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SCE1106 Control Theory

Solution exercise 1

Solution exercise 1

Given

ẋ = Ax + Bu (1)

where

A =




0 1 0
0 −k1 k2

0 0 −k3


 B =




0
0

k4


 (2)

and k1 = 1, k2 = 2, k3 = 4 og k4 = 2

1 Eigenvalues

The system matrix A is upper triangular. The eigenvalues are then directly
given by the diagonal elements of A. Hence, the eigenvalues are λ1 = 0, λ2 =
−k1 and λ3 = −k3. An eigenvalue matrix is then given by

Λ =




0 0 0
0 −k1 0
0 0 −k3


 (3)

2 The eigenvectors

An eigenvector corresponding to λ1 = 0

Am1 = λ1m1 ⇒




0 1 0
0 −1 2
0 0 −4







m11

m21

m31


 =




0
0
0


 (4)

This gives the equations

m21 = 0
−m21 + 2m31 = 0

−4m31 = 0
(5)
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This gives m21 = 0 and m31 = 0. m11 is arbitrarily and can be chosen freely in
such a way that m11 6= 0, e.g. choosing m11 = 1 gives

m1 =




1
0
0


 (6)

Eigenvector corresponding to λ2 = −1

Am1 = λ1m1 ⇒




0 1 0
0 −1 2
0 0 −4







m11

m21

m31


 = −1




m11

m21

m31


 (7)

Hence, we have the following equations

m21 = −m11

−m21 + 2m31 = −m21

−4m31 = −m31

(8)

which can be written as

m21 + m21 = 0
2m31 = 0

−3m31 = 0
(9)

This gives m31 = 0 and m11 = −m21. Choosing m21 6= 0, e.g. m21 = 1 gives

m2 =



−1

1
0


 (10)

Eigenvector corresponding to λ3 = −4

Am1 = λ1m1 ⇒




0 1 0
0 −1 2
0 0 −4







m11

m21

m31


 = −4




m11

m21

m31


 (11)

This gives the equations

m21 = −4m11

−m21 + 2m31 = −4m21

−4m31 = −4m31

(12)

which can be written as

4m11 + m21 = 0
3m21 + 2m31 = 0

0 = 0
(13)

This gives m21 = −4m11 and m31 = 6m11. Choosing m11 6= 0, e.g. m11 = 1
gives

m3 =




1
−4

6


 (14)
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An eigenvector matrix, M , corresponding to the eigenvalue matrix, Λ, is then
given by

M =
[

m1 m2 m3

]
=




1 −1 1
0 1 −4
0 0 6


 (15)

3 Controlling the answer

The eigenvalue decomposition is such that

M−1AM = Λ (16)

This can be written as

AM = MΛ (17)

Hence, the answer can be checked by computing the left and right hand sides
AM og MΛ and comparing the results.
If we chose to check if M−1AM = Λ, then we need to compute the inverse
M−1, i.e.,

M−1 =
1

det M
(cofM)T (18)

The cofactor matrix. cofM , is given by:

cofM =




6 0 0
+6 6 0

3 +4 1


 (19)

where + indicates where sign are changed in the matrix of sub determinants.
The inverse of the eigenvector matrix is then given by

M−1 =
1
6




6 0 0
+6 6 0

3 +4 1




T

=




1 1 1
2

0 1 2
3

0 0 1
6


 (20)

Solution exercise 2

The transfer function model is given by

y(s) = (D(sI −A)−1B + E)u(s) (21)

This system has two inputs u1 and u2 and one output y. The transfer function
can then be written as

y(s) = h1(s)u1(s) + h2(s)u2(s) (22)
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where

h1(s) =
s + 3

s2 + 3s + 2
(23)

h2(s) =
1

s2 + 3s + 2
(24)

this can be computed in MATLAB as follows:

[teller1, nevner1] = ss2tf(A,B,D, E, 1);
[teller2, nevner2] = ss2tf(A,B,D, E, 2);

where teller1 and nevner1 is the coefficients in the denominater and the nu-
merator polynomials of h1(s), respectively. Similarly, teller2 and nevner2 are
the coefficients of the denominator and the numerator polynomials in h2(s),
respectively.

Solution exercise 3

See the similar example 2.1 in the lecture notes.
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