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SCE1106 Control Theory

Solution Exercise 10

Task 1

a) We have a model of the form

y =
k

(1 + T1s)(1 + T2s)
u (1)

In this case it make sense to do the following definition

y = x2 =
1

1 + T2s
x1 (2)

where then

x1 =
k

1 + T1s
u. (3)

Inverse Laplace transformation gives

ẋ1 = − 1
T1

x2 +
k

T1
u (4)

and

ẋ2 = − 1
T2

x2 +
1
T2

x1. (5)

This can be written on state space form as follows

[
ẋ1

ẋ2

]
=

A︷ ︸︸ ︷[
− 1

T1
0

1
T2

− 1
T2

]
x︷ ︸︸ ︷[
x1

x2

]
+

B︷ ︸︸ ︷[
k
T1

0

]
u, (6)

y =
[

0 1
]

︸ ︷︷ ︸
D

[
x1

x2

]
. (7)

Hence, we have a continuous state space model of the form

ẋ = Ax + Bu, (8)
y = Dx. (9)
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b)

The explicit euler method is obtained by using the approximation ẋ ≈
xk+1−xk

∆t at the left hand side and using the variables at discrete time k
on the right hand side, i.e.

xk+1 − xk

∆t
≈ Axk + Buk, (10)

which gives

xk+1 = (I + ∆tA)xk + ∆tBuk, (11)

The discrete time measurements equation is given by

yk = Dxk. (12)

c) Using the trapezoid method for discretization of a continuous system

ẋ = f(x, u) (13)

then it make sense to put

xk+1 − xk

∆t
≈ 1

2
(f(xk, uk) + f(xk+1, uk)) (14)

Note that we have used f(xk+1, uk) as an approximation to the function
value at time k + 1, i.e., f(xk+1, uk+1), in order not for the equation to
be implicit in the control. The reason is that when using the model for
control purposes we do not know the control at the next time instant.

From the linear state space model we obtain

xk+1 = (I − ∆t

2
A)−1(I +

∆t

2
A)xk + ∆t(I − ∆t

2
A)−1Buk. (15)

d) Some advantages with the trapezoid method:

• The step length parameter ∆t can in principle be chosen infinitely
large, i.e., 0 ≤ ∆t ≤ ∞. However one may have oscillations and
inaccurate solutions when using large step length parameters so one
should in practice use a ”small” step length parameter. The problem
of choosing ∆t is a trade of between accuracy of the solution and the
speed of computations.

• The trapezoid method have 2nd order accuracy. On the other hand
the explicit Euler method have 1st order accuracy. hence, the trape-
zoid method is more accurate than the explicit euler method.

Advantages with the explicit Euler method:

• The method is simple. Need less computing time than using the
trapezoid method, in particular for non-linear functions in which
one have to solve an implicit non-linear equation at each step.
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Task 2

a) The PID controller may be written

u = Kpe + z + KpTdse (16)

where

z =
Kp

Tds
e, ⇒ sz =

Kp

Ti
e. (17)

Inverse Laplace-transformation gives

u = Kpe + z + KpTdė, (18)

ż =
Kp

Ti
e. (19)

It make sense to put e(t0) = r− y = 0 and ė(t0) = 0 at startup. We then
have that the initial value for the controller state may be chosen as

z(t0) = u0, (20)

where u0 is a nominal control or working point for the process when
turning on the controller system in automatic mode . The nominal control
may be found by analyzing the steady state behavior of the process. We
have

y0 = ku0 = r, (21)

where k is the gain. this gives the following initial value.

z(t0) =
r(t0)

k
. (22)

b) We have two possibilities for implementing the derivation ė. The first
possibility is to use

ė ≈ ek − ek−1

∆t
. (23)

the second possibility and the most common choice is to not take the
derivative of the reference signal, i.e. using

ė− ẏ ≈ −yk − yk−1

∆t
. (24)

using the last choice and the explicit euler method for discretization of
the controller state space model (19) gives

uk = Kpek + zk − KpTd

∆t
(yk − yk−1), (25)

zk+1 = zk + ∆t
Kp

Ti
ek. (26)
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with initial value z0 = u0 = r0
k .

this discrete state space model for the PID controller may be used directly.
However, a formulation on deviation form may be derived as follows (com-
pute the deviation ∆uk = uk − uk−1). This gives

uk − uk−1 = Kpek + zk − KpTd

∆t
(yk − yk−1)

− (Kpek−1 + zk−1 − KpTd

∆t
(yk−1 − yk−2)) (27)

which may be written as

uk − uk−1 = Kpek + zk − zk−1 −Kpek−1 − KpTd

∆t
(yk − 2yk−1 + yk−2)(28)

Using that

zk − zk−1 = ∆t
Kp

Td
ek−1. (29)

This gives

uk = uk−1 + Kpek −Kp(1− ∆t

Ti
)ek−1 − KpTd

∆t
(yk − 2yk−1 + yk−2) (30)

Hence, this is of the form

uk = uk−1 + g0ek + g1ek−1 + g2(yk − 2yk−1 + yk−2) (31)

where

g0 = Kp, g1 = −Kp(1− ∆t

Ti
), g2 = −KpTd

∆t
. (32)

c) Using the trapezoid method for integrating the controller state space model
(19) gives

zk+1 − zk

∆t
=

1
2

Kp

Ti
ek +

1
2

Kp

Ti
ek+1 (33)

As we see, it is not possible to formulate an implementable dicrete state
space model for the PID controller of the same form as when the Explicit
Euler method was used, as in Equations (25) and (26). The reason for
this is that we do not know ek+1 = rk+1 − yk+1 which in this last case is
needed in order to compute and update the controller state zk+1.

However, we may use the trapezoid method in order to formulate the PID
controller on deviation (incremental) form. Using that

zk − zk−1 =
∆t

2
Kp

Ti
(ek−1 + ek) (34)
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and putting this into (28) gives

uk = uk−1 + Kp(1 +
∆t

2Ti
)ek −Kp(1− ∆t

2Ti
)ek−1

− KpTd

∆t
(yk − 2yk−1 + yk−2) (35)

This gives the controller formulation

uk = uk−1 + g0ek + g1ek−1 + g2(yk − 2yk−1 + yk−2) (36)

where

g0 = Kp(1 +
∆t

2Ti
), g1 = −Kp(1− ∆t

2Ti
), g2 = −KpTd

∆t
. (37)

Task 3

% ov10_oppg3.m
% Loesningsforslag til oppgave 3 i oeving 10.
% DDiR 15. oktober 2002

T1=1; T2=0.5; k=0.5; tau=2; % Modelleparametre.

A=[-1/T1,0;1/T2,-1/T2]; % Matriser i kontinuerlig tilstandsrom-
B=[k/T1;0]; D=[0,1]; % modell, dot(x)=Ax+Bu, y=Dx

% uten transportforsinkelsen.

t0=0; t1=20; N=200; % Lager en passende tidshorisont.
t=linspace(t0,t1,N); % t0 <= t <= t1.
dt=t(2)-t(1); % Samplingsintervall.

nt=floor(2/dt); yt=zeros(nt,1); % Array for implementering av transport
% forsinkelse.

Phi=inv(eye(2)-dt*A/2)*(eye(2)+dt*A/2); % Matriser i diskret tilstandsrom-
Delta=dt*inv(eye(2)-dt*A/2)*B % modell med Trapes-metoden.

Kp=0.56; Ti=1.25; % PI-reg param.
g0=Kp; g1=-Kp*(1-dt/Ti); % Eksplisitt Euler.
g0=Kp*(1+dt/(2*Ti)); g1=-Kp*(1-dt/(2*Ti)); % Trapes

r=1; % referansesignal.

u=0;
x=[0;0];
e_old=0; z=0;
ireg=2;
for i=1:N
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y=D*x;
yp=yt(nt); % Implementering av transportforsinkelse.
for k=nt:-1:2

yt(k)=yt(k-1);
end
yt(1)=y;

e=r-yp;

if ireg == 1
u=u+g0*e+g1*e_old;
e_old=e;
else
u=Kp*e+z; % Implementering av PI-regulator.
z=z+dt*Kp*e/Ti; % (integrerer med eksplisitt Euler.)
end

Y(i,1:2)=[yp y]; % Lagrer systemvariable.
R(i,1)=r;
U(i,1)=u;

x = Phi*x+ Delta*u;
end

%%% Plotter resultatene
subplot(211), plot(t,U), grid
title(’Simulering av lukket system’), ylabel(’u’)
subplot(212), plot(t,[R Y(:,1)]), grid
xlabel(’Tid [s]’), ylabel(’y og r’)
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