiRi 
Form Bi+l = R,Qj t si1 = Q:BiQi. 

In principle, each shift strategy has a different 
convergence theory. It is rare that more than 2n 
QR iterations are needed to compute all the 
eigenvalues of B. 

The double shift implementation for real 
matrices 

There is a clever variation on the shifted QR 
Algorithm that I should mention. In many appli- 
cations, the initial matrix is real, hut some ofthe 
cigenvalucs are complex. T h e  shifted algorithm 
inust then bc implemented in complex arithmctic 
to achieve quadratic convergence. T h e  man who 
first prcscnted the QR Algorithm, J.G.F Francis: 
showed how to keep all arithmetic in the real field 
and still retain quadratic convergeoce. 

Let us see how it is done. Without loss, take 
j = 1. Consider WO successive steps: 

B I  -s l I  = QlR, 
B2 = RlQI +sl I  

B2 -qI = Q2R2 
B, RlQ2 t sJ. 

It hlrns out, after some manipulation, that 

(QiQ2)(R2XJ =Ul i  -4 (BI -.@ 
and 

B, = ( Q ~ Q D ~ ( Q ~ Q ~ ) .  

Supposc I, and .s2 arc either hoth real or a com- 
plex conjugate pair. l'hen (Bl - slr)(B, - s21) is 
real. By the uniqncncss of the QR factorization, 

QIQ2 is the Q factor of (Bl -s,l)(n, -qI) and so 
is real orthogonal, not just unitary, Hence, 11, is 
a product of three real matrices and thus real. 

T h e  next challengc is to computc B, from B ,  
atid s (complex) without constructing 11,. T h e  so- 
lution is far from obvious and brings us to the 
concept of bzdp chming, a significant component 
of tlic QR success story. 

Bulge chasing 
T h e  theoretical jnstificatioii comes from the 

Implicit Q or Uniquencss of Reduction property. 

Theorem 2 (Uniqueness). If Q is orthogonal, B is real, 
and H =  Q*BQ is a Hessenberg matrix in which each 
subdiagonal entry hi+,,;> 0, then Hand Q are deter- 
mined uniquely by Band ql,  the first column of Q. 

Now rcturn to thc equations above and sup- 
pose si = J, q = S # 5. If B ,  is Hesscnberg, thcii so 
are all the B:s. Suppose that B, has positive snb- 
diagonal entries. By Theorem 2, both R, and 
Q1Q2 are detcrmined by column 1 of QIQZ, 
which wc'll call q. Bccanse R2Rl is upper trisii- 
puler, q is a tnultiple of tlic first column of 

B12 - 2 (Re s)Bl t I s  I 21. 

Because 8, is Hessenhcrg, the vector q is zcro 
except in its top three entries. 

The  following three-stage algorithm coiiiputes 
B,. It uses orthogonal matrices Hi,j =I ,  2, , , ., n ~ 

1, such that HI is the identity except for a 3 x 3 
submatrix in rows and columnsj,j t 1 , j  t 2. H,+, 
differs from I only in its trailing 2 x 2 matrix. 

1. Compute the first three entries of q. 
2. Compute a matrix HI such that Hifq is a 

multiple o f  el ,  the first coluinn of I .  Form 
C, = IIltHIHl. It turns oiit that Cl is upper 
Hessenbcrg except for iioiizeros in positions 
( 3 ,  I), (4, I), and (4,2). This little submatrix 
is called the bnlge. 

3 .  Compute a sequence of matrices lf2,  ..., 
1-1,-1 and c3 = Ifj5.1Hj,j = 2,  . . , , n - 1 such 
that C+, = H,,-, ... H2'C1H2 ... H7c-l is a 
Hesscnberg matrix with positive subdiago- 
iial entries. More oii Hj below. 

We claim that C,-, = B,. Recall that column 1 
ofHiisel forj>l.Thus,HIH2 ... Ifn.lel =Hlel 
= q//IIqlI = (QIQ2)el. Now C,,_, = (HI ... 
K.IYBI(~~II ... Hn-J, ancl& = (QIQzYBI(QIQ~). 
The  Implicit Q Thcoretn cnsiires that B, and 
Cn-l are tlie same. Moreover, ifs is not an cigen- 
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value, then C72-l innst have positive sutidiagonal 
entries in exact arithmetic. 

Step 3 involves n - 2 minor steps, and at  each 
oiic only three rows and columns nf the array are 
altered. The  code is elegant, and the cost of form- 
ing C7,-l is about 5n2 operations. The  transforma- 
tion C2 + H2%,H2 pushes the bulge into posi- 
tions (4,2), (5,2),  and ( 5 ,  3), while creating zeros 
in positions (3, 1) and (4, 1). Subscquently, each 
operation with an Hniatrix pushes thc bulge one 
row lower until it falls off the hottrim (if the 1118- 

trix and the Ilcsscnbcrg form is restored. ?'he 
transforniation B, + B, is callcd a doublc step. 

It is now necessary to inspect entry (n - 1 , 7 z  - 2) 
as wcll as (n, n - 1) to sec whcther a deflation is 
warranted. For complex conjugate pairs, the (n - I ,  
n - 2) entry, not (n, n - I), becomes negligihlc. 

T h e  current shift strategies for QR do not guar- 
antee convergence in all cases. Indeed, exatnples 
are known where the sequence (4 can ~yclc. To 
guard aginst  such misfortunes, an ad hoc excep- 
tional shift is h~rccd from time to time. A more 
complicated choice of shifts might produce a nicer 
thcoly, but practical pcrforiuance is excellent.' 

The symmetric case 

,. 1 here is one inorc twist to the iniplementa- 
tion that is worth mentioning. T h c  code can he 
rcarranged s o  that no square roots need to bc 
computed.' 

The discovery of the algorithms 
There is no ohvious benefit in factoring a 

square matrix R into R = QR and then forming a 
new matrix RQ = QBQ.  Indeed, some structure 
in B might he lost in Q*BQ. 

So how did sonieone come up with the idea of 
iterating this transforination? iMajor credit is due 
to the Swiss niathctnatician and computer scientist 
H. l<utishauser. His doctoral thesis was not con- 
cerned with eigenvalues hut rather with a more 
gcucral algorithm hc invented, which he called the 
Quotient-Difference (UD) Algorithm.'' This 
procedure can he used to find zeros of polynoini- 
als or poles of rational fiinctions or to inanipnlate 
continued fractions. The  algoritlin transforms an 
array of nnrnbers, which Rutishauser writes as 

z= (41, Cl ,BZ,  e22 ..., 6 - 1 ,  C,-l, $9 

Lct us dcfinc two bidiaeonal matrices associ- 
into another one, 2, of the same form. 

Y 

Thc QR wansforin preserves symmetry for real ated with Z. For simplicity, take n = 5 ;  then 
matrices and preserves the Ilcrmitian property 
for complex matrices: B + Q'BQ. It also preserves 
Hessenberg form. Hecause a symmetric Hessen- 
berg niatrix is tridiagonal (that means entry (i,]] 
vanishes if I i - j  I > l), thc QK Algorithm prc- 
serves synuneuic tridiagoiial form and the cost of 
a transform plungcs from o(n2) to  O(n) opera- 
tions. In fact, the standard estimate for the cost of 
computing all the eigcnvalues of an n, x n sym- 
metric tridiagonal matrix is 10nz arithmetic op- 
erations. Recall that all the eigenvalues arc rcal. 

One reason this case is worthy nf a section to 
itsclf is its convergence theory. Theorem I tells 
ns that the basic algorithm (all shifts are zero) 
pushes thc largc cigcnvalucs to  the top and the 
small ones to  the bottom. A shift strategy 
Wilkinson suggested in the 1960s a6uuy.s makes 
the (n, n - 1) entry converge to zero. Moreover 
convergence is rapid. Everyone believes the rate 
is cubic (very fast), although onr proofs only 
guarantee a quadratic rate (such as Newton's it- 
eration for polyliomial zeros).' 

The iinp~enicntation for symmiictric tridiagonak 
is particularly elegant, and we devote a few lines to 
evoke the proccdnrc. The  bulgc-chasing method 
described earlier simplifies, because the bulge coil- 
sists of a single entry on each side of the diagonal. 

Rutishauser ohserved that the rhoinlius rules he 
discovered for the QD transformation, namely 

4 +ti+, = Yi+ l  + ei3.1 
^ ^  e .  . - tq' -q i+ le i  , 

admit the following remarkable interpretation: 

i i i = U L .  
Note that UL, and I,Uare tridiagonal matrices 

with all superdiagonal entries equal to one. In  
other words, the QII Algorithm is equivalent to  
the following procedure on tridiagnnals ,j' with 
unit supcrdiagonals: 

Factor f = L U, 
Form .i = UL . 

'l'hus was the LU transform born. It did not 
take Rutishauser a tnoinent to sec that the idea 
of reversing factors could he applied to a dense 
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matrix or a banded tnatrix. Although the UD N -  
gorithni appearcd in 1953 or 1954, Rutishauser 
did not publish his LU algorithm until 1958.'"." 
H e  callcd it LR, hut I usc LU to avoid coiifusion 
with QR. 

Utifortunatcly, the LU transform is not always 
stable, so thc hunt was begun for a stable variant. 
This variant was found hy a young computcr sci- 
cntist J.GF Fra~icis,~ greatly assistcd hy his men- 
tor Christophcr Strachey, the first professor of 
compntatioii at Oxford Univcrsity Independcnt 
of Rutishauscr and Francis, Vcra IGiblanovskaya 
in the USSR presciited the basic QRAlgorithm 
in 1961.12 However, Francis not only gave us thc 
hasic QR Algorithm, hut at the saiiic timc ex- 
ploited the invariance of the I-Icssenberg form 
and gave the details of a double step to avoid the 
usc of complex arithmctic. 

t i  1955, the calculation of the eigmvalucs 
and eigenvectors of a rcal matrix that was 
lint symmetric was cnnsidcrcd a formida- 
ble task for which there was 110 reliable 

method. By 1965, the task was routine, thanks 
to  the Q R  Algorithm. However, thcre is more 
to  be done, hecausc of accuracy issues. T h e  
eigcnvalues delivered by QR have errors that arc 
tiny, like the errors in  rouiidiiig a iiuriiber to 15 
decimals, with respect to the size of thc numbers 
in the original matrix. That  is good news for the 
largc eigeiivalues Init disappointing for any that 
are tiny. In many applications, thc tiny cigenval- 
ues are important bccause they are the dntnitiatit 
eigenvalucs of the inverse. 

For a long timc, this limitation 011 accuracy 
was regarded as a n  iiitritisic limitation caused by 
the lirnitcd tiutiiber of digits for cach nuinher. 
Now we know that thcrc are important cases 
whcre the data in the prohlciii do define all thc 
eigenvalues to high relative accuracy, and cur- 
rent work seeks algorithms that can deliver an- 
swcrs to  that accuracy. 

T h e  QR Algorithm was aimed at matrices 
with at innst a fcw hnndred rows and coliunns. 
Its success has raiscd hopes. Now c ~ s t o i n c r ~  
want to fitid a fcw eigenpairs of tnatriccs with 
thousands, even liundrcds of thousands, of rows. 
Most of the entries of thcsc matrices are zero, 

and they are callcd sparse. T h e  QR Algorithm 
is not wcll suited for such cases. It destroys spar- 
sity and has difficulty finding selected eigenpairs. 
Since 1970, rcsearch has turned toward these 
c Idenging  cases." I: 
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