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SCE1106 Control Theory

Solution to exercise 2

Solution to task 1

a) A mass balance (conservation of mass) over the tanks gives

d

dt
(A1x1ρ) = ρu1 − ρq, (1)

d

dt
(A2x2ρ) = ρq + ρu2 − ρv, (2)

q = k(x1 − x2). (3)

Since the density is constant it can be cancelled from the equations and
we can obtain the equations

ẋ1 = − k

A1
x1 +

k

A1
x2 +

1
A1

u1, (4)

ẋ2 =
k

A2
x1 − k

A2
x2 +

1
A2

u2 − 1
A2

v. (5)

This can be written in matrix form as follows

ẋ︷ ︸︸ ︷[
ẋ1

ẋ2

]
=

A︷ ︸︸ ︷[
− k

A1

k
A1

k
A2

− k
A2

]
x︷ ︸︸ ︷[
x1

x2

]
+

B︷ ︸︸ ︷[
1

A1
0

0 1
A2

]
u︷ ︸︸ ︷[
u1

u2

]
+

C︷ ︸︸ ︷[
0

− 1
A2

]
v (6)

b) Putting into numerical values gives the system matrix

A =

[
−0.5 0.5

1 −1

]
(7)

The eigenvalues (ore poles) for the system matrix are given by

det(sI −A) = 0. (8)

This gives the two eigenvalues/poles

s1 = 0 og s2 = −3
2
. (9)
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Hence, the system has one time constant

T = − 1
s2

=
2
3

(10)

and an eigenvalue equal to zero (an eigenvalue in origo) in the complex
plane. The pole s1 = 0 represents an integrator in the system. Modeling
levels etc. gives typically integrating processes.

c) Eigenvector for for λ1 = 0
Solving

Am1 = λ1m1, (11)

where λ1 = 0 and

m1 =

[
m11

m21

]
. (12)

This gives

m1 =

[
1
1

]
. (13)

Eigenvector for λ1 = −3
2

Solving

Am2 = λ2m2, (14)

where λ1 = −3
2 and

m2 =

[
m12

m22

]
. (15)

This gives

m2 =

[
1

−1
2

]
. (16)

Hence, an eigenvector for the system is given by

M =
[

m1 m2

]
=

[
1 1
1 −1

2

]
(17)

e) The transition matrix is then given by

Φ = eAt = MeΛtM−1 =

[
2
3 + 1

3e−1.5t 1
3 − 1

3e−1.5t

2
3 − 1

3e−1.5t 1
3 + 2

3e−1.5t

]
(18)

2



f) When u1 = u2 = v = 0 then the system is described by the autonomous
response ore solution given by

x(t) = eAtx(0), (19)

with initial state vector

x0 = x(t = 0) =

[
x1(0)
x2(0)

]
=

[
1
2

]
, (20)

Then we have that

x(t) =

[
4
3 − 1

3e−1.5t

4
3 + 2

3e−1.5t

]
. (21)

This means that x1(t) = 4
3 − 1

3e−1.5t and x2(t) = 4
3 + 2

3e−1.5t.

As we see, both levels will be equal to 4
3 at steady state, that is when time

reach infinity, i.e., when t →∞. This is also natural from our knowledge
of the process physics. The response is plotted in Figure 1.

Figure 1: Time response of the autonomous system ẋ = Ax where x1(0) = 1
and x2(0) = 2. This figure is generated by the MATLAB script main losn2.m

g) The disturbance v is modelled by v = kx2. This can be written in matrix
form as

v = Gx (22)

where

G =
[

0 k
]
. (23)

3



Putting this into the state space model gives the autonomous state space
model

ẋ = (A + CG)x (24)

where the initial values of the levels are given by

x0 = x(t = 0) =

[
x1(0)
x2(0)

]
=

[
1
2

]
. (25)

Hence, the solution is given by

x(t) = e(A+CG)tx0. (26)

See the MATLAB script main losn2.m for the simulation of the time
response for the state vector x(t). The response is plotted in Figure 2.
Note that in this case can not use the transition matrix Φ = eAt which
was computed earlier in this exercise.

Figure 2: Time response of the autonomous system ẋ = (A + CG)x where
x1(0) = 1 and x2(0) = 2. This figure is generated by the MATLAB script
main losn2.m
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