Master study
Systems and Control Engineering
Department of Technology
Telemark University College
DDiR, November 2, 2006

## SCE1106 Control Theory

## Solution Exercise 7

## Task 1

a) The process model can be written as

$$
\begin{equation*}
h_{p}(s)=\frac{e^{-2 s}}{s^{2}+3 s+2}=k \frac{e^{-\tau s}}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)} . \tag{1}
\end{equation*}
$$

where $k=\frac{1}{2}, \tau=2, T_{1}=1$ and $T_{2}=\frac{1}{2}$. The dominating (largest) time constant in the process is therefore $T_{1}=1$. The integral time constant is then chosen as

$$
\begin{equation*}
T_{i}=T_{1}=1 \tag{2}
\end{equation*}
$$

b) The loop transfer function, $h_{0}(s)$, is equal to the product of all blocks around the feedback loop (against the signal direction), i.e.,

$$
\begin{equation*}
h_{0}(s)=h_{c}(s) h_{p}(s)=K_{p} \frac{1+T_{i} s}{T_{i} s} k \frac{e^{-\tau s}}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}=k_{0} \frac{e^{-\tau s}}{s\left(1+T_{2} s\right)} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{0}=\frac{K_{p} k}{T_{1}} \tag{4}
\end{equation*}
$$

and where we have chosen $T_{i}=T_{1}$ in order to simplify the loop transfer function.
The frequency response of the loop transfer function is then obtained by putting $s=j \omega$

$$
\begin{equation*}
h_{0}(j \omega)=k_{0} \frac{e^{-j \tau \omega}}{j \omega\left(1+j T_{2} \omega\right)} \tag{5}
\end{equation*}
$$

We write the frequency response on polar form as follows

$$
\begin{equation*}
h_{0}(j \omega)=\left|h_{0}(j \omega)\right| e^{j \angle h_{0}(j \omega)} \tag{6}
\end{equation*}
$$

where the magnitude is given by

$$
\begin{equation*}
\left|h_{0}(j \omega)\right|=\frac{k_{0}}{\omega \sqrt{1+\left(T_{2} \omega\right)^{2}}} \tag{7}
\end{equation*}
$$

and where the phase shift is given by

$$
\begin{equation*}
\angle h_{0}(j \omega)=-\tau \omega-\frac{\pi}{2}-\arctan \left(T_{2} \omega\right) \tag{8}
\end{equation*}
$$

c)

1. The phase crossover frequency, $\omega_{180}$, is given by the frequency, $\omega$, which gives a phase shift equal to $-\pi$, i.e., we have

$$
\begin{equation*}
\angle h_{0}(j \omega)=-\tau \omega-\frac{\pi}{2}-\arctan \left(T_{2} \omega\right)=-\pi \tag{9}
\end{equation*}
$$

This is a non-linear function in the frequency $\omega$. The equation can in this case simply be solved by fiks-point iteration by using the following iteration scheme in a for loop:

$$
\begin{equation*}
\omega=\frac{\frac{\pi}{2}-\arctan \left(T_{2} \omega\right)}{\tau} \tag{10}
\end{equation*}
$$

A start value, $\omega=1$, gives after a few iterations that

$$
\begin{equation*}
\omega_{180}=0.6323 \tag{11}
\end{equation*}
$$

2. We will now chose the proportional constant, $K_{p}$, such that the Gain Margin is, $G M=2$. From the definition of the gain Margin we have that

$$
\begin{equation*}
\left|h_{0}\left(j \omega_{180}\right)\right|=\frac{1}{G M}=\frac{1}{2} \tag{12}
\end{equation*}
$$

Putting in the expression for the magnitude given by Equation (7) we find that

$$
\begin{equation*}
\frac{K_{p} k}{T_{1} \omega_{180} \sqrt{1+\left(T_{2} \omega_{180}\right)^{2}}}=\frac{1}{2} \tag{13}
\end{equation*}
$$

which gives

$$
\begin{equation*}
K_{p}=\frac{T_{1} \omega_{180} \sqrt{1+\left(T_{2} \omega_{180}\right)^{2}}}{2 k}=0.6631 \tag{14}
\end{equation*}
$$

3. The gain crossover frequency is given by

$$
\begin{equation*}
\left|h_{0}\left(j \omega_{c}\right)\right|=\frac{k_{0}}{\omega_{c} \sqrt{1+\left(T_{2} \omega_{c}\right)^{2}}}=1 \tag{15}
\end{equation*}
$$

which can be solved by fiks-point iteration. Se the solution proposal. We find the solution

$$
\begin{equation*}
\omega_{c}=0.3272 \tag{16}
\end{equation*}
$$

4. The Phase Margin, $P M$, is then found to be:

$$
\begin{align*}
P M & =\angle h_{0}\left(j \omega_{c}\right)+\pi \\
& =-\tau \omega_{c}-\frac{\pi}{2}-\arctan \left(T_{2} \omega_{c}\right)+\pi \\
& =0.7542[\mathrm{rad}]=43.21\left[{ }^{\circ}\right] \tag{17}
\end{align*}
$$

d) The simulation of the closed loop system with the PI controller settings found can be done as shown in the MATLAB script losn7_ogg1.m. As we see, there is more overshot in the output response with this settings compared with the Skogestad settings.

## MATLAB-script losn7_oppg1.m

```
% losn7_oppg1.m
% Formaal: Loesning av oppgave 1 i oeving 7 i faget Prosessregulering.
% Inneholder beregning av:
% Fase kryssfrekvens, omega_180.
% Forsterkningsmargin, GM.
% Forsterkningskryssfrekvens, omega_c.
% Fasemargin, PM.
% samt PI-regulator syntese.
% DDiR, 22. oktober 2002
clear all
k=0.5; T1=1; T2=0.5; tau=2;
%% Velger Ti=1;
% Beregning av fasekryssfrekvensen, omega_180,
% ved fikspunktiterasjon.
omega=1;
for i=1:100
    omega=(pi/2-atan(T2*omega))/tau;
end
omega_180=omega % Fase kryssfrekvensen.
%Test, vinkel_h0=-pi.
vinkel_h0=-tau*omega-pi/2-atan(T2*omega)
% Beregning av K_p slik at GM=2
Kp=T1*omega_180*sqrt(1+(T2*omega_180) ^2)/(2*k)
% Beregning av forsterknings kryssfrekvensen, omega_c,
% vha. fikspunktiterasjon.
omega=1, k0=Kp*k/T1;
for i=1:100
    omega=k0/sqrt(1+(T2*omega) ^2);
end
omega_c=omega % Forsterkningskryssfrekvensen.
% Fasemarginen.
vinkel_h0=-tau*omega_c-pi/2-atan(T2*omega_c);
PM=(vinkel_h0+pi)*180/pi
%% sjekk vha control system tbx
Ti=T1;
num1=[0,0,1];
```

```
den1=[1,3,2];
[numd,dend]=pade(tau,10);
[num_hp,den_hp]=series(num1, den1,numd, dend);
num_hc=Kp*[Ti,1];
den_hc=[Ti,0.e-9];
[num_h0,den_h0]=series(num_hc,den_hc,num_hp,den_hp);
[Gm,Pm,W180,Wc] = margin(num_h0,den_h0)
```

