Partial Test 2006

Task 1: PID-control, the Skogestad method

a) Find an expression for the transfer function, $h_{c}(s)$, for the controller as a function of the ratio $\frac{y}{r}$ and the transfer function for the process, $h_{p}(s)$.
ANS:

$$
\begin{aligned}
& \frac{y}{r}=\frac{h_{p} h_{c}}{1+h_{p} h_{c}} \\
& \frac{y}{r}\left(1+h_{p} h_{c}\right)=h_{p} h_{c} \\
& \frac{y}{r}=\left(1-\frac{y}{r}\right) h_{p} h_{c} \\
& h_{c}=\frac{\frac{y}{r}}{\left(1-\frac{y}{r}\right) h_{p}} \\
& h_{c}(s)=\frac{1}{h_{p}} \frac{\frac{y}{r}}{\left(1-\frac{y}{r}\right)}
\end{aligned}
$$

When $\frac{y}{r}=\frac{1-\tau s}{1+T_{c} s}, \quad h_{c}(s)=\frac{1}{h_{p}} \frac{\frac{1-\tau s}{1+T_{c} s}}{\left(1-\frac{1-\tau s}{1+T_{c} s}\right)}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}$
b) Assume that the process, ${ }^{h_{p}(s)}$, is modeled by a 2 nd order transfer function given by $h_{p}(s)=k \frac{1-\tau s}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}$ where $T_{1}>T_{2}>0$. Find the controller ${ }_{c}(s)$ by the Skogestad method. ANS:

Skogestad method:

$$
h_{c}=K_{p} \frac{1+T_{i} s}{T_{i} s}\left(1+T_{d} s\right)
$$

$h_{c}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k} \frac{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}{1-\tau s} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k\left(T_{c}+\tau\right)} \frac{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}{s}=\frac{T_{1}}{k\left(T_{c}+\tau\right)} \frac{1+T_{1} s}{T_{1} s}\left(1+T_{2} s\right)$
$h_{c}=K_{p} \frac{1+T_{i} s}{T_{i} s}\left(1+T_{d} s\right)$, where $K_{p}=\frac{T_{1}}{k\left(T_{c}+\tau\right)}, T_{i}=T_{1}, \quad T_{d}=T_{2}$
This is PID controller
c) Assume that the process, ${ }^{h_{p}(s)}$, is modeled by a 1st order transfer function given

$$
h_{p}(s)=k \frac{1-\tau s}{1+T_{1} s} \text {. Find the controller }{ }^{h_{c}(s)} \text { by the Skogestad method. }
$$

ANS:

$h_{c}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) S}=\frac{1}{k} \frac{1+T_{1} S}{1-\tau s} \frac{1-\tau s}{\left(T_{c}+\tau\right) S}=\frac{1}{k\left(T_{c}+\tau\right)} \frac{1+T_{1} S}{s}=\frac{T_{1}}{k\left(T_{c}+\tau\right)} \frac{1+T_{1} S}{T_{1} S}$
$h_{c}=K_{p} \frac{1+T_{i} s}{T_{i} s}$, where $K_{p}=\frac{T_{1}}{k\left(T_{c}+\tau\right)}, T_{i}=T_{1}$,
This is PI controller
d) Assume that the process, ${ }^{h_{p}(s)}$, is modeled by a 2 nd order oscillating transfer function given by ${ }^{h_{p}(s)=k \frac{1-\tau s}{\tau_{0}^{2} s^{2}+2 \tau_{0} \xi s+1}}$. Find the controller ${ }^{h_{c}(s)}$ by the

Skogestad method.

ANS:

$h_{c}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k} \frac{\tau_{0}^{2} s^{2}+2 \tau_{0} \xi s+1}{1-\tau s} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k\left(T_{c}+\tau\right)} \frac{\tau_{0}^{2} s^{2}+2 \tau_{0} \xi s+1}{s}$
PID controller on idea form:

$$
h_{c}=K_{p}\left(1+\frac{1}{T_{i} s}+T_{d} s\right),
$$

$h_{c}=\frac{1}{k\left(T_{c}+\tau\right)} \frac{\tau_{0}^{2} s^{2}+2 \tau_{0} \xi s+1}{s}=\frac{2 \tau_{0} \xi}{k\left(T_{c}+\tau\right)}\left(1+\frac{\tau_{0}}{2 \xi} s+\frac{1}{2 \tau_{0} \xi s}\right)=K_{p}\left(1+\frac{1}{T_{i} s}+T_{d} s\right)$
Where, $K_{p}=\frac{2 \tau_{0} \xi}{k\left(T_{c}+\tau\right)} \quad T_{i}=\frac{1}{2 \tau_{0} \xi} \quad T_{d}=\frac{\tau_{0}}{2 \xi}$
This is PID controller
e) Assume that process is modeled by a pure time delay, i.e. with a process model $h_{p}(s)=k e^{-\tau s}$ find the controller ${ }_{c}{ }_{c}(s)$ by the Skogestad method.

ANS:

Based on Talyor sequence, $e^{-\tau s}=1-\tau s$
$h_{c}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k} \frac{1}{e^{-\tau s}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k} \frac{1}{1-\tau s} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k\left(T_{c}+\tau\right)} \frac{1}{s}$
This is I-controller.
f) Assume that the process, ${ }^{h_{p}(s)}$, is modeled by a 1 st order transfer function given by $\quad h_{p}(s)=k \frac{1}{1+T_{1} s}$. Find the controller ${ }^{h_{c}(s)}$ by the Skogestad method. ANS:
$h_{c}=\frac{1}{h_{p}} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{1}{k} \frac{1+T_{1} s}{1} \frac{1-\tau s}{\left(T_{c}+\tau\right) s}=\frac{T_{1}}{k\left(T_{c}+\tau\right)} \frac{1+T_{1} s}{T_{1} S}(1-\tau s)$
$h_{c}=K_{p} \frac{1+T_{i} s}{T_{i} s}\left(1+T_{d} s\right)$ where, $K_{p}=\frac{T_{1}}{k\left(T_{c}+\tau\right)}, T_{i}=T_{1}, \quad T_{d}=-\tau \quad$ (without time delay, so
$\tau=0, \Rightarrow T_{d}=-\tau=0$)
This is PI-controller.
g) Suggest a value for the specified time constant T_{c} for the set point response.

ANS:

$$
T_{c} \geq \tau \text { or simply } T_{c}=\tau
$$

Task 2: Model reduction and the half rule

Given a $5^{\text {th }}$ order process $y=h_{p}(s) u$ where the process transfer function, $h_{p}(s)$, is given by $h_{p}(s)=k \frac{1}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)\left(1+T_{3} s\right)\left(1+T_{4} s\right)\left(1+T_{4} s\right)}$ where $T_{1}>T_{2}>T_{3}>T_{4}>T_{5}>0$
a) Use the half rule for model reduction and find a 1 st order model approximation of the form

$$
h_{p}(s)=k \frac{1-\tau s}{1+T_{1} s}
$$

ANS:

$$
\begin{aligned}
T_{1} & :=T_{1}+\frac{1}{2} T_{2} \\
\tau & :=\tau+\frac{1}{2} T_{2}+T_{3}+T_{4}+T_{5}
\end{aligned}
$$

b) Use the half rule for model reduction and find a 2 nd order model approximation of the form

$$
h_{p}(s)=k \frac{1-\tau s}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}
$$

ANS:

$$
\begin{aligned}
T_{1} & :=T_{1} \\
T_{2} & :=T_{2}+\frac{1}{2} T_{3} \\
\tau & :=\tau+\frac{1}{2} T_{3}+T_{4}+T_{5}
\end{aligned}
$$

Task 3: System theory

a) Write down an expression for the solution $x(t)$ of the state equation, for $t>t_{0}$ ANS:

$$
x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

b) From the result in step 3a) above find an exact discrete time model of the form $x_{k+1}=\Phi x_{k}+\Delta u_{k}$. Specify expressions for Φ and Δ

ANS:
Define $\Phi=e^{A t}, \Delta=\int_{t_{0}}^{t} e^{A(t-\tau)} B d \tau=\int_{0}^{t-t_{0}} e^{A \tau} B d \tau=A^{-1}\left(e^{A\left(t-t_{0}\right)}-I\right) B$

$$
\begin{aligned}
& x(t)=\Phi\left(t-t_{0}\right) x\left(t_{0}\right)+\Delta u\left(t_{0}\right) \\
& x(t+\Delta t)=\Phi(\Delta t) x\left(t_{0}\right)+\Delta u\left(t_{0}\right) \\
& x((1+k) \Delta t)=\Phi(\Delta t) x(k \Delta t)+\Delta u(k \Delta t) \\
& x_{k+1}=\Phi x_{k}+\Delta u_{k}
\end{aligned}
$$

c) Assume now that the state equation is discretized with an explicit Euler approximation. Find a discrete time model in this case.
ANS:

$$
\begin{aligned}
& \frac{x_{k+1}-x_{k}}{\Delta t}=A x_{k}+B u_{k} \\
& x_{k+1}=(I+A \Delta t) x_{k}+B \Delta t u_{k} \\
& y_{k}=D x_{k}
\end{aligned}
$$

d) The transition matrix $\Phi=e^{A \Delta t}$ can be computed from an eigenvalue decomposition of A. Write down a formula for Φ in this case.

ANS:

$\operatorname{det}(\lambda I-A)=0 \quad$ eigenvalues can be calculated
$A=M \Lambda M^{-1}, \Phi=e^{A \Delta t} \Rightarrow \Phi=M e^{\Lambda \Delta t} M^{-1}$
Where M is the eigenvector. And $e^{\Lambda \Delta t}=\left[\begin{array}{cccc}e^{\lambda_{1} \Delta t} & 0 & 0 & 0 \\ 0 & e^{\lambda_{2} \Delta t} & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & e^{\lambda_{n} \Delta t}\end{array}\right]$

Task 4: PI control

Continuous state space model:
$u=K_{p} \frac{1+T_{i} s}{T_{i} s} e=\frac{K_{p}}{T_{i} S} e+K_{p} e=z+K_{p} e$ where $z=\frac{K_{p}}{T_{i} S} e$
And $z=\frac{K_{p}}{T_{i} s} e \Rightarrow \dot{z}=\frac{K_{p}}{T_{i}} e$
Then, $\left\{\begin{array}{l}\dot{z}=\frac{K_{p}}{T_{i}} e \\ u=z+K_{p} e\end{array}\right.$ and,$\left\{\begin{array}{l}\dot{z}=A z+B e \\ u=D z+E e\end{array} \quad\right.$ where $\quad \mathrm{A}=0, \quad B=\frac{K_{p}}{T_{i}}, \mathrm{D}=1, E=K_{p}$

Discrete time state space model:

$$
\left\{\begin{array}{l}
\frac{z_{k+1}-z_{k}}{\Delta t}=A z_{k}+B e_{k} \Rightarrow z_{k+1}=\left(I+A^{*} \Delta t\right) z_{k}+B \Delta t e_{k} \\
u_{k}=D z_{k}+E e_{k}
\end{array}\right.
$$

