Systems and Control Engineering
Telemark University College
DDiR, September 9, 2008

SCE1106 Control Theory

Exercise 1

Exercise 1

Given a process described by the following state space model

$$
\dot{x}=\left[\begin{array}{rrr}
0 & 1 & 0 \tag{1}\\
0 & -k_{1} & k_{2} \\
0 & 0 & -k_{3}
\end{array}\right] x+\left[\begin{array}{r}
0 \\
0 \\
k_{4}
\end{array}\right] u
$$

where

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \tag{2}\\
0 & -k_{1} & k_{2} \\
0 & 0 & -k_{3}
\end{array}\right] \quad B=\left[\begin{array}{r}
0 \\
0 \\
k_{4}
\end{array}\right]
$$

Consider given the parameters $k_{1}=1, k_{2}=2, k_{3}=4 \operatorname{og} k_{4}=2$

1. Sketch a block diagram of the process model
2. Find the eigenvalues of the system matrix, A, and write down an eigenvalue matrix, Λ, for the system.
3. Find the eigenvectors ($m_{i} \forall i=1,2,3$) corresponding to the eigenvalues in step 2. above.
4. Write down the eigenvector matrix

$$
M=\left[\begin{array}{lll}
m_{1} & m_{2} & m_{3} \tag{3}
\end{array}\right]
$$

and compute the matrix inverse M^{-1}.
5. Check the answer by computing the matrix product

$$
\begin{equation*}
M^{-1} A M=\Lambda \tag{4}
\end{equation*}
$$

Exercise 2

Assume a process described by the following state space model

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{5}\\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{6}
\end{align*}
$$

1. Sketch a block diagram of the system.
2. Find the transfer function from the inputs to the output of the system. I.e., find the transfer functions $h_{1}(s)$ and $h_{2}(s)$ so that

$$
\begin{aligned}
& y_{1}(s)=h_{1}(s) u_{1}(s) \\
& y_{2}(s)=h_{2}(s) u_{2}(s)
\end{aligned}
$$

and

$$
\begin{equation*}
y(s)=y_{1}(s)+y_{2}(s)=h_{1}(s) u_{1}(s)+h_{2}(s) u_{2}(s) . \tag{7}
\end{equation*}
$$

Check the answer by using the MATLAB functions ss2tf and tf2ss which are parts of the Control toolbox.
3. Find the eigenvalues of the system.
4. Find the steady state gain and the time constants of the system.

Exercise 3

A common process disturbance may be a pure sinusoid disturbance, e.g. waves and similar disturbances. Modelling of a sinusoid disturbance may be of interest in some circumstances. Assume that the output of a system is given by

$$
\begin{equation*}
y=d \sin (\omega t+\phi) \tag{8}
\end{equation*}
$$

where d, ω and ϕ are scalar parameters.

1. Transform the model in (8) to the Laplace plane (s-plane).
2. Find the state space model of a system which have the same output as in (8) by taking the Laplace model as the starting point. The model should be of the following type.

$$
\begin{align*}
\dot{x} & =A x+B u \tag{9}\\
y & =D x+E u \tag{10}
\end{align*}
$$

The solution of this model should be given by (8).

