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SCE1106 Control Theory

Solution Exercise 5

Task 1

In connection with controller and observer canonical forms we need a matrix
M formed from the coefficients in the characteristic polynomial given by

|sI −A| = s2 + a1s + a2 (1)

where a1 = 5 and a2 = 4 when the matrix A is as given in task 1. The M
matrix is then defined as follows

M =

[
1 a1

0 1

]
=

[
1 5
0 1

]
(2)

Controllability canonical form

A given state space model is transformed to controllability canonical form by
using the state transformation x = Tz where

T = Cn (3)

and where Cn is the controllability matrix for the system ẋ = Ax + Bu.

Controller canonical form

A given state space model is transformed to controller canonical form by using
the state transformation x = Tz where

T = CnM (4)

Observability canonical form

A given state space model is transformed to observability canonical form by
using the state transformation x = Tz where

T = (On)−1 (5)

where On os the observability matrix of the system ẋ = Ax + Bu and y = Dx.
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Observer canonical form

A given state space model is transformed to observer canonical form by using
the state transformation x = Tz where

T = (On)−1(MT )−1 = (MT On)−1 (6)

Task 2

The observed data is organized into an input data matrix/vector U and an
output data matrix/vector Y as follows

U =




0
1
1
1
1
1
1
1




, Y =




0
0
0.5
0.7
0.78
0.812
0.8248
0.8299




(7)

Step1

Use the MATLAB plot(U) and plot(Y) functions. Se also subplot.

Step 2

From the state space model we have that

yk+1 = φyk + δuk =
[

yk uk

] [
φ
δ

]
(8)

By using that we have N = 8 observations at time instants k = 0, 1, 2, 3, 4, 5, 6, 7
we obtain

Y︷ ︸︸ ︷


y1

y2

y3

y4

y5

y6

y7




=

X︷ ︸︸ ︷


y0 u0

y1 u1

y2 u2

y3 u3

y4 u4

y5 u5

y6 u6




B︷ ︸︸ ︷[
φ
δ

]
(9)

Hence we have the so called normal equations

Y = XB (10)

which is solved for the regression parameters B as

BOLS = (XT X)−1XT Y (11)
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This gives

BOLS =

[
φ
δ

]
=

[
0.4
0.5

]
(12)

Hence, the parameters in the discrete time state space model is φ = 0.4
and δ = 0.5.

Step 3
A state space model

ẋ = ax + bu (13)

have the discrete time description

xk+1 = φxk + δuk (14)

where

φ = ea∆t = e−
∆t
T (15)

where ∆t = 10 is the sampling time and T = − 1
a is the time constant in

the continuous time process. Hence, we have

T = − ∆t

ln(a)
≈ 10.91 (16)

The steady state gain can be found by using that xk+1 = xk = x in steady
state. This gives

xk =
δ

1− φ
uk = 0.8333uk (17)

Hence, the steady state gain is given by yk = hduk where the steady state
gain is

hd = 0.8333 (18)

Note also that the realationship between δ and b is

δ = a−1(ea∆t − 1)b (19)

if zero order hold is assumed, i.e., if we assume that u(t) is constant over
the sampling interval.

Step 4

From the above and that φ = ea∆t we have that

a =
ln(φ)
∆t

= − 1
T

= −0.0916 (20)

We solve (19) for b and get

b = 0.0764 (21)
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Step 5

The transfer function model from u to y is given by

y = hp(s)u (22)

where

hp(s) =
k

1 + Ts
(23)

where T = 10.9133 is the time constant and k = 0.8333 is the steady state
gain.

Step 6

A PI controller is represented as

u(s) = hc(s)e(s) (24)

where e(s) = r − y(s) is the control deviation (controller input) and hc

the PI controller transfer function

hc(s) = Kp
1 + Tis

Tis
(25)

in the Laplace plane.

A state space formulation of the PI controller may be as follows

u = z + Kpe (26)

ż =
Kp

Ti
e (27)

Step 7 We may chose Ti = T = 10.9133 in order to simplify the loop transfer
function

ho(s) = hp(s)hc(s) =
k

1 + Ts
Kp

1 + Tis

Tis
=

kKp

Ts
(28)

The transfer function from r to y is then given by

y

r
(s) =

hphc

1 + hphc
=

1
1 + Tcs

(29)

where

Tc =
T

kKp
(30)

is the time constant for the closed loop system. Choosing Tc = 4 gives

Kp =
T

kTc
≈ 3.2740 (31)
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Note, the Skogestad method could also have been used here by specifying
the set point response as

y

r
(s) ==

hphc

1 + hphc
=

1
1 + Tcs

, (32)

and choosing Tc = 4 and solving for the controller, hc(s). Do this as an
exercise!

Step 8

If a time delay equal to τ = ∆t
2 = 5 is included in the observed model we

obtain the following process model

y(s)
u(s)

= hp(s) =
k

1 + Ts
e−τs (33)

where

k = 0.8333, T = 10.9, τ = 5. (34)

Since the transport delay, e−τs, is not a rational function we use the series
apprximation

e−τs ≈ 1− τs (35)

in order to do the computations. Other approximations as illustrated in
the Lecture notes, Ch. 5, could however be used instead. However, the
simple approximation (35) gives simple and reasonable results. This gives
the following model for PI controller synthesis

y(s)
u(s)

= hp(s) = k
1− τs

1 + Ts
(36)

Let us now specify the set point response from the reference r = ys to the
output y as

y

r
=

hphc

1 + hphc
=

1− τs

1 + Tcs
, (37)

where Tc is a specified time constant for the set point response (the closed
loop system). As is suggested in the Skogestad method we usually can
chose Tc = τ = 5.

We now solve Equation (37) with respect to the controller transfer func-
tion, hc(s). This gives

hc =
1
hp

y
r

1− y
r

=
1
k

1 + Ts

(Tc + τ)s
=

T

k(Tc + τ)
1 + Ts

Ts
. (38)
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This is a PI controller of the form

hc = Kp
1 + Tis

Tis
. (39)

in which

Kp =
T

k(Tc + τ)
=

T

2kτ
= 1.3081, (40)

Ti = T = 10.9. (41)
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