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SCE1106 Control Theory

Exercise 3

Design of PID controller for a chemical reactor

Exercise 1

we are going to design a PID controller in this exercise. The method which are
going to be used is very general and leads to a simple and practical method
for the design of PID controllers. The method is based on the fact that the
process model may be approximated with a transfer function of the form, i.e.
with inverse response

hp(s) = k
1− τs

(1 + T1s)(1 + T2s)
, (1)

or with delay

hp(s) = k
e−τs

(1 + T1s)(1 + T2s)
. (2)

Here T1 ≥ T2 ≥ 0. The method can still be used if the second time constant is
zero, i.e. T2 = 0.
Note that if you have a more complicated model then model reduction tech-
niques and system identification method may be used in order to obtain a model
of the form (1) or (1). Here, τ , is the effective time delay or inverse response
time. T1 > T2 is the dominant (largest) time constant. the model can also be
simplified further to a 1st order delay model by the half-rule, i.e.,

hp(s) = k
1− τs

1 + T1s
, (3)

where

T1 := T1 + 1
2T2, (4)

τ := τ + 1
2T2. (5)

(6)

is obtained by the half-rule. We have here neglected the smallest time constant
T2 and distributed it evenly on the remaining time constant T1 and the time
delay τ .
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a) Linearize the model around the steady state values and find a linearized
model of the form

˙δx = Acδx + Bcδu + Ccδv, (7)
δy = Dδx, (8)

Find expressions for the system matrices Ac, Bc, Cc and Dc and the
variables δx, δu and δv.

b) Find a transfer function model of the form

δy = hp(s)δu, hp(s) = k
1− τs

(1 + T1s)(1 + T2s)
. (9)

Find numerical values for the parameters k, τ , T1 and T2. Find the zeroes
of the system. What can be said about the system and its dynamics?

c) We shall in this task design a PID controller for the chemical reactor. Take
the transfer function in task b) above as the starting point. The nominator
polynomial is representing an inverse response which is approximately
equivalent with a transport delay because

e−τs ≈ 1− τs. (10)

Let us specify the respnse from the reference signal, r, to the output δy
by

δy

r
=

1− τs

1 + Tcs
. (11)

Here, Tc is an specified time constant for the set-point response. This
time constant may be chosen proportional with the time delay τ . This
will be discussed furter. there is nothing to do with the time delay or
inverse response in the set-pint respons so we let it be in the expression
(11). We also have that

δy

r
=

hphc

1 + hphc
, (12)

where hc(s) is the transfer function for the PID controller. Putt the two
transfer functions, i.e. (11) and (12). equal to each other and solve for
the controller hc(s). You shall obtain the controller hc(s) of the form.

hc(s) =
1
k

T1

Tc + τ

1 + T1s

T1s
(1 + T2s). (13)

This is a cascade formulation of the PID controller.

hc(s) = Kp
1 + Tis

Tis
(1 + Tds), (14)

where

Kp =
1
k

T1

Tc + τ
, (15)

Ti = T1 (16)
Td = T2. (17)
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d) It is reasonable to specify the time constant, Tc, of the set-pint response to
be equal to or grather than the time delay, i.e.,

Tc ≥ τ. (18)

Chose Tc = τ and show that

Kmax
p =

1
2k

T1

τ
. (19)

Put numerical values into the expressions.

e) You shoul know have found reasonable values for the PI controller param-
eters Kp and Ti. Simulate the system with these settings. Remember
that the parameters is found for the continuous time system, and that
you shoul take the step length into account when discretizing the system.
The controller is in continuous time given by

e = r − y, (20)
u = Kpe + z, (21)

ż =
Kp

Ti
e. (22)

Using Explicit Euler for discretizing the controller gives

e = r − y, (23)
u = Kpe + z, (24)

z = z +
Kp
Ti
h

e. (25)

where h is the step length. Hence, we can view T d
i = Ti

h as a discrete
integral time. It is important to take this into account when implementing
the PI-controller.

Oppgave 2

The effective time delay (the length of the inverse response) can be found by
simulating the step-response and plotting the response. From this we find
τ = 24 [sec].
In order to design a PI-controller for the process it can be useful to approximate
the process model with a 1st order model with inverse response. An trial
and error procedure shows that the model (9) can be approximated with the
following model

hp(s) = k
1− τs

1 + T1s
. (26)

where

k =
2

125
, (27)

τ =
1

120
, (28)

T1 =
1
75

. (29)
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Here, the half-rule can also with advantage be used. Do it!
We shall now use the model (26) for PID controller synthesis. Compare the
step response of (26) with (9). It is important that the time constant and the
effective delay for the approximate model is as similar to the real process as
possibile. The model (26) gives an effective delay of approximately τ = 30 [sec].
Which values for Kp and Ti gives this? Simulate the reactor with this PI
controller settings and compare with the results in task 1.
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Solution of some particular sub-problems

Solution task 1a) Numerical values for the state space model matrices are given
by

Ac =

[
−125 0

50 −125

]
, Bc =

[
7.5
−1

]
, Cc =

[
25
0

]
, D =

[
0 1

]
,(30)

where sub-script (·)c is used to denote continuous time.

Solution task 1b) The transfer function hp(s) = D(sI − A)−1B gives after
some calculations that

δy(s) = hp(s)δu(s), hp(s) :=
−s + 250

s2 + 250s + 15625
=

2
125

1− 1
250s

(1 + 1
125s)2

. (31)

This means that

k =
2

125
, T1 = T2 =

1
125

, τ =
1

250
. (32)

Se figure 1 for a unit step-response in the control input variable u.

Solution task 1d) With numerical values we obtain the following settings for
the PI-controller parameters

Kp =
1
2k

T1

τ
=

125
4

1
125
1

250

= 62.5. (33)

Ti = T1 =
1

125
. (34)

Solution task 2)

The numerical values for k, τ og T1 as given in task 2 gives the following
settings for the PI-controller

Kp =
1
2k

T1

τ
=

125
4

1
75
1

120

= 50. (35)

Ti = T1 =
1
75

. (36)

Using the half-rule gives a first order model with inverse response of the
form

hp(s) = k
1− τs

1 + T1s
. (37)

where

k =
2

125
, (38)

τ = τ +
1
2
T2 =

1
250

+
1
2

1
125

=
1

125
, (39)

T1 = T1 +
1
2
T2 =

1
125

+
1
2

1
125

=
3

250
≈ 1

83
. (40)
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Se figure 1 for a unit step-response in the control input u. Using the
synthesis rules gives the following upper limit for Kp.

Kp =
1
2k

T1

τ
=

125
4

3 · 125
250

= 46.9. (41)

Ti =
1

83.3
. (42)

Concluding remarks

We have found three PI-controller settings. Which one of the settings is the
best?
The settings found in task 1b) can not be used. It gives an oscillating behavior.
the reason is that one can not only skip the time constant T2 without modifying
the remaining time constant T1 and the inverse response time (delay) τ .
The settings in task 2 found by using the half-rule seams to result in the best
setting. The reason is because it results in the most conservative settings with
the smallest Kp and Ti. The difference is however small.
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Respons i y etter enhetssprang i u

Tid: 0 ≤ t ≤0.1 [timer]

2. ordens modell: oppg. 1b)       
1.ordens proev og feil: oppg. 2   
1.ordens halverings metode: oppg 2

Figure 1: Unit step-response for the model in (9) and the approximate 1st order
models in task 2 after unit step in u. The figure is generated by the MATLAB
script file demo reac pid.m. Se the enclosed MATLAB file.
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%% demo_reac_pid
% Simulering av sprangresponser for linearisert reaktor modell
% samt 1. ordens modellapproksimasjoner som skal benyttes til
% syntese av PI-regulatorer.

clear all

%%% Linearisert prosessmodell.
num=[0,-1,250];
den=[1,250,15625];
[a,b,d,e]=tf2ss(num,den); % Tilstandsrommodell.

%%% Sprangrespons til den lineariserte modellen med to tidskonstanter.
h=0.001; t1=0.1;
t=0:h:t1;
y=step(num,den,t);

%%% Tunet 1.ordens modell (proev og feil ga denne)
num1=(2/125)*[-1/120,1]; den1=[1/75,1];
num1=(2/125)*[-1/120,1]; den1=[1/75,1];
y1=step(num1,den1,t);

%%% Halveringsregel
T1=1/125+0.5*(1/125);
tau=1/250+0.5*(1/125);
num2=(2/125)*[-tau,1]; den2=[T1,1];
y2=step(num2,den2,t);

%%% Plotter i samme figur.
figure(1), clf
plot(t,y,’r-’,t,y1,’b-.’,t,y2,’k--’), grid, ylabel(’y’)
legend(’2. ordens modell: oppg. 1b)’,...

’1.ordens proev og feil: oppg. 2’,...
’1.ordens halverings metode: oppg 2’)

title(’Respons i y etter enhetssprang i u’)
xlabel(strcat(’Tid: 0 \leq t \leq ’,num2str(t1),’ [timer]’))

%%% Testing
num3=(2/125)*[-(1/250+1/125),1]; den3=[1/125,1];
y3=step(num3,den3,t);

%%% Plotter i samme figur.
figure(2), clf
plot(t,y,’r-’,t,y1,’b-.’,t,y2,’k--’,t,y3,’r--’), grid, ylabel(’y’)
legend(’2. ordens modell: oppg. 1b)’,...

’1.ordens proev og feil: oppg. 2’,...
’1.ordens halverings metode: oppg 2’,...
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’1.ordens test’)
title(’Respons i y etter enhetssprang i u’)
xlabel(strcat(’Tid: 0 \leq t \leq ’,num2str(t1),’ [timer]’))

%%% Closed loop responses

T1=1/125; tau=1/250; k=2/125;

%% Standard tuning
Ti=T1;
Kp=40;
Kp=dread(’Kp=’,Kp);

kt=k*Kp/Ti;
num_c1=kt*[0,-tau,1];
den_c1=[T1,(1-kt*tau),kt];
yc4=step(num_c1,den_c1,t);
%%
Ti=1/83; Kp=46.9;
kt=k*Kp/Ti;
num_c1=kt*[0,-tau,1];
den_c1=[T1,(1-kt*tau),kt];
yc2=step(num_c1,den_c1,t);

%%% Plotter i samme figur.
figure(3), clf
plot(t,yc2,’r--’,t,yc4,’k-’), grid, ylabel(’y’)
legend(’1.ordens halverings metode: oppg 2’,’2. ordens’)
title(’Respons i y etter enhetssprang i u’)
xlabel(strcat(’Tid: 0 \leq t \leq ’,num2str(t1),’ [timer]’))
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