Master study
Systems and Control Engineering
Department of Technology
Telemark University College
DDiR, August 26, 2014

SCE1106 Control Theory

Exercise 1 b

Exercise 1

This exercise is best worked out at hand and with MATLAB in parallel. Given a process as described by the following state space model

$$
\begin{gather*}
\overbrace{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]}^{\dot{x}}=\overbrace{\left[\begin{array}{rr}
0 & 1 \\
-8 & -6
\end{array}\right]}^{A} \overbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}^{x}+\overbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}^{B} u \tag{1}\\
y=\underbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x} \tag{2}
\end{gather*}
$$

1. Show that the transfer function of the system is given by

$$
\begin{equation*}
h(s)=\frac{1}{s^{2}+6 s+8} \tag{3}
\end{equation*}
$$

You can check your computation by using the MATLAB Control System Toolbox function ss2cf.m.
2. Show that the steady state gain of the process is given 0.125 .
3. Show that an eigenvalue matrix of the system is given by

$$
\Lambda=\left[\begin{array}{rr}
-4 & 0 \tag{4}\\
0 & -2
\end{array}\right]
$$

4. Show that the time constants of the system is given by $T_{1}=0.5$ and $T_{2}=0.25$.
5. Show that $\operatorname{det}(A)=|A|=8$.
6. Show that the inverse of the system matrix is given by

$$
A^{-1}=\left[\begin{array}{rr}
-0.75 & -0.125 \tag{5}\\
1 & 0
\end{array}\right]
$$

7. Find an eigenvector matrix M corresponding to the eigenvalue matrix Λ. I.e. solve the system of equations $A M=M \Lambda$ or

$$
\begin{equation*}
A m_{i}=\lambda_{i} m_{i} \quad i=1,2 \tag{6}
\end{equation*}
$$

8. Find the transition matrix of the system $\Phi(t)=e^{A t}$.
9. Assume now that the sampling time is $\Delta t=T=0.1$. Find an exact discrete time model of the form

$$
\begin{equation*}
x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \tag{7}
\end{equation*}
$$

where A_{d} and B_{d} is the matrices in the discrete time model equivalent. Use

Make a MATLAB m-file and simulate the response of the system after a step change in the input at time $t=t_{0}$. Assume that the initial state is zero, i.e.,

$$
x\left(t_{0}\right)=x_{0}=\left[\begin{array}{l}
0 \tag{8}\\
0
\end{array}\right]
$$

Use a sampling interval, $\Delta t=0.1$, and simulate the system over the intervall, $t_{0} \leq t \leq t_{1}$ where $t_{0}=0$ and $t_{1}=5$. Plot the response in MATLAB.
10. Write a m-file script with a for loop in order to compute the mean at each time instants $1 \leq i \leq n$ of a variable x_{i}, i.e., compute the mean

$$
\begin{equation*}
\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{9}
\end{equation*}
$$

