Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, November 9, 2006

SCE1106 Control Theory

Exercise 8

Task 1

We are in this exercise going to study the same system as in Exercises 6 and 7. The system is described by the model

$$h_p(s) = \frac{e^{-2s}}{s^2 + 3s + 2}.$$
(1)

The system is to be controlled by a PI controller of the form

$$h_c(s) = K_p \frac{1 + T_i s}{T_i s}.$$
(2)

- a) Assume that the PI controller is substituted with a P controller. Write down an expression for the loop transfer function, $h_0(s)$. Find the phase crossover frequency, ω_{180} , and the critical gain K_{cu} . Note that the critical gain, K_{cu} , is the value on K_p which results in that the system is at the stability limit, i.e. such that $|h_0(j\omega_{180})| = 1$. The system has then a Gain Margin GM = 1.
- b) Find K_p and T_i by the Ziegler-Nichols method. Write down an expression for the PI controller in the time domain.
- c) Write down an expression for the loop transfer function with the PI controller as found in subtask b) above in the loop.
 - 1. What is the Gain Margin, GM, for the closed loop system?
 - 2. What is the Phase Margin, PM, of the system. ?

You can with advantage use the Control System Toolbox function **mar-gin**.

d) Simulate the closed loop system after a unit step response in the reference signal. Compare the PI controller settings found in this exercise with the Skogestad settings from Exercise 6 and the settings found in Exercise 7. You can with advantage use the MATLAB script **losn7_oppg1.m** from Exercise 7.