Master study
Systems and Control Engineering
Department of Technology
Telemark University College
DDiR, September 7, 2006

SCE1106 Control Theory

Solution to exercise 2

Solution to task 1

a) A mass balance (conservation of mass) over the tanks gives

$$
\begin{align*}
\frac{d}{d t}\left(A_{1} x_{1} \rho\right) & =\rho u_{1}-\rho q \tag{1}\\
\frac{d}{d t}\left(A_{2} x_{2} \rho\right) & =\rho q+\rho u_{2}-\rho v \tag{2}\\
q & =k\left(x_{1}-x_{2}\right) \tag{3}
\end{align*}
$$

Since the density is constant it can be cancelled from the equations and we can obtain the equations

$$
\begin{align*}
\dot{x}_{1} & =-\frac{k}{A_{1}} x_{1}+\frac{k}{A_{1}} x_{2}+\frac{1}{A_{1}} u_{1}, \tag{4}\\
\dot{x}_{2} & =\frac{k}{A_{2}} x_{1}-\frac{k}{A_{2}} x_{2}+\frac{1}{A_{2}} u_{2}-\frac{1}{A_{2}} v . \tag{5}
\end{align*}
$$

This can be written in matrix form as follows

b) Putting into numerical values gives the system matrix

$$
A=\left[\begin{array}{rr}
-0.5 & 0.5 \tag{7}\\
1 & -1
\end{array}\right]
$$

The eigenvalues (ore poles) for the system matrix are given by

$$
\begin{equation*}
\operatorname{det}(s I-A)=0 \tag{8}
\end{equation*}
$$

This gives the two eigenvalues/poles

$$
\begin{equation*}
s_{1}=0 \quad \text { og } \quad s_{2}=-\frac{3}{2} . \tag{9}
\end{equation*}
$$

Hence, the system has one time constant

$$
\begin{equation*}
T=-\frac{1}{s_{2}}=\frac{2}{3} \tag{10}
\end{equation*}
$$

and an eigenvalue equal to zero (an eigenvalue in origo) in the complex plane. The pole $s_{1}=0$ represents an integrator in the system. Modeling levels etc. gives typically integrating processes.
c) Eigenvector for for $\lambda_{1}=0$

Solving

$$
\begin{equation*}
A m_{1}=\lambda_{1} m_{1} \tag{11}
\end{equation*}
$$

where $\lambda_{1}=0$ and

$$
m_{1}=\left[\begin{array}{l}
m_{11} \tag{12}\\
m_{21}
\end{array}\right]
$$

This gives

$$
m_{1}=\left[\begin{array}{l}
1 \tag{13}\\
1
\end{array}\right]
$$

Eigenvector for $\lambda_{1}=-\frac{3}{2}$
Solving

$$
\begin{equation*}
A m_{2}=\lambda_{2} m_{2} \tag{14}
\end{equation*}
$$

where $\lambda_{1}=-\frac{3}{2}$ and

$$
m_{2}=\left[\begin{array}{l}
m_{12} \tag{15}\\
m_{22}
\end{array}\right]
$$

This gives

$$
m_{2}=\left[\begin{array}{r}
1 \tag{16}\\
-\frac{1}{2}
\end{array}\right]
$$

Hence, an eigenvector for the system is given by

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \tag{17}\\
1 & -\frac{1}{2}
\end{array}\right]
$$

e) The transition matrix is then given by

$$
\Phi=e^{A t}=M e^{\Lambda t} M^{-1}=\left[\begin{array}{cc}
\frac{2}{3}+\frac{1}{3} e^{-1.5 t} & \frac{1}{3}-\frac{1}{3} e^{-1.5 t} \tag{18}\\
\frac{2}{3}-\frac{1}{3} e^{-1.5 t} & \frac{1}{3}+\frac{2}{3} e^{-1.5 t}
\end{array}\right]
$$

f) When $u_{1}=u_{2}=v=0$ then the system is described by the autonomous response ore solution given by

$$
\begin{equation*}
x(t)=e^{A t} x(0) \tag{19}
\end{equation*}
$$

with initial state vector

$$
x_{0}=x(t=0)=\left[\begin{array}{l}
x_{1}(0) \tag{20}\\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

Then we have that

$$
x(t)=\left[\begin{array}{c}
\frac{4}{3}-\frac{1}{3} e^{-1.5 t} \tag{21}\\
\frac{4}{3}+\frac{2}{3} e^{-1.5 t}
\end{array}\right] .
$$

This means that $x_{1}(t)=\frac{4}{3}-\frac{1}{3} e^{-1.5 t}$ and $x_{2}(t)=\frac{4}{3}+\frac{2}{3} e^{-1.5 t}$.
As we see, both levels will be equal to $\frac{4}{3}$ at steady state, that is when time reach infinity, i.e., when $t \rightarrow \infty$. This is also natural from our knowledge of the process physics. The response is plotted in Figure 1.

Figure 1: Time response of the autonomous system $\dot{x}=A x$ where $x_{1}(0)=1$ and $x_{2}(0)=2$. This figure is generated by the MATLAB script main_losn2.m
g) The disturbance v is modelled by $v=k x_{2}$. This can be written in matrix form as

$$
\begin{equation*}
v=G x \tag{22}
\end{equation*}
$$

where

$$
G=\left[\begin{array}{ll}
0 & k \tag{23}
\end{array}\right] .
$$

Putting this into the state space model gives the autonomous state space model

$$
\begin{equation*}
\dot{x}=(A+C G) x \tag{24}
\end{equation*}
$$

where the initial values of the levels are given by

$$
x_{0}=x(t=0)=\left[\begin{array}{l}
x_{1}(0) \tag{25}\\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Hence, the solution is given by

$$
\begin{equation*}
x(t)=e^{(A+C G) t} x_{0} . \tag{26}
\end{equation*}
$$

See the MATLAB script main_losn2.m for the simulation of the time response for the state vector $x(t)$. The response is plotted in Figure 2. Note that in this case can not use the transition matrix $\Phi=e^{A t}$ which was computed earlier in this exercise.

Figure 2: Time response of the autonomous system $\dot{x}=(A+C G) x$ where $x_{1}(0)=1$ and $x_{2}(0)=2$. This figure is generated by the MATLAB script main_losn2.m

