Sivilingeniørutdanningen ved
Institutt for prosessautomatisering
Avdeling for teknologiske fag
Høgskolene i Telemark
DDiR, August 31, 2006

SCE1106 Control Theory

Solution exercise 1

Solution exercise 1

Given

$$
\begin{equation*}
\dot{x}=A x+B u \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \tag{2}\\
0 & -k_{1} & k_{2} \\
0 & 0 & -k_{3}
\end{array}\right] \quad B=\left[\begin{array}{r}
0 \\
0 \\
k_{4}
\end{array}\right]
$$

and $k_{1}=1, k_{2}=2, k_{3}=4$ og $k_{4}=2$

1 Eigenvalues

The system matrix A is upper triangular. The eigenvalues are then directly given by the diagonal elements of A. Hence, the eigenvalues are $\lambda_{1}=0, \lambda_{2}=$ $-k_{1}$ and $\lambda_{3}=-k_{3}$. An eigenvalue matrix is then given by

$$
\Lambda=\left[\begin{array}{rrr}
0 & 0 & 0 \tag{3}\\
0 & -k_{1} & 0 \\
0 & 0 & -k_{3}
\end{array}\right]
$$

2 The eigenvectors

An eigenvector corresponding to $\lambda_{1}=0$

$$
A m_{1}=\lambda_{1} m_{1} \Rightarrow\left[\begin{array}{rrr}
0 & 1 & 0 \tag{4}\\
0 & -1 & 2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This gives the equations

$$
\begin{align*}
m_{21} & =0 \tag{5}\\
-m_{21}+2 m_{31} & =0 \\
-4 m_{31} & =0
\end{align*}
$$

This gives $m_{21}=0$ and $m_{31}=0 . m_{11}$ is arbitrarily and can be chosen freely in such a way that $m_{11} \neq 0$, e.g. choosing $m_{11}=1$ gives

$$
m_{1}=\left[\begin{array}{l}
1 \tag{6}\\
0 \\
0
\end{array}\right]
$$

Eigenvector corresponding to $\lambda_{2}=-1$

$$
A m_{1}=\lambda_{1} m_{1} \Rightarrow\left[\begin{array}{rrr}
0 & 1 & 0 \tag{7}\\
0 & -1 & 2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right]=-1\left[\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right]
$$

Hence, we have the following equations

$$
\begin{align*}
m_{21} & =-m_{11} \tag{8}\\
-m_{21}+2 m_{31} & =-m_{21} \\
-4 m_{31} & =-m_{31}
\end{align*}
$$

which can be written as

$$
\begin{align*}
m_{21}+m_{21} & =0 \\
2 m_{31} & =0 \tag{9}\\
-3 m_{31} & =0
\end{align*}
$$

This gives $m_{31}=0$ and $m_{11}=-m_{21}$. Choosing $m_{21} \neq 0$, e.g. $m_{21}=1$ gives

$$
m_{2}=\left[\begin{array}{r}
-1 \tag{10}\\
1 \\
0
\end{array}\right]
$$

Eigenvector corresponding to $\lambda_{3}=-4$

$$
A m_{1}=\lambda_{1} m_{1} \Rightarrow\left[\begin{array}{rrr}
0 & 1 & 0 \tag{11}\\
0 & -1 & 2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right]=-4\left[\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right]
$$

This gives the equations

$$
\begin{align*}
m_{21} & =-4 m_{11} \tag{12}\\
-m_{21}+2 m_{31} & =-4 m_{21} \\
-4 m_{31} & =-4 m_{31}
\end{align*}
$$

which can be written as

$$
\begin{align*}
4 m_{11}+m_{21} & =0 \tag{13}\\
3 m_{21}+2 m_{31} & =0 \\
0 & =0
\end{align*}
$$

This gives $m_{21}=-4 m_{11}$ and $m_{31}=6 m_{11}$. Choosing $m_{11} \neq 0$, e.g. $m_{11}=1$ gives

$$
m_{3}=\left[\begin{array}{r}
1 \tag{14}\\
-4 \\
6
\end{array}\right]
$$

An eigenvector matrix, M, corresponding to the eigenvalue matrix, Λ, is then given by

$$
M=\left[\begin{array}{lll}
m_{1} & m_{2} & m_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 1 \tag{15}\\
0 & 1 & -4 \\
0 & 0 & 6
\end{array}\right]
$$

3 Controlling the answer

The eigenvalue decomposition is such that

$$
\begin{equation*}
M^{-1} A M=\Lambda \tag{16}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
A M=M \Lambda \tag{17}
\end{equation*}
$$

Hence, the answer can be checked by computing the left and right hand sides $A M$ og $M \Lambda$ and comparing the results.
If we chose to check if $M^{-1} A M=\Lambda$, then we need to compute the inverse M^{-1}, i.e.,

$$
\begin{equation*}
M^{-1}=\frac{1}{\operatorname{det} M}(\operatorname{cof} M)^{T} \tag{18}
\end{equation*}
$$

The cofactor matrix. $\operatorname{cof} M$, is given by:

$$
\operatorname{cof} M=\left[\begin{array}{rrr}
6 & 0 & 0 \tag{19}\\
+6 & 6 & 0 \\
3 & +4 & 1
\end{array}\right]
$$

where + indicates where sign are changed in the matrix of sub determinants. The inverse of the eigenvector matrix is then given by

$$
M^{-1}=\frac{1}{6}\left[\begin{array}{rrr}
6 & 0 & 0 \tag{20}\\
+6 & 6 & 0 \\
3 & +4 & 1
\end{array}\right]^{T}=\left[\begin{array}{llc}
1 & 1 & \frac{1}{2} \\
0 & 1 & \frac{2}{3} \\
0 & 0 & \frac{1}{6}
\end{array}\right]
$$

Solution exercise 2

The transfer function model is given by

$$
\begin{equation*}
y(s)=\left(D(s I-A)^{-1} B+E\right) u(s) \tag{21}
\end{equation*}
$$

This system has two inputs u_{1} and u_{2} and one output y. The transfer function can then be written as

$$
\begin{equation*}
y(s)=h_{1}(s) u_{1}(s)+h_{2}(s) u_{2}(s) \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
h_{1}(s) & =\frac{s+3}{s^{2}+3 s+2} \tag{23}\\
h_{2}(s) & =\frac{1}{s^{2}+3 s+2} \tag{24}
\end{align*}
$$

this can be computed in MATLAB as follows:

$$
\begin{aligned}
{\left[\text { teller }_{1}, \text { nevner }_{1}\right] } & =\operatorname{ss} 2 \operatorname{tf}(A, B, D, E, 1) \\
{\left[\text { teller }_{2}, \text { nevner }_{2}\right] } & =\operatorname{ss} 2 \operatorname{tf}(A, B, D, E, 2)
\end{aligned}
$$

where teller ${ }_{1}$ and nevner ${ }_{1}$ is the coefficients in the denominater and the numerator polynomials of $h_{1}(s)$, respectively. Similarly, teller ${ }_{2}$ and nevner ${ }_{2}$ are the coefficients of the denominator and the numerator polynomials in $h_{2}(s)$, respectively.

Solution exercise 3

See the similar example 2.1 in the lecture notes.

