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Preface

These lecture notes are developed for the introductory course in Matlab for Master of Science students
at Telemark University College. The lecture notes consists of three parts, and the presentation of each
part is scheduled to take 8 hours and to be presented within a single week. Thus, a total of three weeks
spread over the opening of the fall semester are used to present the content of the course, with a total
of ca. 24 hours of arranged presentations (lectures + exercises). The presentations are integrated with
exercises in the courses Numerical Methods, and Modeling of Dynamic Systems, but Matlab is also used
in other courses to reinforce the learning.
The choice of course content is the result of a couple of meetings between Are Mjaavatten, Bernt Lie,

and Randi Holta in the early summer of 2003. Our background experiences for composing the course
are:

� Continuous use of Matlab for some 10 years,

� The arrangement of a NIF3 course in the use of Matlab (BL), where the course content was highly
inspired by talks with student representatives Marte S. Lerdal and Bjørn Erik Thorsteinsen in June
1999,

� Experience with using Matlab in courses in Numerical Methods (AM) and Modeling of Dynamic
Systems (BL).

Compared to the lecture notes for 2004, we have moved some of the material which is not of immediate
use to appendices. We have also marked material which is more advanced with an asterisk (*). We
encourage readers to give feedback on the course content and the presentation style.
Finally, it should be mentioned that there exist a useful freeware version of Matlab, named Octave.

A brief introduction to the use of Octave and how it deviates from using MathWorks�Matlab version,
see www.techteach.no/octave/index.htm. For more information on Octave, see www.octave.org.

Are Mjaavatten, Bernt Lie
Porsgrunn, August 27 2005

3NIF = Norske Sivilingeniørers Forening, which has been transformed into Tekna.
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Chapter 1

The Matlab workplace

The Matlab graphical user interface is programmed in Java, and thus looks practically the same on all
supported computer platforms. We assume that the reader knows how to start up a program on her/his
respective computer. When Matlab is started, it looks more or less as in �g. 1.1 (shows Matlab v. 6.5).
The main window in �g. 1.1 is the Command Window. This is where commands are written, and we

will show excerpts of such command list in these notes. As an introductory example, assume that we
type the command:

>> sin(0.7)

Here, the symbol >> is the Matlab command prompt, and the user does not type this symbol. We
simply typed sin(0.7). Matlab responds with:

ans =

0.6442

>>

Here, 0.6442 is Matlab�s evaluation of sin(0.7), and the symbol >> signi�es that Matlab�s Command
Window is ready to accept another command. In the Matlab window, we now have the following situation,
�g. 1.2.
Note that by double-clicking on the item sin(0.7) in the Command History window, this command

is copied into the Command Window, and is immediately (re-) executed. Also, by double-clicking on
the item ans in the Workspace, the so-called Array Editor is opened, containing the data of variable
ans. The Array Editor is a spreadsheet-like window which makes it possible to interactively modify the
content of the chosen variable.

3
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Click here to change current directory

Command window: type commands here
Command history: previous commands

Workspace: table of user defined
variables and data structures

Figure 1.1: The opening window in Matlab 6.5. It looks almost the same in Matlab 7.0.

Command and response in the
Command Window

Variable is named "ans" by default, and
is listed in Workspace

The latest command is l isted in
Command History

Figure 1.2: The Matlab window after entering a command.



Chapter 2

Arrays: Matlab�s basic data
structure

2.1 Overview of learning goals

After having completed this chapter, you should have a clear understanding of what an array is, what
distinguishes an array from vectors and matrices, and how you can operate on arrays. In particular, you
should master:

� How to de�ne variables by assigning a value to a name, and how to save, load, and import data,

� The creation of arrays, how to pick out subarrays and how to build superarrays,

� How to operate on variables using functions and operators,

� How to adjust the presentation format of numbers,

� Basic housekeeping of variables, commands, and �les,

� How to use Matlab�s help system.

2.2 Arrays and data structures

By array, we will mean a table of numbers similar to a spreadsheet, where we require that every element
in the table contains a number. Thus, there can be no vacant elements, and there can be no text strings
or other objects in any of the elements. In principle, an array can hold a single element. In that case,
we will use the term scalar to denote the array. If the array consists of a single row of numbers, we will
denote it a row array. If the array consists of a single column of numbers, we will denote it a column
array. A scalar is a special case of both a row array and of a column array. If the array contains several
rows (or columns) of numbers where each row (column) does not have to be a scalar, then we will simply
call it a (two dimensional) array. Obviously, both row and column arrays are arrays.
Even more complicated arrays could be imagined. We can consider arrays consisting of several layers

of two dimensional arrays, much like a spreadsheet can contain several sheets of spreadsheets. In Matlab
parlance, we say that the array consists of several pages of (two dimensional) arrays. Together these
pages could be considered a volume. We can also consider arrays with several volumes. Together, several
volumes could constitute a library. Then we can imagine arrays consisting of several libraries. And so
on. Finally, we can also imagine arrays which contains zero elements; these we will denote empty arrays.
Originally, Matlab only supported two dimensional arrays (and character strings). From version 5 of of

Matlab, more general arrays are supported, as well as other data structures � these other data structures
can be considered various types of tables. Often, row and column arrays are denoted row and column
vectors in Matlab literature. Likewise, two dimensional arrays are often denoted matrices (Matlab was
originally short for MATrix LABoratory). In these notes, we prefer to use the word array. The reason
is that vectors are mathematical objects with very speci�c properties; vectors are not necessarily arrays.
Likewise, matrices are mathematical operators with speci�c properties (matrices are arrays, however).
Thus, we will use the term array when we do not imply such speci�c properties.

5
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Exercise 2.1 Write down examples of various types of arrays.

Exercise 2.2 Write down examples of tables which are not arrays.

2.3 Assignment: Naming data structures

During computations, it is very important to be able to give names to data structures, e.g. to arrays.
In practice, some data structures have constant value during these computations, while others vary/are
changed. In this section, we will look at how we can give names (or: assign names) to data structures
in Matlab. Some computer languages distinguish between how constants and variables are named � in
Matlab, there is no such distinction
We have already seen that Matlab automatically gives a name to a result from a computation, see

e.g. �g. 1.2 where the result of a computation was given the name ans. In practice, we need to be able
to decide our own names for the data structures.
Various computer languages di¤er in how data structures are assigned a name. Symbolically, we

could describe the assignment as<data structure> -> <name>, meaning �put the content of the data
structure<data structure> into a computer memory location which bears the name<name>�. In most
computer languages, this assignment is written the reverse way as <name> <- <data structure>,
and other symbols may be used for the assignment. In e.g. the computer algebra system Maple, the
assignment is written <name> := <data structure>.
InMatlab, the assignment symbol is identical to the symbol which is normally used for writing equality

in mathematics: <name> = <data structure>:

>> a = 0.7
a =

0.7000
>> b = sin(a)
b =

0.6442

Here1 , a and b are the names we want to use for the data structures, while 0.7 and sin(a) (where a
is a replacement for 0.7) are the data structures (they are arrays, or more precisely: scalars). In the
assignment it is important both that the name we want to use is a valid name (see below), and that the
data structure has a value (e.g. 0.7, and a as a replacement for 0.7). If we switch the sequence of the
above commands, an error occurs:

>> clear all
>> b = sin(a)
??? Undefined function or variable �a�.

>> a = 0.7
a =

0.7000

At �rst, name a does not have a value, hence sin(a) does not have a value when we try to assign sin(a)
to b. We�ll come back to the e¤ect of command clear all later.
The chosen assignment symbol in Matlab (and many other languages) may be confusing at �rst.

Consider a common type of assignment:

>> i = i+1;

1To get a compact response in the Command Window, the command format compact has �rst been issued.
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This assignment looks strange: how can i be equal to i+1? Well, it can not! The point is that i=i+1
does not mean that i is equal to i+1. Instead, it means: add 1 to the value of data structure i (assuming
that a i already has a value), and put the result into data structure i. This is somewhat clearer if we
write the assignment as i+1 -> i, or as in Maple: i := i+1. Still, as long as we accept that = means
assignment and not equality in Matlab, the statement i = i+1 makes sense:

>> i = 1;
>> i = i+1
i =

2

Valid names for data structures in Matlab can consist of any number of characters as long as they
start with a letter, and the subsequent characters are either letters in the English alphabet (a, ..., z, A, ...,
Z), digits (0, ..., 9), or underscore (_). Note that Matlab distinguishes between lowercase and uppercase
letters. See Section 2.4 below for some more technical details about variable names.

Exercise 2.3 (Assigning and changing the value of a variable) Open Matlab and make sure you
see the CommandWindow, the Workspace Window and the Command History Window. In the command
window, write x = 3. Then press the �Enter�key and watch what happens in the workspace window.
Next write:
x = x + 1
x = x + 1

Make sure you understand what is going on! Now write:
x = 3*x-4

Note that Matlab does not interpret this as an equation; interpreted as an equation, the answer would be
x = 2. Instead, Matlab multiplies 3 with the current value of x (which is 5) and subtracts 4. The result
(11) is then assigned to x. The interpretation of the = sign is thus: take the result of the instructions to
the right and put the result into the variable at the left.

2.4 Naming data structures: some technicalities*

Although names of data structures can consist of any number of characters, Matlab only uses the N �rst
letters to distinguish between names. The number N may vary from computer platform to computer
platform, and the number is found by issuing the command namelengthmax in Matlab�s Command
Window. Here is the response from the author�s computer when issuing this command:

>> namelengthmax
ans =

63

Thus, if you name one data structure by starting with 63 letters a, followed by digit 1, and another
data structure by starting with 63 letters a followed by digit 2, Matlab will accept these names as valid
names on the data structures, but Matlab will not be able to distinguish between the names. In practice,
much shorter names are used.
There is a built in command isvarname in Matlab that can be used to check whether a name is valid.

The following excerpt from the Matlab Command Window illustrates hot to use the command in order
to check the potential names sin, namelengthmax, and 5ball:

>> isvarname(�sin�)
ans =

1
>> isvarname(�namelengthmax�)
ans =

1
>> isvarname(�5ball�)
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ans =
0

The response from Matlab is 1 (�true�) for legal names, and 0 (�false�) for illegal names.
Although both sin and namelengthmax are legal names of data structures, it is probably not a good

idea to use these names: using the names may confuse Matlab as to how the names should be interpreted.
Matlab also has a number of other built in command names which should be avoided. In order to check
that a potential name is not used by Matlab for other purposes (e.g. a built-in command, etc.), issue
the command which -all <name>, where <name> is replaced by the potential name. Examples:

>> which -all sin
sin is a built-in function.
C:\MATLAB6p5\toolbox\matlab\elfun\sin.m % Shadowed
>> which -all namelengthmax
namelengthmax is a built-in function.
C:\MATLAB6p5\toolbox\matlab\lang\namelengthmax.m % Shadowed
>> which -all 5ball
5ball not found.

Note that 5ball is not found; still 5ball is an illegal name, and can not be used. It is very important to
plan the names for data structures well, and to avoid names that are already used by Matlab. Consider
e.g. that we have a data structure that contains the feed temperature of some process stream. We would
like to denote the variable by Tf. Is this a good choice? Let us check:

>> which -all Tf
C:\MATLAB6p5\toolbox\control\control\@tf\tf.m % tf method
C:\MATLAB6p5\toolbox\control\control\@zpk\tf.m % zpk method
C:\MATLAB6p5\toolbox\control\control\@ss\tf.m % ss method
C:\MATLAB6p5\toolbox\control\control\@frd\tf.m % frd method
C:\MATLAB6p5\toolbox\ident\ident\@idmodel\tf.m % idmodel method
C:\MATLAB6p5\toolbox\ident\ident\@idfrd\tf.m % idfrd method

No, it is not a good choice. What about using T_f as name of the data structure instead?

>> which -all T_f
T_f not found

Hence, T_f is both unused and a legal variable name, and can thus be used as the name for the data
structure of feed temperatures.
Note that the built-in functions may vary fromMatlab setup to setup: Depending on which Toolboxes2

are installed on your computer, you may or may not get the same response as above on your computer.
Although we have used scalars as values for data structures in examples above, the right hand side

(rhs) in the assignment (<name> = <data structure>) can be any data structure with value.

2.5 Built-in constants in Matlab

Matlab has some built-in names for constants. We have already seen the constant namelengthmax (in
reality, this is not an assigned scalar, but a so-called function � more about functions later). Usually,
it is a bad idea to �overwrite� the names of built-in constants, i.e. to use names for our own vari-
ables/constants which coincide with built-in Matlab names. Some built-in Matlab constants/names are
shown in Table 2.1.

2A Toolbox is a collection of Matlab functions (or: classes) with a somewhat specialized common topic. Most Toolboxes
are for sale at a cost that comes in addition to the cost of basic Matlab. Examples of Toolboxes are the Control Toolbox,
the Statistics Toolbox, etc.
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Table 2.1: Some built-in Matlab constants.
Name Math name Value Description
i i

p
�1 used in Mathematics

j j
p
�1 used in Electrical Engineering

pi � � �
eps � 2:2402� 10�16 Smallest number in Matlab > 0
inf 1 � e.g., 1=0
NaN � � e.g., 0=0, Not a Number

The following excerpt from Matlab�s Command Window illustrates how these constants are used.

>> i
ans =

0 + 1.0000i
>> j
ans =

0 + 1.0000i
>> pi
ans =

3.1416
>> eps
ans =
2.2204e-016

>> NaN
ans =

NaN
>> inf
ans =

Inf
>> 1/0
Warning: Divide by zero.
ans =

Inf
>> 0/0
Warning: Divide by zero.
ans =

NaN

Although it is possible to re-assign these constant names, we strongly recommend that this is avoided.
Whether a name is a built in constant or not, can also be checked by the statement which -all <name>,
as illustrated earlier.

2.6 Basic creation of arrays

2.6.1 Dimension of arrays

When organizing arrays, one could consider a scalar to be a zero-dimensional array, row arrays and
column arrays to be one-dimensional arrays, and two dimensional arrays in general to be two-dimensional
arrays. What is the signi�cance of such a notion of dimension?
Consider the two dimensional array in Table 2.2.
Why is this array two-dimensional? Because we (normally) need two numbers to address each element.

In Matlab, rows and columns are numbered with integers starting from 1. Furthermore, when addressing
the elements, the row number is given �rst, and then the column number, e.g. the content of element
(1; 1) is 1, while the content of element (2; 2) is �2� 10�3.
However, if we consider only the �rst column in Table 2.2, this column is one-dimensional because

we only need a single number (the row number) to address each element, the content of element (2) of
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Table 2.2: Example array which we want to name A.
Column 1 Column 2

Row 1 1 2
Row 2 3:7 �2� 10�3
Row 3 8 1:3� 105

the �rst column is 3:7. Similarly, a row array is one dimensional. If we consider the scalar in the element
of the third row and the second column (value: 1:3 � 105), we don�t need any number to address this
element.
Assuming that we want to name the two dimensional array of Table 2.2 by A, how do we assign

value to A? There are (at least) two ways to do this. We can give the value of each element in separate
command lines � it doesn�t really matter much which element we start with. Or we can assign the
whole data structure in one batch.

2.6.2 Element-wise assignment

Let us start by assigning element no. (3; 1):

>> A(3,1) = 8
A =

0
0
8

Notice that Matlab immediately realized that since the row and column numbers must start with digit
1, A must at least be a 3 � 1 array. Since we, the user, so far has only speci�ed the value of element
(3; 1), Matlab is designed to assume that all the other elements have value 0.
Next, let us give the value of element (2; 2):

>> A(2,2) = -2e-3
A =

0 0
0 -0.0020

8.0000 0

Notice that -2e-3 is Matlab syntax for �2 � 10�3.3 This time, Matlab realizes that the element must
have two columns. Since Matlab already knows that there are three columns, the array is augmented
to become a 3 � 2 array, which is the �nal size in this case. Thus �lling the remaining values will not
change the size of the array:

>> A(1,1) = 1;
>> A(2,1) = 3.7;
>> A(1,2) = [2];
>> A(3,2) = 1.3e5
A =
1.0e+005 *
0.0000 0.0000
0.0000 -0.0000
0.0001 1.3000

Note:
3�2�10�3 can also be written as -2*10^(-3) in Matlab, but the notation -2e-3 is clearly the preferred (and simplest!)

notation.
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� When we end a command line with a semicolon (�;�), the result is not printed in the Command
Window. If we do not end the command line with semicolon, the result is printed.

� Since a scalar is a zero-dimensional array, there is no problem in specifying the scalar as either 2
or [2].

� Even though it may seem like only two elements in the �nal result contain values di¤erent from
zero, this is not so: here, all elements have values that di¤er from zero. The reason why 4 out of 6
elements appear to be zero, is the way Matlab by default formats the numbers. We will return to
how these numbers can be formatted.

Suppose we want to change the value of one element, e.g. assume that element (2; 2) should be
+2� 10�3 instead of the current value. We then simply rewrite the value:

>> A(2,2) = 2e-3
A =
1.0e+005 *
0.0000 0.0000
0.0000 0.0000
0.0001 1.3000

We can also check the value of a certain element, e.g. element (2; 2), as follows:

>> A(2,2)
ans =

0.0020

Finally, it should be commented that this element-wise way of giving values to A is somewhat ine¢ cient
in that we have changed the size of the array twice: the �rst time when we gave the value of element
(3; 1) and thus creating a 3� 1 array, and the second time when we gave the value of element (2; 2) and
thus augmented the array to a 3� 2 array.

2.6.3 Assigning row arrays

If we consider the two dimensional array of Table 2.2, we can de�ne three row arrays:

>> A_r1 = [1,2]
A_r1 =

1 2
>> A_r2 = [3.7, -2e-3]
A_r2 =

3.7000 -0.0020
>> A_r3 = [8 1.3e5]
A_r3 =

8 130000
>> A_r2(2)
ans =

-0.0020

Here we notice that arrays are indicated by including the numbers in square braces [ and ]. Furthermore,
we can separate the various elements of each row either by comma, or by a space. Since each of the row
arrays are one-dimensional, it su¢ ces to specify one number to indicate which element we want to check,
e.g. A_r2(2).
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2.6.4 Assigning column arrays

Column arrays are constructed similar to the way row arrays are constructed. However, for column
arrays, either semicolon or Carriage Return (CR) is used to separate the elements:

>> A_c1 = [1; 3.7; 8]
A_c1 =

1.0000
3.7000
8.0000

>> A_c2 = [2
-2e-3

1.3e5]
A_c2 =
1.0e+005 *
0.0000
-0.0000
1.3000

>> A_c2(2)
ans =

-0.0020

Alternatively, we can pretend that the column array is a column matrix, and use the operation of
transposing the matrix to turn the row array into a column array. The matrix transpose of a matrix
M , MT , is performed using the notation M� in Matlab4 . Thus, we would have de�ned e.g. A_c2 by �rst
creating it as a row array, and then transposing the result:

>> A_c2 = [2, -2e-3, 1.3e5]�
A_c2 =
1.0e+005 *
0.0000
-0.0000
1.3000

The techniques of either separating elements by semicolon, or by transposing a row array, are normally
preferred since fewer lines in the Command Window are needed. However, separating elements by CR
makes the Command Window more readable.

2.6.5 Assigning two-dimensional arrays

We now consider the two dimensional array in Table 2.2 as a number of rows below each other. The
following notation is used to assign the value of the array to the name of the array:

>> A = [1, 2; 3.7 -2e-3;
8, 1.3e5]
A =
1.0e+005 *
0.0000 0.0000
0.0000 -0.0000
0.0001 1.3000

Notice that we list the �rst row �rst (either separated by comma or space), then separate the �rst row
from the second row (either by semicolon or CR), and so on. Often, the two dimensional array is easier
to read if CR is used to separate rows.

4Actually, operator ��� takes both the transpose, and the conjugate of matrix M. We will return with a more precise
description.
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Exercise 2.4 (Chaos) Write:
x = 0.7
x = 2*x*(1-x)
Repeat the last instruction several times. (Use the up arrow!) Do you see any relationship between

the result and the equation?
We can make a side-by-side comparison of the iteration sequence from two nearby initial values for x

(e.g. 0.7 and 0.7001) by
x = [0.7 0.7001]
x = 2*x.*(1-x)
Note the .* operator, signifying element by element multiplication rather than the standard matrix

multiplication! Again, repeat the last command several times to see how x changes.
Now, try with a bigger coe¢ cient in the right-hand side:
x = [0.7 0.7001]
x = 4*x.*(1-x)
Note that when we repeat the last command, the values do not tend towards a constant, but rather

�utter wildly about. This is an example of chaotic behaviour.
The results from the two close starting points diverge rapidly. In a chaotic system, a small change

in the initial value may yield very di¤erent long-time results. This is called �the butter�y e¤ect�: if the
weather is a chaotic phenomenon, then the very small change in the motion of the air caused by the
�apping of a butter�y�s wings in Brazil might in theory trigger a storm in the Indian Ocean some weeks
or months later. This e¤ect may indeed limit the feasibility of long-range weather forecasts.

2.6.6 Line continuation

For large arrays, it may be di¢ cult to �t one row on one command line. We may then split the row
across several command lines by using the line continuation operator ...:

>> A = [1, 2; 3.7 ...
-2e-3; 8, 1.3e5]
A =
1.0e+005 *
0.0000 0.0000
0.0000 -0.0000
0.0001 1.3000

Here, Matlab will consider the assignment as having taken place on a single command line.

2.6.7 One-dimensional addressing of array elements*

For any array, we can address the element element by a single number. For a scalar, the number is 1.
For row or column arrays, the number is the location of the element in the array. For two-dimensional
arrays, we imagine that the columns are stacked on top of each other, with the �rst column on the top,
and the last column on the bottom.

>> A
A =
1.0e+005 *
0.0000 0.0000
0.0000 -0.0000
0.0001 1.3000

>> A(6)
ans =

130000
>> A(5)
ans =

-0.0020
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Usually, it is more complicated to �gure out the element address using a single number address.

2.7 Exporting and importing data from �les

It is important to be able to save data from the workspace/a Matlab session to a �le, so that we can
easily import it again at a later time. It may also be important to be able to export the data to some
�le format that can be imported into other programs, or to import data from other programs such as
Excel, etc. Here, we will only discuss saving data to and loading data from basic Matlab formats, and
import of data from Excel.5

2.7.1 Saving and loading data

Suppose we have two arrays, A and B:

A =

�
1 2
3 4

�
; B =

0@ 824 �65 �814 �741
�979 �764 216 663
880 916 617 �535

1A .
We create these in Matlab as follows:

>> A = [1, 2; 3, 4];
>> B = [824, -65, -814, -741; -979, -764, 216, 663;

880, 916, 617, -535];

Suppose these two data structures are the only ones in the workspace of Matlab at the time being.
First, we want to save all data structures of the workspace to a �le. Before doing so, we need to determine:

1. The location of the �le on the computer. The default directory where the �le will be placed, is
the Current Directory, see �g. 1.1 on p. 4. Clicking the down-arrow (_) for the Current Directory
brings up a list of previously used directories, which can be selected. Clicking the ellipsis icon (: : :)
to the right of the Current Directory list, brings up a �le browser that can be used to select the
directory.

2. What �le type to save the workspace in. The default �le type is Matlab�s own .mat type. The
alternative is to save the workspace as an .ascii �le. Note that the .mat type works both faster,
and preserves more information.

The basic syntax for saving �les is save <filename> {-<filetype>}, where <filetype> can be
either mat or ascii (mat is the default), and {} indicates that what is between these braces is optional.
Here is an example of saving the workspace to both �le types:

>> save myworkspacem1 -mat
>> save myworkspacea -ascii
>> save myworkspacem2

Note that saving to myworkspacem2 also leads to a �le of type .mat, i.e. myworkspacem2.mat. The
reason is that .mat is the default �le type.
Next, imagine that we clear the workspace so that there is nothing there. This will typically be the

case when we start up Matlab, but we can also enforce an empty workspace (more about that later). So,
the workspace is empty. Let us then load the �le containing the workspace we just saved. The syntax
is load {-<filetype>} <filename>6 . We �rst see what happens when we load the .mat �les.

>> load myworkspacem1
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Content of Workspace after
loading myworkspacem1

Matlab command for
loading myworkspacem1

Figure 2.1: The result after loading a .mat �le.

The result is shown in �g. 2.1. We see that the original variable names are preserved. What then if we
load a .ascii �le? It turns out that Matlab can not load the �le myworkspacea. The reason is that the
arrays have a di¤erent number of columns:

>> load myworkspacea
??? Error using ==> load
Number of columns on line 3 of ASCII file
C:\MyProjects\Documents\FAG\Matlab\Matlab\myworkspaceamust be the same as
previous lines.

See FILEFORMATS for a list of known file types and the functions used to read them.

If we open the �le in a text editor (e.g. Notepad, or the Matlab editor), the ASCII �le looks as in �g.
2.2. This indicates that the ASCII format is not useful for storing more than one data structure, and
perhaps it is not suitable at all for some data structures. Note also that there is no information about
the array names in the �le.
It is possible to use more details when saving and loading the workspace. We can choose to only save

part of the workspace. The syntax is: save <filename> {<variablename1> ... <variablenameN>}
{-<filetype>}, where {<variablename1> ... <variablenameN>} is meant to indicate that we
can list any number of variable names, and that they should be separated by space (not comma!).
Similarly, the syntax for loading �les is load {-<filetype>} <filename> {<variablename1> ...
<variablenameN>}. Obviously, since ASCII �les do not preserve information about variable names,
and are only useful for saving a single variable, for ASCII �les it is not relevant to choose which variable
to load. The following examples illustrate the use of save and load.

>> save myworkspacem
>> save myworkspacemA A
>> save myworkspacemB B
>> save myworkspaceaA A -ascii
>> save myworkspaceaB B -ascii

5 It is possible to import data using commands such as fileread, fread, etc.
6Note that for saving �les, the �le type is given after the �lename, while for loading �les, the �le type is given before

the �lename.
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Array A
Array B

Figure 2.2: The content of the ASCII �le. Note that the �rst two rows come from the A array, while the
three next rows come from the B array.

Matlab command: load
myworkspacemA

loaded data structure:
array A

Figure 2.3: Situation after loading �le myworkspacemA (a .mat �le), which only contains array A.

This leads to the following �les:

19.07.2003 16:01 66 myworkspaceaA
19.07.2003 16:01 195 myworkspaceaB
19.07.2003 16:01 264 myworkspacem.mat
19.07.2003 16:01 184 myworkspacemA.mat
19.07.2003 16:01 208 myworkspacemB.mat

5 File(s) 917 bytes

What happens if we start with an empty workspace and load these �les? The following examples
illustrates what takes place.

>> load myworkspacemA

This operation leads to the situation in �g. 2.3. Similarly:

>> load myworkspaceaB
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Matlab command for
loading myworkspaceaBContent of Workspace after

loading myworkspaceaB

Figure 2.4: Situation after loading �le myworkspaceaB (an .ascii �le), which only contains array B.

This operation leads to the situation in �g. 2.4. Note in particular that since the ASCII �le does not
contain information about the name of the stored array, the loaded variable takes its name from the
loaded �le. Thus, what used to be array B now is named myworkspaceaB.

2.7.2 File import

The simplest way of importing data from Excel is via the Matlab File/Import Data... command.
This command can also be used to import data saved using the save command of Matlab (see previous
subsection). This command simply opens a �le browser which shows �les that Matlab recognizes. Suppose
we have an Excel spreadsheet as in �g. 2.5. In the Matlab window, we choose the command File/Data
Import..., which opens a �le browser.7 We choose the relevant �le (MatlabImportData.xls, see �g.
2.5), and click Open. The Import Wizard is opened, and leads to the result in �g. 2.6. Clicking Finish
in the Matlab Import Wizard populates the Matlab workspace with the variables data, textdata, and
colheaders. These data look as follows:

>> data
data =

1.0000 78.0000 0.3000
2.0000 79.0000 0.4000
3.0000 82.0000 0.5500
4.0000 85.0000 0.5700
5.0000 92.0000 0.5900

>> colheaders
colheaders =

�Sample no.� �Temperature� �Mole fraction�
>> textdata
textdata =

�Sample no.� �Temperature� �Mole fraction�

So far, we have learned how to build the data structure (array) of variable data (but not how to build
the data structures colheaders and textdata � which are cell arrays). In order to analyze the data
contained in variable data, we need to be able to deconstruct the variable, and pick out elements of the
array. We�ll get back to that problem soon.

7 It is required that Excel is installed on your computer for this to work: Matlab communicates with Excel in order to
import the data.
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Figure 2.5: Excel spreadsheet with data that we want to import into Matlab.

Figure 2.6: The result of the Matlab Import Wizard.
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Figure 2.7: The function y = sinx, where x is the input argument, and y is the output argument. This
is an example of a relationship between x and y, which is also a function.
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Figure 2.8: Implicit plot of x2 + y2 = 1. This is an example of a relationship between x and y which is
not a function.

2.8 Functions and operations

The basic idea of functions is known from high school mathematics: A function is an operation that
maps its input argument(s) uniquely into its output argument(s). The basic property is the uniqueness:
with a speci�ed (input) argument, the answer (output argument) is uniquely determined. There is no
room for doubt or randomness. An example of a function is y = sinx, which is shown in �g. 2.7. When
we �x the input argument (the value of x), the value for the output argument (y) is given uniquely.
An example of a curve that does not satisfy the property of a function, is the implicit plot of x2+y2 =

1, �g. 2.8. This is not a function simply because if we �x the input argument (e.g. x), there is not a
unique output argument (y when x is the input argument). This non-uniqueness causes the mapping
between x and y to not be a function.
Matlab has many built-in functions. The typical structure of calling these functions are: output_argument

= function_name(input_argument). The function name must satisfy the requirements for Matlab vari-
able names. The input and output arguments can be any data structure, and can also be lists (comma
separated) of variables/data structures. There can even be a variable number of input and output
arguments, depending on the properties of the input arguments and how much details of the output
arguments the user is interested in. The requirement for making these functions is still that when the
input arguments are given, there is a unique answer (output argument).
Let us consider what takes place during the common mathematical operation of multiplication, e.g.

consider
y = 3x.

Here, the input argument x is multiplied by the number 3 in order to obtain the output argument y.



20 CHAPTER 2. ARRAYS: MATLAB�S BASIC DATA STRUCTURE

There is a unique relationship between x and y, so this is a function. In order to compute the output
argument in Matlab, we can use e.g. the built-in function c = mtimes(a,b):

>> x = 5;
>> y = mtimes(3,x)
y =

15

This is a simple example of using a function in Matlab. There are some restrictions on what the input
arguments can be for this function to work, but let us not worry about this now.
In the particular case of function mtimes (and a few other functions), we know from mathematics

that it is more convenient to introduce the operator multiplication. Thus, we can instead express y = 3 �x
as follows:

>> x = 5;
>> y = 3*x
y =

15

Every operation in Matlab has an equivalent function. But there are many functions that do not have
an equivalent operator. Although we in the examples above have used scalar arguments, many functions
accept or need other data structures as arguments (e.g. arrays). We will get back to this later.

Exercise 2.5 Consider the mathematical expression z = 3x� 2y + (x�y)2
x+y . Using the operator +, -, *,

/, and ^, this can be written as:
z = 3*x - 2*y + ((x-y)^2)/(x+y)
in Matlab. Check this, by �rst assigning values to x and y.
Next, try to repeat this using the corresponding functions plus, -, mtimes, mrdivide, and mpower:
z = plus(mtimes(3,x), plus(mtimes(-2,y), mrdivide(mpower(plus(x,-y),2), plus(x,y))));
Do you get the same result? Which formulation is simplest?

2.9 Numeric format and accuracy

All commands in Matlab are carried out in double precision8 . 8 bytes are used to store each element in
an array, according to some IEEE standard9 . In practice, this means that there is ca. 16 decimal digits
accuracy in the computations, and a range of roughly

�
10�308; 10+308

�
. Many times, the accuracy in

observed data that are used in computations is much lower, but still, Matlab always works with double
precision, and the full accuracy is always stored to �les. We can, however, in�uence how the data are
presented to the user in the Matlab Command Window.
Table 2.3 shows the available commands for manipulating the format of the data as they are presented

to the user.
The command format compact is useful for saving space when inserting Matlab commands/responses

into a word processor. As an example, consider our familiar array:

>> format compact
>> a = [3, 2; 3.7, -2e-3; 8, 1.3e5]
a =
1.0e+005 *
0.0000 0.0000
0.0000 -0.0000
0.0001 1.3000

8Since ca. version 6.5 of Matlab, there is also support for other data types such as single precision, integer, boolean,
etc.

9 IEEE = The Institute of Electrical and Electronics Engineers, Incorporated, is an engineering organization with over
365 000 members in more than 105 countries; about 40% of the members are from outside of the USA.
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Table 2.3: Available commands to format data structures in Matlab.
Command Description Comment
format Default. Same as short (see below).
format short Scaled �xed point format with 5 digits. default
format long Scaled �xed point format with 15 digits.
format short e Floating point format with 5 digits.
format long e Floating point format with 15 digits.
format short g Best of �xed or �oating point format with 5 digits.
format long g Best of �xed or �oating point format with 15 digits.
format hex Hexadecimal format.
format + The symbols +, - and blank are printed for positive, negative and

zero elements. Imaginary parts are ignored.
format bank Fixed format for dollars and cents.
format rat Approximation by ratio of small integers.
format compact Suppress extra line-feeds.
format loose Puts the extra line-feeds back in. default

This (default) formatting is with 5 digits accuracy. Let�s change this to 15 digits accuracy:

>> format long
>> a
a =
1.0e+005 *
0.00003000000000 0.00002000000000
0.00003700000000 -0.00000002000000
0.00008000000000 1.30000000000000

Exercise 2.6 Experiment with each of the other format statements using the above array a.

Internally, computers use binary numbers to store the numbers. This means that Matlab introduces
inaccuracies in the computations: e.g., 1=3 is not represented as 1=3, but rather as 3fd5555555555555
in Hexadecimal numbers:

>> format short
>> 1/3
ans =

0.3333
>> format hex
>> ans
ans =

3fd5555555555555

See Appendix C for a more detailed example on how Hexadecimal numbers work.

2.10 Functions for creating arrays

Table 2.4 shows some functions for creating matrices. Let us illustrate the basic use of some of these
functions.

2.10.1 Creating arrays

The colon operator The colon operator is often used with integers, but can also be used with
�oating point numbers:
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Table 2.4: Some commands for creating and manipulating arrays in Matlab.
Command Notation Description
m:k:n, colon(m,k,n) m : k : n Colon operator for creating row array where the �rst element has

value m, the last element has value n, and the elements in between
are evenly spaced with distance k.

linspace(x,y,n) � Creates row array with n elements, where the �rst element has
value x, the last element has value y, and the elements in between
are evenly (linearly) spaced.

logspace(x,y,n) � Creates row array with n elements, where the �rst element has
value 10x, the last element has value 10y, and the elements in
between are logarithmically spaced.

zeros(m,n) 0m;n m� n -array �lled with 0.
ones(m,n) 1m;n m� n -array �lled with 1.
eye(m,n) Im;n m� n -array with 1 on the main diagonal, and 0 elsewhere.
diag(v) diag (A;B) If v is an array of length n: creates an n�n -array with the elements

of v on the main diagonal.
rand(m,n) � m � n -array with uniformly distributed random numbers in the

intervall (0; 1).
randn(m,n) � m�n -array with normally distributed random numbers � N (0; 1).
size(A), size(A,n) � Produces a row vector where the �rst element is the number of

rows of array A, and the second number is the number of columns
of A.

length(A) � The maximum of the two numbers in size(A).
reshape(A,k,l) � m�n -array A is reshaped into a k� ` -array; this is only possible

if m � n = k � `.
rot90(A,k) � Array A is �rotated�k � 90� counterclock-wise.
blkdiag(A,B) diag (A;B) Block-diagonal matrix with matrices A and B on the main diagonal

blocks.
toeplitz(c,r) � Produces a Toeplitz array with c as the �rst column, and r as the

�rst row. With a single argument, c and r are assumed equal.
hankel(c,r) � Produces a Hankel array with c as the �rst column, and r as the last

row. With a single argument, c is given, and the array is square.
repmat(A,m,n) � Replicates a matrix: matrix A is stacked together into a super-

matrix with m block rows of copies of A, and n block columns of
copies of A.

kron(A,B) A
B Produces the Kronecker-product of A and B, A
B.
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>> 1:2:6
ans =

1 3 5
>> 6:-3:-6
ans =

6 3 0 -3 -6
>> pi:pi/10:2*pi
ans =
Columns 1 through 5

3.1416 3.4558 3.7699 4.0841 4.3982
Columns 6 through 10

4.7124 5.0265 5.3407 5.6549 5.969
Column 11

6.2832

The colon operator is used extensively in operation on arrays, as we will see soon. Note that the end
point (n of m : k : n) is only included if it can be written as n = m+k � i where i is some integer number.
Also notice that when using the colon operator, we do not explicitly specify the number of elements in
the row array.
The function for doing the same as the colon operator, is colon(m,k,n):

>> colon(1,2,6)
ans =

1 3 5

Linspace and logspace With the linspace command, we do not specify the distance between
the numbers, but we do specify the number of elements in the row array:

>> linspace(0,2*pi,5)
ans =

0 1.5708 3.1416 4.7124 6.2832

If the number of elements is left out (e.g., we write linspace(x,y)), then the default number of elements
is 50.
When using the logspace command, the result is as follows:

>> format short g
>> logspace(-3,1,5)
ans =

0.001 0.01 0.1 1 10

Zeros and ones Using function zeros is exempli�ed by the following Matlab session:

>> zeros(2,3)
ans =

0 0 0
0 0 0

>> zeros(2)
ans =

0 0
0 0
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Notice that when we only use one argument in the function, the resulting array is square.
Function ones works similarly to function zeros:

>> ones(2,3)
ans =

1 1 1
1 1 1

>> ones(2)
ans =

1 1
1 1

Eye and diag Function eye also works similarly:

>> eye(2,3)
ans =

1 0 0
0 1 0

>> eye(2)
ans =

1 0
0 1

Function eye is typically used to generate the identity matrix in linear algebra.
Function diag works as follows:

>> diag([1,2,3])
ans =

1 0 0
0 2 0
0 0 3

Note that diag can be used to create square �eye�arrays:

>> diag(linspace(1,1,3))
ans =

1 0 0
0 1 0
0 0 1

Note also that function diag can have a second argument: diag(v,k). The second argument is then
an integer, and speci�es whether the diagonal should be placed above the main diagonal (positive k) or
below the main diagonal (negative k).

>> diag(1:2)
ans =

1 0
0 2

>> diag(1:2,0)
ans =

1 0
0 2
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>> diag(1:2,-1)
ans =

0 0 0
1 0 0
0 2 0

>> diag(1:2,2)
ans =

0 0 1 0
0 0 0 2
0 0 0 0
0 0 0 0

Finally, function diag can also be used to construct an array by extracting the diagonal from a matrix
� the result is a column array:

>> A = [1, 2; 3.7 -2e-3; 8, 1.3e5]
A =

1 2
3.7 -0.002
8 1.3e+005

>> diag(A)
ans =

1
-0.002

>> diag(A,-1)
ans =

3.7
1.3e+005

Random numbers Uniformly distributed random numbers are created using function rand:

>> rand(2)
ans =

0.95013 0.60684
0.23114 0.48598

>> rand(2)
ans =

0.8913 0.45647
0.7621 0.018504

>> rand(2,3)
ans =

0.82141 0.61543 0.92181
0.4447 0.79194 0.73821

Here, we notice that in the �rst two calls to the function (calling rand(2) twice), the result is di¤erent
each time. The reason is that the numbers are supposed to be random, and thus they should not be the
same. For comparisons, we often want to enforce the results of two drawings to be the same. We can
achieve this by resetting the algorithm with command rand(�state�,0):

>> rand(2)
ans =

0.95013 0.60684
0.23114 0.48598

>> rand(�state�,0)
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>> rand(2)
ans =

0.95013 0.60684
0.23114 0.48598

The random generator for normally distributed numbers works in the same way, e.g.:

>> randn(2)
ans =

-0.43256 0.12533
-1.6656 0.28768

2.10.2 Size of arrays

Size Sometimes we don�t know the size of an array, and it is useful to �nd the size. This can be
done by using function size. Suppose we have an array A with an unknown size m � n. We �nd the
size as follows:

>> A = ones(20,30);
>> size(A)
ans =

20 30

Here, we can argue that we already knew the size: we had just created matrix A to be of size 20 � 30.
But we can easily get into a situation where we do not really know the size, or where it is too complicated
to �gure it out; thus it may be easier to use command size to �nd the size. Let us expand slightly on
the example:

>> sA = size(A)
sA =

20 30
>> m = sA(1)
m =

20
>> n = sA(2)
n =

30

We see that we can easily pick out the number of rows and the number of columns.
If we only care about a speci�c dimension (e.g. the number of rows, or the number of columns), than

we can pick out this as follows:

>> size(A,1)
ans =

20
>> size(A,2)
ans =

30

Length Sometimes � typically for one-dimensional arrays, we want to �nd the length of the array.
For this case, it is simpler to use the length function:
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>> v = 1:3:20;
>> length(v)

ans =

7

>> size(v)

ans =

1 7

Application of size Let us �nally consider a simple application of the size command: suppose
we have an array of unit elements (1), A, and that we want to create an array B of the same size, but
with uniformly distributed random numbers. This can be achieved as follows:

>> A = ones(2,3)

A =

1 1 1
1 1 1

>> B = rand(size(A))

B =

0.012863 0.68312 0.035338
0.38397 0.092842 0.6124

2.10.3 Rearranging arrays

Reshape Sometimes, it is useful to rearrange the shape of an array. Suppose we have an array
A of dimension m � n, and that we want to turn this array into an array B of dimension j � k. As
long as m � n = j � k, arrays A and B will contain the same number of elements. When this dimension
requirement m � n = j � k is ful�lled, Matlab function reshape(A,j,k) can be used to change the shape
of A from being a 3� 2 array, into being a 2� 3 array:

>> A = rand(3,2)
A =

0.81317 0.20277
0.0098613 0.19872
0.13889 0.60379

>> B = reshape(A,2,3)
B =

0.81317 0.13889 0.19872
0.0098613 0.20277 0.60379

Conceptually, this command may be carried out as follows:

1. First, matrix A is made into a column array with m � n rows (and one column).

2. Then, the �rst j elements of the column array are placed in the �rst column of array B, the next j
elements of the column array are placed in the next column of B, and so on, until B has k columns.
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Rotate When considering the geometric layout of an array, it is sometimes of interest to rotate this
layout. Function rot90 rotates an array counterclockwise by 90�:

>> A = rand(2,3)
A =

0.46599 0.84622 0.20265
0.41865 0.52515 0.67214

>> rot90(A)
ans =

0.20265 0.67214
0.84622 0.52515
0.46599 0.41865

>> rot90(ans)
ans =

0.67214 0.52515 0.41865
0.20265 0.84622 0.46599

>> rot90(ans)
ans =

0.41865 0.46599
0.52515 0.84622
0.67214 0.20265

>> rot90(ans)
ans =

0.46599 0.84622 0.20265
0.41865 0.52515 0.67214

We see that after 4 rotations, we are back where we started. Sometimes, it may be useful to combine
the rot90 function with the operation of transposing an array.

2.11 Subarrays and superarrays

2.11.1 Picking subarrays

Indexing the array In this section, we only give a basic presentation of how to index arrays. See
Appendix B.1 p. 159 for a more complete discussion.
Suppose array A is given. We often wish to pick out element (i; j) from array A. Let us denote

element (i; j) of array A by Ai;j , which in Matlab is given as A(i,j).
For array A, it can also be useful to be able to pick a subarray which has indices over the rectangle

given by row i1 to row i2, and column j1 to j2. This submatrix can be denoted as Ai1:i2;j1:j2 . In Matlab,
this subarray is speci�ed as A(i1:i2, j1:j2):

>> rand(�state�,0)
>> A = rand(3,4)
A =

0.95013 0.48598 0.45647 0.4447
0.23114 0.8913 0.018504 0.61543
0.60684 0.7621 0.82141 0.79194

>> A(1,3)
ans =

0.45647
>> A(2:3,2:3)
ans =

0.8913 0.018504
0.7621 0.82141
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Properties of elements Often, it is desirable to �nd elements of arrays with certain properties.
We can use the function find to �nd the indices of such elements. Let us �nd the elements of array A
with elements which satisfy A (i; j) > 0:5. This can be done as follows:

>> A
A =

0.95013 0.48598 0.45647 0.4447
0.23114 0.8913 0.018504 0.61543
0.60684 0.7621 0.82141 0.79194

>> ind = find(A>0.5)
ind =

1
3
5
6
9
11
12

Clearly, here the index must be interpreted as a one-dimensional addressing of the elements of A, i.e.
the row number in col (A). We can now �nd the value of these elements by using the following syntax:

>> A(ind)
ans =

0.95013
0.60684
0.8913
0.7621
0.82141
0.61543
0.79194

We can also use the found index to �clip�the values of A such that the maximal value is 0:5:

>> A(ind) = 0.5
A =

0.5 0.48598 0.45647 0.4447
0.23114 0.5 0.018504 0.5

0.5 0.5 0.5 0.5

2.11.2 Building superarrays

Concatenation It is possible to concatenate several arrays into superarrays. The concatenation
operator is [], and this operator works just as if the arrays we concatenate, are scalars:

>> A = rand(2,3)
A =

0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613

>> B = [A, A; A, A]
B =

0.41027 0.057891 0.81317 0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613 0.89365 0.35287 0.0098613
0.41027 0.057891 0.81317 0.41027 0.057891 0.81317
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0.89365 0.35287 0.0098613 0.89365 0.35287 0.0098613

There are some obvious restrictions on how to concatenate arrays.

� Every element of each block row must have the same number of rows.

� The total number of columns in each block row must be the same.

>> C = [[1,2;2,4], A;
A, [4,7;2,2]]

C =
1 2 0.41027 0.057891 0.81317
2 4 0.89365 0.35287 0.0098613

0.41027 0.057891 0.81317 4 7
0.89365 0.35287 0.0098613 2 2

>> D = [ [1;2], A, [4;2];
A, [4,7; 2,2]]

D =
1 0.41027 0.057891 0.81317 4
2 0.89365 0.35287 0.0098613 2

0.41027 0.057891 0.81317 4 7
0.89365 0.35287 0.0098613 2 2

Note here that the �rst array [1,2;2,4] of block row 1 of C has the same number of rows as array A.
Likewise, array A has the same number of rows as array [4,7; 2,2]. This ful�lls the requirement for
the rows. Finally, the number of columns for [1,2; 2,4] and A are the same as the number of columns
for A and [4,7; 2,2]. This ful�lls the requirement for the columns. Similarly, the requirements are
ful�lled for array D.

Replication of arrays Sometimes, we need to replicate an array many times. Function repmat
(replicate matrix) makes a copy of the array in question: E = repmat(A,m,n) produces m � n copies of
array A, with m copies of A below each other, and then n copies of this stacked array beside each other:

>> A
A =

0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613

>> repmat(A,3,2)
ans =

0.41027 0.057891 0.81317 0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613 0.89365 0.35287 0.0098613
0.41027 0.057891 0.81317 0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613 0.89365 0.35287 0.0098613
0.41027 0.057891 0.81317 0.41027 0.057891 0.81317
0.89365 0.35287 0.0098613 0.89365 0.35287 0.0098613

2.12 Housekeeping

It is important to be able to administer both variables and commands in a computational program like
Matlab. The functions in Table 2.5 are useful for housekeeping in Matlab.
The use of these commands is discussed in more detail in the following sections.
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Table 2.5: Some commands for basic housekeeping in Matlab.
Command Description
who List the variables de�ned in Matlab�s workspace.
whos List variables and type/size in Matlab�s workspace.
clear Delete all variables from Matlab�s workspace; clear a b clears a and b.
", # Use arrows to navigate in Matlab�s list of previous commands.
�!,  � Use arrows to navigate in the current command line for editing the command.
cd Change directory.
delete Delete a �le.
dir Show the �les in the directory.
what Show the Matlab �les in the directory.
mkdir Create a directory.

2.12.1 Variables

We have already seen that the variables that have been introduced, are listen in the Workspace window
� see �g. 1.1. We have also indicated how we can use the Array Editor to edit the variables. Let us
now see how we can address the variables from the command line.
In order to get a list of variables, we can use the commands who and whos. Command who basically

lists the variables, while command whos also gives some details about the variables:

>> a = linspace(1,10,20);
>> b = zeros(1,20);
>> c = ones(1,20);
>> d = eye(1,20);
>> rand(1,20);
>> who

Your variables are:

a ans b c d

>> whos
Name Size Bytes Class

a 1x20 160 double array
ans 1x20 160 double array
b 1x20 160 double array
c 1x20 160 double array
d 1x20 160 double array

Grand total is 100 elements using 800 bytes

Remember that each element in an array occupies 8 bytes of memory. Since we have 5 � (1� 20) = 100
elements, this means 100 � 8 = 800 bytes.
The variable with name ans always contains the latest result that has been computed.
If we want to delete a variable from memory, this is done using command clear. By simply writing

the command >>clear, every variable in the workspace is deleted. If we want to specify a speci�c
variable to delete, or a set of variables to delete, this is done as follows:

>> clear ans
>> clear a b
>> who

Your variables are:
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c d

Notice that when listing variables that are to be cleared, these must be separated by space and not by
comma. If we write >>clear a, b, this is interpreted as clear a and then display b in the command
window.
We can even use regular expressions to clear variables:

>> A1 = rand(2,30);
>> A2 = rand(2,40);
>> who

Your variables are:

A1 A2 c d

>> clear A*
>> who

Your variables are:

c d

2.12.2 Matlab commands

As we have seen, by double-clicking on a command in Matlab�s Command History window, the command
is copied to the Command Window and executed.
Another way to use previous commands, is to step through the previous commands starting with

the most recent command, by using arrow-up (") or arrow-down (#) on the keyboard. The previous
commands are stored in a history list, which is seen in the Command History window. When the
desired command has been found by stepping up and down in the list using arrow-up or arrow-down, the
command is executed by hitting the carriage return (CR) key. It is also possible to edit the commands
that are called back to the command window using the arrows: use the mouse to mark possible characters
to delete using either the Delete or the Backspace keys. If you want to add new text in the command,
either use the mouse to position the cursor, or use arrow-left ( �) or arrow-right (�!) to position the
cursor. Then type in the missing characters.
Quite often, the history list is lengthy, and one may have to hit the arrow-keys many times to �nd

the correct command. If so, the following possibility is useful: type the �rst characters in the command
that you want to re-use, and hit the arrow-up key ("). This way, the most recent command of the history
list starting with exactly those characters, will be found.

2.12.3 OS commands

Sometimes, it is useful to issue operating systems (OS) commands from within Matlab. This used to
be achieved by preceding the command with the character !. In the latest version of Matlab, preceding
a command by ! and ending the command by &, opens a console window where OS operation can be
performed on a command line. However, in the latest version of Matlab, there are built in Matlab com-
mands for issuing the most common OS commands, such as cd (Change Directory), delete (DELETE
�le), dir (list content of DIRectory), mkdir (ReMove DIRectory), etc.

>> dir

. eulersim.m reaksim1.m

.. losandregrad.m reaksim2.m
MatlabImportData.xls matlab.mat reaksim3.m
dampfjaer.m myworkspaceaA slett
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data.m myworkspaceaB slett.mat
dfsim1.m myworkspacem.mat temp
dfsim2.m myworkspacemA.mat temp.mat
etwadata.m myworkspacemB.mat
etwaeqsol.m odexeu.m
etweq.m reakdata.m

>> cd ..
>> dir

. Intro-kurs.ind Matlab-course.dmp

.. Intro-kurs.lof Matlab-course.dvi
FHQOYR00.bmp Intro-kurs.log Matlab-course.idx
Figurer Intro-kurs.lot Matlab-course.ilg
HJ3FG000.wmf Intro-kurs.tex Matlab-course.ind
HJ3FG001.wmf Intro-kurs.toc Matlab-course.lof
Intro-kurs.aaa IntroFig Matlab-course.log
Intro-kurs.aab Matlab Matlab-course.lot
Intro-kurs.aux Matlab-course.aaa Matlab-course.tex
Intro-kurs.bak Matlab-course.aab Matlab-course.toc
Intro-kurs.bbl Matlab-course.aut figs
Intro-kurs.blg Matlab-course.aux sw0000
Intro-kurs.dvi Matlab-course.bak
Intro-kurs.idx Matlab-course.bbl
Intro-kurs.ilg Matlab-course.blg

>> cd Matlab
>> dir

. eulersim.m reaksim1.m

.. losandregrad.m reaksim2.m
MatlabImportData.xls matlab.mat reaksim3.m
dampfjaer.m myworkspaceaA slett
data.m myworkspaceaB slett.mat
dfsim1.m myworkspacem.mat temp
dfsim2.m myworkspacemA.mat temp.mat
etwadata.m myworkspacemB.mat
etwaeqsol.m odexeu.m
etweq.m reakdata.m

2.13 Basic functions

2.13.1 Overview of operations

We have already used the built-in Matlab commands eye, zeros, ones, linspace, colon, etc. There are
a number of mathematical functions in Matlab, e.g.sin, cosh, tan, exp, etc., as well as other functions.
Typically, operations/functions are either unary or binary. Unary functions operate on a single object,

while binary functions operate on two objects. The very fundamental binary operations for arrays are
array addition, array subtraction, array multiplication, and array division: in Table 2.6, it is assumed
that both A and B are arrays of the same size.
Let us next take a look at the mathematical (unary) functions. If we in Matlab let an array be the

argument of a mathematical function, how is the result to be interpreted? A simple example illustrates
this the best. If we consider applying the sinus function sin on the row array (x1; x2; : : : ; xn), this is
interpreted as the following row array:

sin (x1; x2; : : : ; xn) = (sinx1; sinx2; : : : ; sinxn) :
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Table 2.6: Basic binary array operations in Matlab. It is assumed that array A and B have the same
shape.

Matlab operator Matlab function Description
A+B plus(A,B) Element by element addition, Aij +Bij .
A-B minus(A,B) Element by element subtraction, Aij �Bij .
A.*B times(A,B) Element by element multiplication, Aij �Bij .
A./B rdivide(A,B) Element by element division, Aij=Bij .

>> x=0.3

x =

0.3000

>> sin(x)

ans =

0.2955

>> x=[0.3,0.7,0.18]

x =

0.3000 0.7000 0.1800

>> sin(x)

ans =

0.2955 0.6442 0.1790

>> x=[0.3;0.7;0.18];
>> sin(x)

ans =

0.2955
0.6442
0.1790

In general, let fun (x) denote a general mathematical function of a scalar x. If we use an m�n array
A as argument to the Matlab function, we (normally) get:

fun (A) =

0BBB@
fun (A1;1) fun (A1;2) � � � fun (A1;n)
fun (A2;1) fun (A2;2) � � � fun (A2;n)

...
...

. . .
...

fun (Am;1) fun (Am;2) � � � fun (Am;n)

1CCCA .
In other words: the answer is found by copying the input argument array, and then mapping the function
to every element of the copied input argument. This is valid for most mathematical functions, e.g. when
fun is sin, cos, tan, sinh, cosh, sec, exp, etc. As an example:

>> A = [1,2,3;2,3,5]

A =
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1 2 3
2 3 5

>> sinh(A)

ans =

1.1752 3.6269 10.0179
3.6269 10.0179 74.2032

where we have used the hyperbolic sine function sinh.
One more example: suppose we want to compute sinx for a number of values x in the interval [0; 2�].

This can be achieved as follows:

>> x = linspace(0,2*pi,10)

x =

Columns 1 through 6

0 0.6981 1.3963 2.0944 2.7925 3.4907

Columns 7 through 10

4.1888 4.8869 5.5851 6.2832

>> y = sin(x)

y =

Columns 1 through 6

0 0.6428 0.9848 0.8660 0.3420 -0.3420

Columns 7 through 10

-0.8660 -0.9848 -0.6428 -0.0000

In the sequel, some basic Matlab functions are discussed. More functions can be found e.g. in (?) or
in the Matlab documentation.

2.13.2 Trigonometric functions

A partial list of available trigonometric functions is shown in Table 2.7.
Examples of the use of these trigonometric functions are shown below:

>> rand(�state�,0)
>> A = rand(2,3)

A =

0.9501 0.6068 0.8913
0.2311 0.4860 0.7621

>> sin(A(2,2))
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Table 2.7: Selected trigonometric functions in Matlab.
Matlab function Math function Description
cos(x) cosx x is given in radians.
cosh(x) coshx = (ex + e�x) =2 � ��
sin(x) sinx � ��
sinh(x) sinhx = (ex � e�x) =2 � ��
tan(x) tanx = sinx= cosx � ��
tanh(x) tanhx = sinhx= coshx � ��
acos(x) cos�1 x Result is given in radians.
acosh(x) cosh�1 x � ��
asin(x) sin�1 x � ��
asinh(x) sinh�1 x � ��
atan(x) tan�1 x � ��
atanh(x) tanh�1 x � ��

ans =

0.4671

>> sin(A)

ans =

0.8135 0.5703 0.7779
0.2291 0.4671 0.6904

>> asin(ans)

ans =

0.9501 0.6068 0.8913
0.2311 0.4860 0.7621

Notice that sin (A2;2) = (sinA)2;2. Also notice that when we �rst take the sinus of a number, and next
take the inverse sinus (arcsine), we will not necessarily get back the original result � the answer may
be in a di¤erent quadrant:

>> cos(-1)

ans =

0.5403

>> acos(ans)

ans =

1

2.13.3 Exponential functions

A partial list of available exponential functions is shown in Table 2.8.
Some examples of the use of these functions:
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Table 2.8: Selected exponential functions in Matlab.
Matlab function Math function Description
x.^p xp Array exponentiation.
exp(x) expx = ex Exponentiation of e:
log(x) lnx = loge x = exp

�1 x Natural logarithm.
log10(x) log10 x = lnx= ln 10 Briggs�/logarithm with base 10:
log2(x) log2 x = lnx= ln 2 Logarithm with base 2:
pow2(x) log�12 x Inverse of log2 x:
sqrt(x)

p
x = x1=2 Square root of x:

Table 2.9: Selected complex functions in Matlab.
Matlab function Math function Description
abs(z) jzj Module/absolute value/magnitude of z:
angle(z) \z Phase angle in radians of z:
conj(z) �z Complex conjugate of z:
imag(z) =z Imaginary part of z:
real(z) <z Real part of z:
isreal(z) � True for real variables, false otherwise.
cplxpair(z) � Sort array into complex conjugate pairs.
complex(x,y) x+ i � y Form complex number z = x+ i � y:
z�, ctranspose(z) z� Complex conjugate and transpose of array z:

>> A(2,2)^2

ans =

0.2362

>> A.^2

ans =

0.9027 0.3683 0.7944
0.0534 0.2362 0.5808

Notice that for scalars s, we may write s^2. This doesn�t work for arrays though, or rather for array A,
writing A^2 has a di¤erent meaning than A.^2. Operation A^2 makes sense when the array is a matrix
with certain properties, but not for general arrays. Operation A.^2 on the other hand, makes sense for
any array, and produces the result discussed in the introduction.

2.13.4 Complex functions

A partial list of available complex functions is shown in Table 2.9.
Some example of the use of these functions:

>> B = A-eye(size(A))

B =

-0.0499 0.6068 0.8913
0.2311 -0.5140 0.7621

>> C = sqrt(B)
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C =

0 + 0.2233i 0.7790 0.9441
0.4808 0 + 0.7170i 0.8730

>> abs(C)

ans =

0.2233 0.7790 0.9441
0.4808 0.7170 0.8730

>> angle(C)

ans =

1.5708 0 0
0 1.5708 0

>> conj(C)

ans =

0 - 0.2233i 0.7790 0.9441
0.4808 0 - 0.7170i 0.8730

>> imag(C)

ans =

0.2233 0 0
0 0.7170 0

>> real(C)

ans =

0 0.7790 0.9441
0.4808 0 0.8730

>> isreal(C)

ans =

0

>> C�

ans =

0 - 0.2233i 0.4808
0.7790 0 - 0.7170i
0.9441 0.8730

2.13.5 Rounding and remainder functions

A list of rounding and remainder functions is shown in Table 2.10.
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Table 2.10: Selected rounding and remainder functions in Matlab.
Matlab function Math function Description
fix(x) bjxjc � signx Round toward zero.
floor(x) bxc Round toward �1:
ceil(x) dxe Round toward +1:
round(x) [x] Round toward nearest integer.
mod(x,y) mod (x; y) � sign y Modulus or signed remainder.
rem(x,y) mod (x; y) � signx Remainder after division.
sign(x) signx Signum function.

Some examples of how to use these functions:

>> D = 10*B

D =

-0.4987 6.0684 8.9130
2.3114 -5.1402 7.6210

>> fix(D)

ans =

0 6 8
2 -5 7

>> floor(D)

ans =

-1 6 8
2 -6 7

>> ceil(D)

ans =

0 7 9
3 -5 8

>> round(D)

ans =

0 6 9
2 -5 8

>> sign(D)

ans =

-1 1 1
1 -1 1

Here, function round is probably the one that is most useful.
Modulus and remainders are computed as follows:
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Table 2.11: Selected number theoretic functions in Matlab.
Matlab function Description
factor(N) Prime factors of integer N .
isprime True for prime numbers, false otherwise.
primes(N) Generate list of prime numbers � N .
gcd(M,N) Greatest common divisor of integers M and N .
lcm(M,N) Least common multiple of integers M and N .
rats(x) Rational approximation of �oating point number x.

>> mod(D,2)

ans =

1.5013 0.0684 0.9130
0.3114 0.8598 1.6210

>> rem(D,2)

ans =

-0.4987 0.0684 0.9130
0.3114 -1.1402 1.6210

2.13.6 Number theoretic functions*

A partial list of number theoretic functions is shown in Table 2.11.
Prime factors are found as follows:

>> N = 133

N =

133

>> factor(N)

ans =

7 19

Notice that the answer is given as elements in a row array. Is e.g. 19 a prime number?

>> isprime(ans(2))

ans =

1

>> isprime(N)

ans =

0
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What are the prime numbers smaller than 133?

>> primes(N)

ans =

Columns 1 through 11

2 3 5 7 11 13 17 19 23 29 31

Columns 12 through 22

37 41 43 47 53 59 61 67 71 73 79

Columns 23 through 32

83 89 97 101 103 107 109 113 127 131

What is a good rational approximation of �?

>> rats(pi)

ans =

355/113

Suppose we want to simplify 144=244? We compute the greatest common divisor:

>> gcd(144,244)

ans =

4

Thus, 1444 =
244
4 = 36=61 is the simplest equivalent expression where both numerator and denominator are

integers. Because 4 is the GCD of (144; 244), we know that 144=4 and 244=4 are integer numbers.
Suppose we want to add 1=12 + 1=16. What is the least common multiple of 12 and 16?

>> lcm(12,16)

ans =

48

Thus, we have 1=12 + 1=16 = 48
12=48 +

48
16=48 = 4=48 + 3=48 = (4 + 3) =48 = 7=48. Because 48 is the

LCM of (12; 16), we know that 48=12 and 48=16 are integer numbers.

2.14 Help

It is a common problem that Matlab has so many functions, that it is impossible to keep track of how
each of them work. And sometimes, we don�t even know whether a certain function is available.
If we know the name of a certain function, and want to �nd out how to use it, we can either

type >>help <functionname>, >>helpwin <functionname>, or >>doc <functionname> to get a
description of how to use the function:
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Figure 2.9: The help browser window which opens when using the doc command in Matlab�s command
window, or by choosing Help/MATLAB Help in the Matlab window.

>> help det
DET Determinant.

DET(X) is the determinant of the square matrix X.

Use COND instead of DET to test for matrix singularity.

See also cond.

Reference page in Help browser
doc det.

Using doc instead of help (e.g. doc det) opens up a help browser in a separate window10 , �g. 2.9.
The help browser can also be used to search for keywords, etc., when one does not know the exact

name of a function. The help browser can also be opened from the HELP menu of the Matlab window,
by selecting MATLAB Help. From this help window, it is also possible to search the world wide web for
information about Matlab functionality.

10As an alternative to command doc, command helpwin opens a help window. When the Matlab documentation �les
are installed, command helpwin appears to give the same response as command doc.
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Basic plotting in Matlab

3.1 Overview of learning goals

In order to study data from experiments, or results from computations, it is often useful to present the
results graphically in plots. Matlab has very good support for plotting. Here, we will mainly go through
the possibilities in two-dimensional plotting. Good references for plotting in Matlab are (Higham &
Higham 2000) for a brief overview, and (Hanselman & Little�eld 2005) for more details.
After having completed this chapter, you should have a clear understanding of what a �gure is, and

how you can adjust properties of the �gure interactively in Matlab. In particular, you should master:

� How to produce two-dimensional plots and how to modify plots,

� How to create arrays of plots,

� Presentation of experimental data, 3.5.

The description will indicate how you use the Matlab commands of Table 3.1.

3.2 Basic two dimensional plots

3.2.1 The plot function

The basic plot command is plot:

>> x=linspace(0,2*pi,20);
>> y = sin(x);
>> plot(y)

plot is a built-in Matlab function. The result of this command is shown in �g. 3.1, where the plot func-
tion has been used with a single argument. Then, the elements of the (row or column array) argument is
displayed as a function of the element number: because array x has 20 elements, array y has 20 elements,
too. When using the plot command, Matlab draws straight lines between the data points. Thus, the
result is a graph with 19 straight line segments between 20 data points: (1; 0) ; (2; �=10) ; : : : ; (20; 2�),
and the abscissa (�x-axis�) ranges from 1 to 20.

Table 3.1: Basic plotting commands.
Matlab command Description Reference
plot Plot 2D plots p. 43
--- Interactive modi�cation of plots p. 44
hold on / hold off Hold/un-hold plots p. 46
legend Insert legend p. 47
--- LATEX typesetting in plots p. 48
subplot Create array plots p. 51

43
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Figure 3.1: Function y = sinx plotted using command plot(y).

Edit Plot Data Cursor Insert Legend

Insert Text Arrow Insert Textbox

Figure 3.2: Figure Toolbar (upper row) and Plot Edit Toolbar (lower row). Select which toolbar to see
from the View menu of the �gure window.

3.2.2 Editing plots

In order to modify a plot, the Figure Toolbar and the Plot Edit Toolbar are useful, �g. 3.2. The Figure
Toolbar is displayed by default, while the Plot Edit Toolbar is toggled on in the View menu of the �gure
window.
In order to edit a plotted graph, click on the Edit Plot icon (�g. 3.2), and then click on the curve to

select the curve. Table 3.2 illustrates how we can modify some properties of the graph interactively.
Usually, we do not want to plot y as a function of the element number, but rather to plot y as a

function of x:

>> plot(x,y)

The result is shown in �g. 3.3. Notice that the abscissa ranges from 0 to 6:28 � 2�.

3.2.3 Multiple plots

We can plot several functions in the same plot window:

>> plot(x,y,x,cos(x))

The result is displayed in �g. 3.4.

Remark 3.1 In order to prepare a plot for printing, it is advisable to use black color on each graph,
and to distinguish among several graphs by varying the line type (solid, dotted, dashed, etc.).
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Table 3.2: Mo�dying properties of graphs.

(a) Click Edit Tool (�g. 3.2), then click graph,
right-click, and choose Properties...

(b) Click on Inspector... in Proper Editor
(table element (a)).
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Figure 3.3: Function y = sinx, plotted using command plot(x,y).
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Figure 3.4: Function y = sinx and function cosx plotted using command plot(x,y,x,cos(x)).

0 1 2 3 4 5 6 7
­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

sin(x)
cos(x)

Figure 3.5: Example of edited line styles and line colors. To insert legend, click on the Insert Legend
icon (�g. 3.2). To change the default legend text, double-click on the text and edit it.

By following the recipe in Table 3.2, the line styles and line colors of �g. 3.4 have been changed, and
legends have been inserted, see �g. 3.5.
It is also possible to add plots to a �gure window. By simply typing a new plot command:

>> plot(x,exp(-x))

the previous plot is deleted, and the new one is drawn. That is not what we want. To make sure that
we preserve the original graphs in the �gure window, we need to issue a command to hold the current
graphs in the �gure window:

>> plot(x,y,x,cos(x))
>> hold on
>> plot(x,exp(-x))
>> hold off

The result is shown in �g. 3.6.
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Figure 3.6: The graph of exp (�x) has been added to the graphs of sinx and cosx.

Another way to plot several graphs in one �gure, is to let the second argument be a two dimensional
array. Either the number of rows, or the number of columns of the second argument, must be equal to
the length of the �rst argument:

>> plot(x, [y; cos(x); exp(-x)])
>> plot(x�, [y�, cos(x)�, exp(-x)�])

The command lines above give the same result; we could also have used the following command:

>> z = [y; cos(x); exp(-x)];
>> plot(x,z)

3.2.4 Editing axes properties

So far, we have seen how to change the properties of individual graphs. It is also possible to change the
properties that are shared by all graphs. Table 3.3 shows how to select the so-called Axes Properties:
Some of the Axes properties can only be used with three dimensional plots. Labels, etc. can be typeset
using TEX and LATEX commands.

3.2.5 Command line plot editing

All the settings for Graph and Axes properties, can also be set on the command line. This is very useful
if we need to create a script for producing many �gures overnight.
In the simplest case, we can produce the plot in �g. 3.5 as follows:

>> x = linspace(0,2*pi,20);
>> plot(x,sin(x),�k-�,x,cos(x),�k--�)
>> legend(�sin(x)�,�cos(x)�)

The only necessary interactive modi�cation, is to use the cursor to move the legend box. In the plot
statement above, the �rst character of the text strings indicate blacK color. For other colors and line
styles, as well as markers, see doc plot, and click on the LineSpec hyperlink.
For more advanced modi�cations, it is possible to take advantage of the Handle Graphics data

structure, see Chapter 12. A number of Matlab books contain more information, e.g. (Hanselman
& Little�eld 2005).
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Table 3.3: Modifying properties of axes.

(a) Click on the axes. (b) Right-click, and choose Properties...

3.2.6 Fancy typesetting in plots*

The basic typesetting in Matlab plots is rather simple. To achieve a more professional typesetting, it
is possible to take advantage of TEX and LATEX typesetting (which is used in this document). For an
introduction to LATEX, see e.g. (Lamport 1986).
Table 3.4 illustrates some possibilities for LATEX typesetting in Matlab plots. The legend text is

modi�ed as indicated in the two upper plots of Table 3.4. By selecting the legend box, right-clicking,
and selecting Interpreter/latex, the result in the lower left plot of Table 3.4 is achieved.
In LATEX typesetting, mathematical expressions are bracketed by the $ character, or by the $$ symbol:

using $ bracketing, indicates in-line math such as sin (x) and
R 2�
0
sin (x) dx, while $$ bracketing indicates

displayed math such as

sin (x)Z 2�

0

sin (x) dx.

In Table 3.4, the lower left plot doesn�t really illustrate the di¤erence between in-line math and
displayed math. To demonstrate the di¤erence in a Matlab plot, we replace the $ncos(x)$ and the
$nexp(-x)$ legend strings by $nint_0^{2npi}nsin(x)dx$ and $$nint_0^{2npi}nsin(x)dx$$, respec-
tively. When using the LATEX interpreter, the result is as shown in the lower right plot of Table 3.4.
Inserting typeset legends can also be done from the command line. For the legend in the lower right

plot of Table 3.4, the following statement can be used:

>> legend({�$\sin(x)$�, �$\int_0^{2\pi}\sin(x)dx$�,...
�$$\int_0^{2\pi}\sin(x)dx$$�}, �Interpreter�, �LaTeX�)

3.2.7 Closing

For more information about LATEX typesetting, see the Help browser, e.g. (Hanselman & Little�eld 2005),
or any LATEX book such as (Lamport 1986).

Exercise 3.1 Describe what the following functions can do: hold, axes, xlabel, ylabel, title, gtext,
logspace, format. What are the arguments of these functions?
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Table 3.4: Illustration of using TEXand LATEXtypesetting in plots.
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Figure 3.7: Function y = tanx, plotted using command plot(x,tan(x)).

Exercise 3.2 Check out the help �les for the following Matlab 2D functions: plot, loglog, semilogx,
semilogy, plotyy, polar, fplot, fill, area, bar, barh, hist, pie, comet, errorbar, quiver, scatter.

3.3 Improving plots

In some cases, the plots become �ugly�/erroneous � this is typically the case where the ordinate value
goes to �1 at some value of the abscissa, e.g. the function y = tanx:

>> plot(x, tan(x))

The result is shown in �g. 3.7. The result is obviously incorrect: We know that there are asymptotes at
x = �

2 i, i 2 f1; 3; 5; : : :g, but the plotting algorithm draws straight lines between every point. We could
wish to clip the function value e.g. at y = �3, but in such a way that if jtanxj � 3, nothing is plotted.
We can achieve this as follows:

1. Find the indices for vector tanx where jtanxj � 3.

2. Replace the functional value of tanx for the given indices (jtanxj � 3) with the value NaN (Not a
Number). If the symbol NaN is found in an array that Matlab is asked to plot, no lines are drawn
to this point.

The following Matlab sequence illustrates how this can be done:

>> y = tan(x);
>> ind = find(abs(y) >= 3)

ind =

5 6 15 16

>> y(ind) = NaN

y =

Columns 1 through 7
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Figure 3.8: The function y = tanx, plotted using command plot(x,y), but where the y values greater
than 3 in absolute value have been replaced by NaN (Not a Number).

0 0.3433 0.7783 1.5306 NaN NaN -2.2798

Columns 8 through 14

-1.0863 -0.5412 -0.1669 0.1669 0.5412 1.0863 2.2798

Columns 15 through 20

NaN NaN -1.5306 -0.7783 -0.3433 -0.0000

>> plot(x,y)

The result is shown in �g. 3.8. In �g. 3.8 we can clearly see the indication of asymptotes at x = �
2

and at x = 3�
2 .

3.4 Array plots

In addition to plotting several graphs in a single axis system, it is possible to put graphs in an array
of axes. The plots are considered as elements in a two dimensional array, and the command subplot
is used to de�ne which element the plot is put into. The the command has three integer arguments,
subplot(m,n,p), and this command is followed by e.g. the plot command which actually inserts the
plot. In the subplot command, the two �rst arguments (m, n) indicate that the plot is to be inserted
into an m � n array. The third argument (p) speci�es in which element of the array the plot will be
placed � counting row-wise.
Suppose we want to produce an array with 1 column and 3 rows: the �rst element is speci�ed as

subplot(3,1,1), the second element as subplot(3,1,2), etc. The two �rst arguments de�ne the size
of the array, and the third argument speci�es the location where the next plot should be put.
The following example illustrates the procedure:

>> subplot(1,3,1)
>> plot(x,y)
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Figure 3.9: The use of the subplot command to produce an array of plots.

>> subplot(1,3,2)
>> plot(x,cos(x))
>> subplot(1,3,3);
>> plot(x,exp(-x))

This produces the plots in �g. 3.9.
It is possible to produce more complicated array plots if we �cheat� and mix the array division in

the plot. The following example illustrates this:

>> subplot(2,2,1)
>> plot(x,y)
>> subplot(2,2,2)
>> plot(x,cos(x))
>> subplot(2,1,2)
>> plot(x,exp(-x))

Here, we have mixed freely between one plot array of size (2; 2), and another of size (2; 1). The result is
displayed in �g. 3.10.

3.5 Presentation of experimental data

3.5.1 Case study: distillation of water and ethanol

For liquid mixtures of two components (e.g. water and ethanol), the unit operation of distillation can
be used to separate the two components into their pure constituents. The distillation process takes
advantage of the fact that the two components have di¤erent boiling points, i.e. by heating up the
mixture, the component with the lowest boiling point will evaporate �rst. Thus, in principle, the vapor
phase will contain the component with the lowest boiling point. In reality, part of the other component
will also be found in the vapor phase.
In industrial practice, the mixture is continuously fed to a mixing vessel (feed stream F ), where the

mixture is heated to the boiling point, �g. 3.11. The resulting vapor leaves at the top of the mixing vessel
(vapor stream V ), while the (boiling) liquid leaves at the bottom of the vessel (liquid stream L). Usually,
one assumes that the vapor and liquid are at thermodynamic equilibrium. It is customary to measure the
content of �light�component (i.e., the one with the lowest boiling point, e.g. ethanol in a water-ethanol
mixture) as the mole fraction of light component, i.e. the number of moles of light component divided
by the total number of moles in the mixture. _Q indicates the added heat.
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Figure 3.10: The use of the subplot command to produce an array of plots, where there is a mixture of
array sizes.

F

Q%

L,x

V, y

Figure 3.11: Sketch of a simple distillation unit, with feed stream (F ), bottom liquid stream (L) with
mole fraction x of light component, and top vapor stream (V ) with mole fraction y of light component.
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Figure 3.12: Equilibrium data for water and ethanol, as found from experiments: (x; y) are mole fractions
of liquid and vapor at equilibrium.

Through experiments with continuous distillation of a mixture of water and ethanol, assume that
we have found the following correlation between the ethanol content of the liquid (x) and the ethanol
content of the vapor phase (y), �g. 3.12.

3.5.2 Plotting data

The equilibrium data are stored in an Excel �le. First we import the data into Matlab, using File/Import
Data... in Matlab. The import �lter interprets the �rst row of the spreadsheet (see �g. 3.12) as NaN,
and produces a variable data consisting of 3 rows and 15 columns:

>> data

data =

Columns 1 through 8

NaN NaN NaN NaN NaN NaN NaN NaN
0.0000 0.0714 0.1429 0.2143 0.2857 0.3571 0.4286 0.5000
0.0000 0.3777 0.4913 0.5462 0.5814 0.6092 0.6353 0.6623

Columns 9 through 15

NaN NaN NaN NaN NaN NaN NaN
0.5714 0.6429 0.7143 0.7857 0.8571 0.9286 1.0000
0.6921 0.7259 0.7648 0.8100 0.8631 0.9256 1.0000

Clearly, the second row contains the x-data, while the third row contains the y-data:

>> x = data(2,:);
>> y = data(3,:);
>> plot(x,y,�k-�, x,x,�k:�)
>> xlabel(�x�)
>> ylabel(�y�)
>> title(�Equilibrium data for water-ethanol mixture�)

The data are displayed in �g. 3.13. Clearly, the vapor phase is richer in ethanol than the liquid phase
as long as y (x) > x.
There is a problem with the presentation in �g. 3.13: Matlab has drawn straight lines between each

of the 15 data points. This is not considered a proper presentation of experimental data, since it may
give the false impression that we actually know something about the value of y for other values of x
than the experimental values. It is thus common to present experimental data as isolated data points:
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Figure 3.13: The equilibrium correlation for content of ethanol in the liquid phase (x) and in the vapor
phase (y).

Table 3.5: Basic plotting commands.
Matlab command Description Reference
meshgrid Create array argument for 3D plot p. 167
mesh / meshc Basic 3D plotting of surfaces p. 167
contour Contour plot p. 169
clf Clear �gure p. 171
figure open �gure p. 171
saveas save plot p. 171
open open saved plot p. 171
close close �gure window p. 171

>> plot(x,y,�kx�, x,x,�k:�)
>> xlabel(�x�)
>> ylabel(�y�)
>> title(�Experimental equilibrium data for water-ethanol mixture�)
>> legend(�Experimental data: y(x)�, �y = x�)

The result is shown in �g. 3.14.
In �g. 3.14, we do not make any assumptions about the values of y (x) outside of the experimental

data.

3.6 Further study

Appendix D contains a discussion of more �advanced�topics such as

� How to produce three-dimensional plots, see accompagnying Appendix D,

� Basic housekeeping of plots, see accompagnying Appendix D,

� etc.

Some commands that are treated in Appendix D, are listed in Table 3.5.
Other useful plots not treated directly, are semilogx, semilogy, loglog, plot3, contourf, contour3,

meshz, surf, surfc, waterfall, bar3, bar3h, pie, fill3, comet3, scatter3, stem3 � see the Matlab
help system. Yet other useful commands are axis, title, xlabel, ylabel � see help system as well as
Section 3.5.
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Figure 3.14: Experimentally found equilibrium correlation for content of ethanol in the liquid phase (x)
and in the vapor phase (y).



Chapter 4

Simple data analysis*

4.1 Overview of learning goals

After having completed this chapter, you should have a clear understanding of what is meant by inter-
polation vs. data �tting, what are some advantages and disadvantages of standard interpolation models
and �tted models, and basic use of these models. In particular, you should master:

� How to use functions for polynomial and other types of interpolation,

� How polynomials are used in Matlab, basic functions for operating on polynomials, and how these
functions can be used to analyze models,

� How to build monovariable and multivariable interpolation models in Matlab.

In addition to using plotting functions that we studied in Chapter 3, see also Table 3.1 p. 43, we will
use some additional functions to analyze the data, see Table 4.1.
In addition, Matlab has some very rudimentary functions for data analysis such as max, min, sum,

mean, std, var. See the Matlab help system for the rudimentary data analysis tools.

4.2 Interpolation

4.2.1 Overview

In interpolation, we create a mathematical model that goes through every experimental data point.
Interpolation is used to compute values of y (x) for x-values for which we do not have experimental
values, i.e. in between the experimental values. The structure of such models is typically:

ym (x) =

nX
i=1

ci�i (x)

where �i (x) is a chosen function, and ci is a constant, but the models can also be more complex.
Typically in interpolation, an implicit assumption is that the experimental results are perfect.

Table 4.1: Table Caption
Matlab command Description Reference
polyfit Single-input polynomial model �t p. 58
polyval Evaluate polynomial model p. 58
spline Build spline single-input interpolation p. 60
ppval Evaluate interpolation models p. 60
pchip Build Hermitian cubic polynomials single-input interpolation p. 60
interp1 Build various types of interpolation models p. 61
--- polynomial functions Table 4.3 p. 64
interp2 Build various two-input interpolation models Section 4.4.2

57
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Various interpolation models have di¤erent sets of functions �i (x), which may be termed basis func-
tions or trial functions. Depending on the chosen basis functions, the resulting interpolation models
will have di¤erent properties (e.g. smoothness, etc.), and will predict di¤erent values ym (x) in between
experimental data points.
The simple interpolation strategy of drawing straight lines between data points, is achieved by se-

lecting �i (x) to be so-called �rst order spline basis functions. Another possibility is to use polynomial
models, e.g.

ym (x) =
nX
i=1

cix
i�1,

i.e. we have chosen �i (x) = x
i�1. Sometimes, we want the interpolation formulae to be di¤erentiable at

every x; obviously, we can not achieve this if we use �rst order spline basis functions.
In the study, we use the experimental data from Section 3.5.

4.2.2 Polynomial interpolation

Let us experiment with polynomial interpolation. In order to �nd the interpolation formulae, we use
the Matlab function polyfit(x,y,n), where x is the input variable, y is the output variable, and n is
the order of the polynomial. Note that with N = 15 data points, it is necessary to use a model with 15
parameters ci, i.e. to build a 14-th order polynomial in order to have true interpolation, i.e. that the
model is ym (x) =

P15
i=1 cix

i�1. If we choose n < 15, then the model will not go through every data
point. If we choose n > 15, then it is not possible to �nd unique values c1.

>> c = polyfit(x,y,14);
Warning: Polynomial is badly conditioned. Remove repeated data points

or try centering and scaling as described in HELP POLYFIT.
(Type "warning off MATLAB:polyfit:RepeatedPointsOrRescale" to suppress this warning.)
> In C:\MATLAB6p5\toolbox\matlab\polyfun\polyfit.m at line 75

For now, we do not worry about the Matlab Warning.
If we want to plot the result, we do this by using command polyval(c,x):

>> ym = polyval(c,x);

Let us see how the interpolation function �ts the data:

>> plot(x,y,�kx�, x,x,�k:�, x,ym,�k-�)

The result is shown in �g. 4.1. At �rst sight, the result looks good. But wait � the model appears
to be composed of straight lines between the experimental data points! That can not be correct for a
polynomial model!
The problem is that we only computed model values for experimental values of x. Drawing a (solid)

line through the computed vales (x; ym), Matlab simply uses a straight line between the computed data
points (x; ym). To get a better view of the model, we need to compute the model value ym for abscissa
values in between the experimental points!, e.g. as follows:

>> xm = linspace(0,1,100);
>> ym = polyval(c,xm);
>> plot(x,y,�kx�, x,x,�k:�, xm,ym,�k-�)
>> legend(�Experimental data: y(x)�, �y = x�, �Model of data: ym(x)�)
>> xlabel(�x�)
>> ylabel(�y�)
>> title(�Experimental data and model data for water-ethanol equilibrium�)
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Figure 4.1: Experimental data ((y; x), �) and model ((ym (x) ; x), solid) for water-ethanol equilibrium.
Notice �awed model representation.

Figure 4.2: Experimental data ((y; x), �) and model ((ym (x) ; x), solid) for water-ethanol equilibrium.
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Figure 4.3: Experimental data ((y; x), �), interpolation model ((ym (x) ; x), solid), and low order model
(ym6 (x) ; x, dotted) for water-ethanol equilibrium.

The resulting plot is shown in �g. 4.2.
The Matlab warning is caused by the fact that in this case, we could have found almost as good a

model by using fewer parameters ci:

>> c6 = polyfit(x,y,6);
>> ym6 = polyval(c6,xm);
>> plot(x,y,�kx�, x,x,�k:�, xm,ym,�k-�, xm,ym6,�r:�)
>> legend(�y(x)�, �y = x�, �ym(x)�, �ym6(x)�)

The result is shown in �g. 4.3. Since model ym6 is not a true interpolation model (the model does not
go through every experimental data point), we denote it a �tted model � in fact it is the model of 6-th
order with the minimal squared error, i.e. the least squares model of 6-th order.

4.2.3 Other interpolation functions

Similar to function polyfit, function spline(x,y) calculates the data structure associated with cubic
spline interpolation of the data set (x; y). Next, similar to function polyval, function ppval(c,xx)
calculates the model value according to spline interpolation. Note that array xx must be di¤erent from
array x if we want to compute the value ym (x) in between experimental data points x.

>> c = spline(x,y);
>> ym = ppval(c,xm);
>> plot(x,y,�kx�, x,x,�k:�, xm,ym,�k-�)
>> legend(�Experimental data y(x)�, �y = x�, �Spline model ym(x)�)
>> xlabel(�x�)
>> ylabel(�y�)
>> ym = ppval(c,xm);
>> title(�Experimental data and model data for water-ethanol equilibrium�)

The result is shown in �g. 4.4.
Another interpolation function is pchip(x,y) which works similarly to polyfit and spline, but

which is based on Hermitian cubic polynomials:

>> c = pchip(x,y);
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Figure 4.4: Experimental data ((y; x), �) and spline model ((ym (x) ; x), solid) for water-ethanol equi-
librium.

Table 4.2: Data set for comparison of interpolation models.
i 1 2 3 4 5
xi 0:8 1:2 2:5 5:1 10
yi 5:1 2:7 1:4 0:85 0:55

>> ym = ppval(c,xm);
>> plot(x,y,�kx�, x,x,�k:�, xm,ym,�k-�)
>> xlabel(�x�)
>> ylabel(�y�)
>> title(�Experimental data and model data for water-ethanol equilibrium�)
>> legend(�Experimental data y(x)�, �y = x�, �pchip model ym(x)�)

The interpolation model is shown in �g. 4.5.
Finally, there is a generic interpolation function interp1(x,y,xx), which combines the functionality

of spline and ppval in one function. An optional fourth argument speci�es the type of interpola-
tion: either �nearest� for nearest neighbor interpolation, �linear� for the default linear interpolation,
�spline� for cubic spline interpolation, and �cubic� for cubic interpolation.
For the data set we have studied so far, there is not much di¤erence to see in the di¤erent interpolation

models, see �gs. 4.2 �4.5. In the next section, we will consider a new data set which better illustrates
the properties of the various interpolation techniques.

4.2.4 Comparison of interpolation models

We consider the data set in Table 4.2.
We �rst create variables in Matlab to hold the data:

>> x = [0.8,1.2,2.5,5.1,10];
>> y = [5.1,2.7,1.4,0.85,0.55];
>> plot(x,y,�kx�)

We want to interpolate the data in 100 data points between minx and maxx:

>> x_int = linspace(min(x),max(x),100);
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Figure 4.5: Experimental data ((y; x), �) and pchip model ((ym (x) ; x), solid) for water-ethanol equi-
librium.

Next, we compute the interpolation values from some interpolation models:

>> cint_pol = polyfit(x,y,4);
>> ymint_pol = polyval(cint_pol,x_int);
>>
>> cint_spl = spline(x,y);
>> ymint_spl = ppval(cint_spl,x_int);
>>
>> cint_pch = pchip(x,y);
>> ymint_pch = ppval(cint_pch,x_int);
>>
>> ymint_i1n = interp1(x,y,x_int,�nearest�);
>>
>> ymint_i1l = interp1(x,y,x_int);
>>
>> ymint_i1s = interp1(x,y,x_int,�spline�);
>>
>> ymint_i1c = interp1(x,y,x_int,�cubic�);

We also include a 3-order polynomial least squares model:

>> cint_pls = polyfit(x,y,3);
>> ymint_pls = polyval(cint_pls,x_int);

Next, we plot the various models:

>> plot(x_int,ymint_pol1,�k--�, x_int,ymint_spl,�k:�, x_int,ymint_pch,�k-�, ...
x_int,ymint_i1n,�k-�, x_int,ymint_i1l,�k--�, x_int,ymint_i1s,�k:�, ...
x_int,ymint_i1c,�k-.�, x_int,ymint_pls,�k:�)
>> legend(�polynom interp.�, �spline interp.�, �pchip interp.�, ...
�nearest neigh. interp.�, �linear interp.�, �spline interp.�, �cubic interp.�,...
�polynom least squares�)
>> xlabel(�x�)
>> ylabel(�y�)
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Figure 4.6: Comparison of various interpolation models.

>> title(�Comparison of interpolation, etc.�)
>> hold on;
>> plot(x,y,�ko�)

The result is shown in �g. 4.6.
From the �gure, it is somewhat di¢ cult to compare the various models. We do, however see that

the polynomial interpolation model (4-th order) probably is not very good at interpolating the data.
Also the spline interpolation model appears to vary quite a lot between the data. The smoothest
interpolation model appears to be the Hermitian cubic polynomial model (pchip). Although they are
not di¤erentiable, the nearest neighbor interpolation method and the linear interpolation method appear
to give result similar to the Hermitian cubic polynomial model.
In sum, the various interpolation methods have di¤erent properties, and may give very di¤erent

interpolation results, in particular if the number of available experimental data are few. We cannot
really decide which interpolation method is �best�, simply because we do not know the true values
between the experimental data points. If we have some notion that the variation is relatively smooth,
then we can say more, however. It should also be noted that the smoothness of various models may
depend on the available data: in the distillation data, all methods give essentially the same result.

4.3 Analysis

4.3.1 Polynomials in Matlab

Polynomial models have certain advantages over other models when it comes to the ease at which we
can analyze the resulting model. Let us see how polynomials are dealt with in Matlab.
Let us start by looking at a polynomial model as found by function polyfit. We consider the data

given in �g. 3.12:

>> c = polyfit(x,y,4)

c =

-6.3220 15.5972 -12.8875 4.5495 0.0432

>> length(c)

ans =
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Table 4.3: Functions on polynomials.
Function Description
conv(p,q) Multiplication of polynomials, p (x) � q (x)
[q,r] = deconv(b,a) Division of polynomials, b (x) = a (x) � q (x) + r (x)
polyder(p) Di¤erentiation of polynomials, d

dxp (x)
polyint(p) Integration of polynomials,

R
p (x) dx

polyval(p,x) Evaluate polynomial, y = p (x)
roots(p) Roots of polynomials, x : p (x) = 0
cplxpair(x) Sort complex array x into complex conjugate pairs

5

MATLAB represents polynomials as row arrays containing coe¢ cients ordered by descending powers.
Thus, row array c represents the polynomial:

p (x) = �6:322x4 + 15:5972x3 � 12:8875x2 + 4:5495x1 + 0:0432.

4.3.2 Operations on polynomials

Matlab supports a number of functions for polynomials, see Table 4.3.
Suppose we want to multiply the polynomials

�
1 + x� x2

�
and

�
2 + x3

�
. Using a CAS1 , we �nd:�

1 + x� x2
�
�
�
2 + x3

�
= �x5 + x4 + x3 � 2x2 + 2x+ 2.

Using Matlab, we �nd:

>> p = [-1, 1, 1];
>> q = [1,0,0,2];
>> conv(p,q)

ans =

-1 1 1 -2 2 2

We see that the result is identical in Matlab and the CAS.
We can also divide polynomials:

>> deconv(ans,p)

ans =

1 0 0 2

The answer is obviously correct: we have divided p � q by p, and the answer is q. We can also divide
q by p to get:

> [a,b] = deconv(q,p)

a =

-1 -1
1CAS = Computer Algebra System, here: MuPAD through Scienti�c WorkPlace.
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b =

0 0 2 3

The result means that
2 + x3

1 + x� x2 = �x� 1 +
2x+ 3

1 + x� x2 .

It is trivial to show that this is the correct result.
We can di¤erentiate a polynomial, e.g. q (x) = 2 + x3:

>> polyder(q)

ans =

3 0 0

The result is q0 (x) = 3x2, which is correct. We can integrate a polynomial, e.g. p (x) = 1 + x� x2:

>> polyint(p)

ans =

-0.3333 0.5000 1.0000 0

The result is
R
p (x) dx = �0:3333x3 + 0:5x2 + x, which is correct.

We have previously used function polyval to evaluate polynomials. As an example, p (x = 0:5) can
be found as follows:

>> polyval(p,0.5)

ans =

1.2500

Finally, we can �nd the roots polynomials, e.g. q (x) = 0:

>> roots(q)

ans =

-1.2599
0.6300 + 1.0911i
0.6300 - 1.0911i

where i =
p
�1. It can be shown that the roots of polynomials with real number coe¢ cients, must

occur in complex conjugate pairs if the root is complex, e.g. if z = 0:6300 + 1:0911i is a root, then
�z = 0:6300 � 1:0911i must also be a root. It is possible to sort the roots in such a way that complex
conjugate roots are grouped together using command cplxpair; in the example above, the ans array is
already sorted.
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4.3.3 Analysis of polynomial models

We consider the 6-th order least squares polynomial model for water-ethanol equilibrium:

>> c6 = polyfit(x,y,6)

c6 =

-34.5134 119.0827 -161.7170 110.1621 -39.3068 7.2848 0.0049

In the original data, �g. 3.12, we see that the value of y (x) dips below y = x for some value x1, and
we want to �nd an estimate of x1. We can do that as follows: �nd the roots of ym (x)� x = 0:

>> length(c6)

ans =

7

>> roots(c6 - [0,0,0,0,0,1,0])

ans =

0.9915
0.8757 + 0.0497i
0.8757 - 0.0497i
0.3541 + 0.3384i
0.3541 - 0.3384i
-0.0008

What takes place here? First, we must �nd the polynomial description of ym (x)�x. ym (x) is represented
by the polynomial of array c6. We must �nd the array that represents polynomial x; this array must
have the same length as array c6, or else we cannot subtract them.
We see that the complex conjugate roots are grouped already. The complex roots do not have a

physical interpretation, and we are left with 2 real roots. Most likely, these roots, x 2 f0:0008; 0:9915g
are related to the trivial roots x = 0 and x = 1. Thus, we can not �nd the location of x1 from polynomial
c6.
What if we choose a polynomial of odd order? In that case, there must be an odd number of real

roots! We �nd:

>> c5 = polyfit(x,y,5)

c5 =

15.5423 -45.1778 49.6511 -25.1126 6.0893 0.0157

>> roots(c5 - [0,0,0,0,1,0])

ans =

0.9892
0.8571
0.5317 + 0.3306i
0.5317 - 0.3306i
-0.0030
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Now, it is reasonable to associate the root 0:8571 with x1. From the data of �g. 3.12, it seems reasonable
to bracket the root to lie in the interval x1 2 [0:8631; 1], and this doesn�t really support the root we have
found. Let us try with a higher dimensional polynomial of odd order:

>> c9 = polyfit(x,y,9);
>> x9 = zeros(size(c9));
>> x9(end-1) = 1

x9 =

0 0 0 0 0 0 0 0 1 0

>> roots(c9-x9)

ans =

0.9047 + 0.1562i
0.9047 - 0.1562i
0.9999
0.9000
0.5249 + 0.3435i
0.5249 - 0.3435i
0.1139 + 0.2661i
0.1139 - 0.2661i
-0.0000

From the 9-th order model, it appears as if the root x1 � 0:9000, which �ts better into bracket of the
solution. Still, we have too few data to really be sure about the value of x1.
We can also di¤erentiate and integrate polynomials:

>> c6 = polyfit(x,y,6);
>> c6der = polyder(c6);
>> c6int = polyint(c6);
>> xx = linspace(0,1);
>> plot(xx, polyval(c6,xx),�k-�, xx, polyval(c6der,xx),�k:�, ...
xx, polyval(c6int,xx),�k-.�)
>> legend(�y_m(x)�, �d y_m(x)/dx�, �\int y_m(x) dx�)
>> xlabel(�x�)

The result is shown in �g. 4.7.
Although it should be possible to write similar functions as those of Table 4.3 for spline models, etc.,

such functions are not currently available in Matlab.

4.4 More on interpolation and prediction models

4.4.1 Case study: Saturated steam

The data in �g. 4.8 are taken from http://webbook.nist.gov.
It is of interest to build a model that correlates pressure and temperature, p (T ). We start by

importing the data in �le SaturatedSteamVapor.xls into Matlab, and de�ning variables T and p:

>> T = data(3:end,1);
>> p = data(3:end,2);
>> plot(T,p,�kx�)
>> xlabel(�T [C^{\circ}]�)
>> ylabel(�p [atm]�)
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Figure 4.7: 6th order least squares polynomial model ym (x) of water-ethanol equilibrium, with the
derivative dym (x))=dx and the integral

R
ym (x) dx of ym (x).

Figure 4.8: Relationships between thermodynamic variables of vapor phase saturated steam.
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Figure 4.9: Pressure (p, atm) as a function of temparature (T , �C) for saturated steam.

Figure 4.10: Experimental pressure data (p, atm, �) as a function of temparature (T , �C) for saturated
steam, and 4th order least squares model �t (solid line).

>> title(�Pressure vs. temperature for saturated steam�)

The result is shown in �g. 4.9.
We choose to build a polynomial least squares model:

>> ppar = polyfit(T,p,3);
>> hold on;
>> TT = linspace(min(T),max(T));
>> plot(TT,polyval(ppar,TT), �k-�)

The result is not perfect, see �g. 4.10. In particular, the model is relatively poor at temperatures below
ca. 80�90 �C.
Based on the model, what is the pressure at 100 �C? Using the polynomial least squares model,

Matlab suggests:
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>> polyval(ppar,100)

ans =

0.9650

The results is somewhat surprising � we would have expected that psat (100) = 1 atm2 � the error is
probably due to the relatively low quality of the polynomial model at low temperatures.
Let us turn the question around: at a pressure of 1 atm, what is the temperature? To answer this

question, we must solve the equation psat (T ) = 1. We must thus use the roots function for �nding roots
in Matlab:

>> length(ppar)

ans =

4

>> fpol = ppar - [0,0,0,1]

fpol =

0.0000 -0.0015 0.1035 -2.4529

>> roots(fpol)

ans =

1.0e+002 *

1.0223
0.5597 + 0.1790i
0.5597 - 0.1790i

>> format short g
>> ans

ans =

102.23
55.968 + 17.904i
55.968 - 17.904i

First, we created polynomial fpol which is p (T )� 1. Next, we used the roots function to �nd the roots
of p (T )� 1 = 0. The answer is two roots which are complex (a complex conjugate pair 55:968� 17:904i)
and hence irrelevant, and the relevant real root T sat (1) = 102:23 �C. Again, we are somewhat puzzled
� we know that the answer should have been 100 �C, but again, the inaccuracy is probably due to the
poor quality of the model at �low�temperatures.
An interesting question is: could we have avoided the process of �nding the roots of p (T ) = 1? The

answer is yes! We could simply have built another model, where we �t a polynomial p (T ) to the data!
However, with the current data, least squares polynomial models T (p) are very poor � see �g. 4.11. Let
us check the �disastrous�prediction qualities of the 5-th order model:

>> Tpar = polyfit(p,T,5);

2The boiling point temperature for water at pressure p = 1atm, is T = 100 �C.
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Figure 4.11: Experimental temparature (T , �C, �) as a function of pressure (p, atm) for saturated
steam, and polynomial least squares models of degrees 3�5.

>> polyval(Tpar,1)

ans =

74.067

The correct answer should be 100 �C.
Let us see if the situation improves by using the spline function:

>> ppar = spline(T,p);
>> ppval(ppar,100)

ans =

1.0009

>> Tpar = spline(p,T);
>> ppval(Tpar,1)

ans =

99.974

Clearly, true interpolation using the spline function gives very good predictions.
In this section, we have tweaked around with mono variable functions, i.e. models where one variable

is a function of another variable. It is often of interest to consider models where one variable is a function
of more than one variable � so-called multivariable functions.

4.4.2 Multivariable interpolation

In this section, some of the plotting techniques from Appendix D are used.
To illustrate the ideas, we use superheated steam as a case study. Superheated steam is vapor which

is �above� the saturation state of steam. Because of this, the thermodynamic properties are functions
of two variables. Figure 4.12 shows the variables at p = 0:5 atm; data at other pressures can easily be
created, e.g. for p 2 f1; 2; 5; 10; 20; 50g atm; these data are taken from http://webbook.nist.gov. Note
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Figure 4.12: Relationships between thermodynamic variables of superheated steam at p = 0:5 atm.

that for higher pressures, the �uid will liquidize for low temperatures. Since we are interested in vapor
behavior, liquid results will be deleted in Excel, and will appear as NaN (not a number) when imported
into Matlab.
Assume that we want to �nd a model for � (T; p), i.e. how the vapor density � varies with temperature

T and pressure p. We import the data, and associate the imported data to descriptive variable names
� note that the data starts in the fourth row:

Import Wizard created variables in the current workspace.
>> T0_5 = data(4:end,1);
>> p0_5 = data(4:end,2);
>> rho0_5 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T1 = data(4:end,1);
>> p1 = data(4:end,2);
>> rho1 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T2 = data(4:end,1);
>> p2 = data(4:end,2);
>> rho2 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T5 = data(4:end,1);
>> p5 = data(4:end,2);
>> rho5 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T10 = data(4:end,1);
>> p10 = data(4:end,2);
>> rho10 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T20 = data(4:end,1);
>> p20 = data(4:end,2);
>> rho20 = data(4:end,3);
Import Wizard created variables in the current workspace.
>> T50 = data(4:end,1);
>> p50 = data(4:end,2);
>> rho50 = data(4:end,3);

Next, we construct the temperature vector:
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>> T = T0_5�;
>> p = [0.5,1,2,5,10,20,50];
>> rho = [rho0_5, rho1, rho2, rho5, rho10, rho20, rho50]

rho =

Columns 1 through 6

0.29642 0.59761 NaN NaN NaN NaN
0.26051 0.52326 1.0559 NaN NaN NaN
0.23261 0.46645 0.93791 2.3849 4.9225 NaN
0.2102 0.42113 0.84523 2.1362 4.3557 9.099
0.19176 0.38399 0.76986 1.9391 3.9289 8.0794
0.17631 0.35294 0.70713 1.7774 3.5876 7.3144
0.16318 0.32658 0.65401 1.6416 3.3053 6.7032
0.15187 0.3039 0.60841 1.5256 3.0667 6.1973
0.14204 0.28418 0.5688 1.4253 2.8617 5.7687

Column 7

NaN
NaN
NaN
NaN

22.405
19.528
17.537
16.013
14.782

Here, both T and p are row arrays, while rho is an array where each row holds the pressure variation
for a �xed temperature. Finally, we can interpolate:

>> [TT,pp] = meshgrid(T,p);
>> size(TT)

ans =

7 9

>> size(rho)

ans =

9 7

>> Tvar = linspace(min(T),max(T));
>> pvar = linspace(min(p),max(p));
>> [TTvar, ppvar] = meshgrid(Tvar,pvar);
>> rhovar = interp2(TT,pp,rho�,TTvar,ppvar);
>> meshc(TTvar,ppvar,rhovar)
>> xlabel(�T [C^\circ]�)
>> ylabel(�p [atm]�)
>> zlabel(�\rho [kg/m^3]�)

The resulting surface � (T; p) is displayed in �g. 4.13.
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Figure 4.13: Interpolation model for � (T; p).

Figure 4.14: Contour plot of interpolation model for � (T; p).

It is di¢ cult to see from �g. 4.13 the valid region for (T; p) where � can be computed. A contour plot
better illustrates the legal region:

>> contour(TTvar,ppvar,rhovar,50)
>> xlabel(�T [C^\circ]�)
>> ylabel(�p [atm]�)

Figure 4.14 illustrates the valid region for (T; p) for the interpolation model that we have developed:
Suppose we want to �nd the vapor density of superheated steam at T = 375 �C and p = 3atm � the

point (T = 375 �C; p = 3atm) is well within the valid region for (T; p), see �g. 4.14:

>> interp2(TT,pp,rho�,375,3)

ans =

1.0235
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The answer is: �375 �C;3 atm = 1:0235 kg=m
3.
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Chapter 5

Introduction to automation of tasks

5.1 Overview of learning goals

After having completed this chapter, you should have a clear understanding of why automation of tasks
is useful, and how this can be achieved in Matlab. In particular, you should master:

� How to operate on strings,

� How to use the for-loop in Matlab,

� How to use the Matlab Editor, and restrictions on where you save �les,

� What script �les are, and know why they are useful.

5.2 Strings and basic string operations

It is useful to have some knowledge of strings in Matlab, since these are important for some types of task
automation. A string is a sequence of characters. When de�ning the string, the sequence of characters
must be surrounded by an apostrophe �:

>> clear
>> mystr1 = �a�;
>> mystr2 = �abc�;
>> whos
Name Size Bytes Class

mystr1 1x1 2 char array
mystr2 1x3 6 char array

Grand total is 4 elements using 8 bytes

We see that each character in a string takes up 2 bytes of memory.
For our purpose, the most useful string operations are:

� Concatenation of strings s1 and s2: [s1, s2],

� Conversion of number n to a string s: s = num2str(n).
An example can be:

>> I = 2;
>> [�counter I has the value �, num2str(I)]
ans =
counter I has the value 2

A more thorough discussion of string operations is given in Appendix E.
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5.3 Motivating examples

Suppose we want to �nd the sum

Sn =
n�1X
k=1

1

k2

for n = 1; 2; 3; � � � . This is a quite laborious task if we are to do it manually. Although we can write the
expression as

Sn =
n�1X
k=1

1

k2
+
1

n2
= Sn�1 +

1

n2
,

this doesn�t help much in saving work:

>> S1 = 1/1^2
S1 =

1
>> S2 = S1 + 1/2^2
S2 =

1.2500
>> S3 = S2 + 1/3^2
S3 =

1.3611
>> S4 = S3 + 1/4^2
S4 =

1.4236

etc. (Sn converges to �2

6 � 1: 644 9).
As another example, suppose we want to �nd the Fibonacci numbers fk de�ned by:

f1 = 1

f2 = 1

fk+1 = fk + fk�1 for k = 2.

Straight ahead manual use of Matlab leads to:

>> f1 = 1;
>> f2 = 1;
>> f3 = f2 + f1
f3 =

2
>> f4 = f3 + f2
f4 =

3
>> f5 = f4 + f3
f5 =

5
>> f6 = f5 + f4
f6 =

8

etc.
In both of the examples above, we see that we repeat assignments that are almost the same. In the

next section, we will introduce repetition statements which can be used to automate the computation of
e.g. Sn and fk.



5.4. THE BASIC REPETITION STATEMENT 79

Exercise 5.1 Before proceding to the repetition statements, let us just note that we can compute Sn
without using repetition loops. As an example, we can compute Sn as follows:
>> n = 20;
>> N = 1:n;
>> S = 1./N.^2;
>> cumsum(S)
ans =
Columns 1 through 5
1.0000 1.2500 1.3611 1.4236 1.4636
Columns 6 through 10
1.4914 1.5118 1.5274 1.5398 1.5498
Columns 11 through 15
1.5580 1.5650 1.5709 1.5760 1.5804
Columns 16 through 20
1.5843 1.5878 1.5909 1.5937 1.5962
Experiment with n (i.e. n) and see how large a value we must choose for n before the value

���Sn � �2

6

��� <
0:01.

In the Exercise above, we compute an array S which holds S1, S2, etc. See the Help browser for how
Matlab function cumsum works.

5.4 The basic repetition statement

In order to repeat Matlab statements a speci�c number of times, the construct

for var = array
statements

end

is used.1 Here, for and end are keywords that should be used in verbatim2 , and array is an array.
The columns of array are then assigned one at a time into var starting with the �rst column, and the
statements are executed. Often, array is a row array, hence the �columns� are scalars. It should be
remembered that e.g. 1:N creates a row array [1, 2, ..., N], thus the statement variable = 1:N is
quite common.
Let us look at an example: suppose we want to print the numbers i and i2 to the screen for i 2

f1; : : : ; 10g: clearly we do not intend the meaning i =
p
�1. Since i by default denotes

p
�1, we use I

as the variable name instead of i. The statement is [I,I^2], which ensures that i and i2 are displayed
on the same line:

>> format compact
>> for I=1:10, [I, I^2], end
ans =

1 1
ans =

2 4
ans =

3 9
ans =

4 16
ans =

5 25
ans =

6 36
1Alternatively, the statements can be written in a single line as for variable = array, statement 1, statement 2,

..., statement n, end.
2Verbatim = word for word, exactly as spoken or written.
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ans =
7 49

ans =
8 64

ans =
9 81

ans =
10 100

Here, we have typed the command on a single line.
We can also type the commands on separate lines (i and

p
i, for a variation):

>> for I=1:10
[I, sqrt(I)]
end
ans =

1 1
ans =

2.0000 1.4142
ans =

3.0000 1.7321
ans =

4 2
ans =

5.0000 2.2361
ans =

6.0000 2.4495
ans =

7.0000 2.6458
ans =

8.0000 2.8284
ans =

9 3
ans =

10.0000 3.1623

In practice, we often use (much) more complex statements, and it is not practical to type the com-
mands on the command line of Matlab. One reason is that it is easy to loose track of which commands we
have carried out and which we have not carried out. Another reason is that it is easy to make mistakes:
If we make mistakes in any line of the command sequence, we have to redo everything that depends on
the erroneous command.

5.5 Scripts and the Matlab editor

A script is a �le containing a sequence of Matlab statements. In order to run those statements, we simply
type the name of the script �le on Matlab�s command line. Matlab�s editor is convenient for typing and
editing the statements in a script �le, and we can start the editor by issuing the command >> edit
on Matlab�s command line. Figure 5.1 illustrates the opened Matlab Editor, containing three lines of
Matlab commands.
Before running the script, it is necessary to save the �le (File/Save). The script �le must be stored

either in a �le in the Current Directory � see �g. 1.1 p. 4, or in Matlab�s so-called Path � see help
path. To run the script, either click on the Save and run icon of the Matlab Editor (see �g. 5.1), or type
the �le name in the Matlab Command Window. The �le in �g. 5.1 has been saved with the �le name
RepetitionDemo1:
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Save and run

Figure 5.1: Matlab Editor window, containing a sequence of Matlab commands. Note: if the �le has
been saved, the �Save and run�icon changes to the �Run�icon.

>> RepetitionDemo1
ans =

1 1 1
ans =

2.0000 4.0000 1.4142
ans =

3.0000 9.0000 1.7321
ans =

4 16 2
ans =

5.0000 25.0000 2.2361
ans =

6.0000 36.0000 2.4495
ans =

7.0000 49.0000 2.6458
ans =

8.0000 64.0000 2.8284
ans =

9 81 3
ans =

10.0000 100.0000 3.1623

It is considered good practice to comment script �les in Matlab so that it is easier to understand
what is taking place, when looking over the script at a later date. Characters appearing after the symbol
% on a (command) line, are considered as comments � see �g. 5.2 which produces a multiplication table.
The result of running the script (named RepetitionDemo2) is shown below:

>> RepetitionDemo2
>> A
A =

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
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Figure 5.2: Matlab editor showing script �le with comments and spaces.

In order to �nd the product 7 � 9, �nd the intersection of the row with 7 in the �rst column, and the
column with 9 in the �rst row. The result is 63.

5.6 Examples: Repetition and Sums

Suppose we want to use the for statement to �nd the sum Sn =
Pn�1

k=1
1
k2 = Sn�1+

1
n2 and the Fibonacci

numbers fk. First, we study how to �nd Sn. The following Matlab script will �nd Sn, �g. 5.3.
The result is:

>> SumInvSquare
>> S
S =

0
0.25

0.36111
0.42361
0.46361
0.49139
0.5118
0.52742
0.53977
0.54977
...
0.63985
0.63987
0.6399
0.63992
0.63995

Similarly, we �nd the Fibonacci numbers as follows, �g. 5.4.
The result is:
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Figure 5.3: Script SumInvSquare for computing Sn.

Figure 5.4: Script Fibonacci for computing fk.
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Figure 5.5: Matlab Editor with script where the repetition array has more than one row.

>> Fibonacci
>> f
f =

1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765

5.7 Example: Basic repetition over array*

This example uses some techniques introduced in Appendix D. Let us also study the case where variable
= array, and array has more than one row. We consider the script of �g. 5.5.
The result of issuing the command

>> RepetitionDemo3

is �g. 5.6.
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Figure 5.6: The result of running script RepetitionDemo3.
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Chapter 6

Problems

Problem 6.1 We consider a batch reactor : a component A is converted to component R in a closed
vessel through a chemical reaction. The concentration of component A, cA (mol= l) can be described by
the ordinary di¤erential equation (ODE):

dcA
dt

= rA,

where rA is the so-called rate of production of component A (mol= ( l � min)). rA is a function of cA as
given in �g. 6.1, taken from (Levenspiel 1972), p. 117.

1. Use the Import Wizard of Matlab to import the data from �le ReactorDataLevenspiel.xls.
(Hint: in Matlab, use command File/Import Data...).

2. Extract the values related to cA and rA from the data variable, and put them into variable names
of your choice. Make sure that the chosen names are legal variable names in Matlab, and that the
chosen variable names not already are used as function names.
(Note: the Excel spreadsheet gives �rA, and not rA. Since �rA is posivite, rA is negative, which
means that component A is consumed.)

Plot the experimental data to make sure that the data are correct. If you suspect that some data
are outliers, then remove these faulty data. Replot the experimental data when possible outliers
are removed.

3. Save the data in a .mat �le. Clear the Matlab workspace, and check that the workspace is empty.
Load the data from the �le where you saved them.

4. Experiment with �tting models to the data for (cA; rA). Use the following model types:

� Polynomial least squares models of various orders. (Hint: polyfit, polyval.)
� Spline interpolation models. (Hint: spline, ppval.)

Figure 6.1: Experimental batch reactor data for reaction with stoichiometry A ! R. Taken from
(Levenspiel 1972), p. 117.
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Figure 6.2: Extent of reaction � (t) for reactor data based on trapezoidal integration.

� Hermitian cubic polynomials. (Hint: pchip, ppval.)

What model types are acceptable? (Hint: Is it acceptable that rA becomes negative?)

5. * The extent �A of reaction is de�ned as follows:

�A (t) ,
cA (0)� cA (t)

cA (0) .

Find �A (t), and plot �A (t) as a function of t when cA (0) = 1:3mol= l. At t = 0, � (0) = 0. At
what time does �A (t) rise above 0:75?

(Hint: The principle is based on �nding cA (t) from the solution of the ODE

dcA
dt

= rA ()
dcA

rA (cA)
= dt()

Z cA(t)

cA(0)

dcA
rA (cA)

=

Z t

0

dt = t.

This leads to F (cA (t) ; cA (0)) = t, which may be inverted to give cA (t) = G (t; cA (0)). Then we
can �nd �A (t) from its de�nition. A possible procedure is as follows:

� Use array operations to compute the array containing 1=rA.
� Use Matlab function cumtrapz(x,y), which computes an array with a numeric approximation
of
�R x2

x1
y (x) dx;

R x3
x1
y (x) dx; : : : ;

R xN
x1

y (x) dx
�
where xi is a discrete value of x. (Hint: In

the current problem, x is cA and y is 1=rA).

� Plot cA (t). (Hint: Since
R cA;i
cA;1

dcA
rA(cA)

= F (cA (ti) ; cA;1) =
R t
0
dt = ti, each pair (F (cA (ti) ; cA;1) ; cA;i) �

(ti; cA;i). We can use this fact to plot (t; cA (t)). Verify that the result is similar to in �g. 6.2.)

� By zooming in at the points of �g. 6.2 where �A = 0 (i.e. cA = 1:3, which indicates time t = 0)
and the time where �A = 0:75 (the sought extent of reaction), �nd the time for achieving 75%
extent of reaction.

6. * The calculations in the previous question are rather coarse due to relatively few data points. We
can achieve smoother (but not necessarily more accurate) calculations as follows:

� Use array operations to compute the array containing 1=rA.
� Use your preferred interpolation model for (cA; 1=rA).
� Compute 1=rA for an extended set of data points in the interval (min (cA) ;max (cA)) (e.g.
using the linspace function of Matlab) with the help of the interpolation model.
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� Use Matlab function cumtrapz(x,y) to compute the relevant array containing
R cA;i
cA;1

dcA
rA(cA)

=

F (cA (ti) ; cA;1) =
R t
0
dt = ti, and plot the smoothed pair (ti; cA;i), as well as

�
ti; �A;i

�
.

� Find the time necessary to achieve 75% extent of reaction. Is the answer di¤erent from the
result in the previous question?
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Part II

Exploiting the power of Matlab
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Chapter 7

Revisiting Part I

(If you do not recall the following topics, you should re-check Part I or use Matlab�s help facilities.)

The Matlab environment See Chapter 1.

� Command window

� Help window

� Workspace window

� Array editor

Basic operations

� The array data type (scalars, row and column arrays, 2 dimensional arrays), see Section 2.2.

� Assignment, Section 2.3.

� Variables, see Section 2.5

� Special variables: pi, i, j, etc., Table 2.1 p. 9.

� How to create arrays: zeros, ones, eye, diag, colon operator, rand, randn, linspace, logspace,
size, length. See Sections 2.6.2 �2.6.5, and 2.10.

� Selecting parts of arrays: A(2:3,5:8), A(1,3:end); building/concatenating arrays. See Section
2.11.

� Simple writing and reading of data from �le: save, load, import wizard, see Section 2.7.

� Housekeeping of data: clear, who, whos, what, commands, and �les. See Section 2.12.

� Basic binary array operations: +, -, .*, ./. See Table 2.6 p. 34.

� Basic unary array functions: sin, cos, tan, exp, log, log2, sqrt, abs, ceil, floor, transpose,
etc. See Tables 2.7 p. 36, 2.8 p. 37, 2.9 p. 37, 2.10 p. 39, and 2.11 p. 40.

� Arrays vs. vectors and matrices, see Section A.

Plotting See Table 3.1 p. 43. In particular, note:

� Basic plotting: plot, semilogx, semilogy, loglog, linestyle, marker, color

� Tailoring your plot: axis, title, xlabel, ylabel, legend, hold, subplot

� figure, close

Simple data analysis* See Table 4.1 p. 57. In particular, you should check out rudimentary
commands such as max, min, mean, sum, as well as model �tting techniques such as polyfit, polyval.
See also how you can use the find command to spot outliers and missing data (NaN).
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Introduction to automation of tasks

� Basic string operations. See Tab. E.1 p. 174, and Tab. E.2 p. 176 for a more detailed treatment.

� for-loops, see Section 5.4.

� Scripts, see Section 5.5.



Chapter 8

More program �ow control

8.1 Introduction

In Part I of these lecture notes, we started to look into Matlab programming by developing Matlab scripts
using the Matlab editor, and automating repetitive tasks using the for loop. In this chapter, we will start
by looking into program �ow control by the if statement. To do this, we must �rst discuss the concepts
of logical variables and relations, as well as logical expressions. Then we are ready for discussing the if
statement. Thereafter, we will discuss the switch statement, and �nally we will discuss an alternative
repetition statement: the while loop.

8.2 Logical variables in Matlab

Writing scripts and functions, we often need to choose between alternative actions depending on the
result of one or more tests. To do this we need relational and logical operators and logical (Boolean)
variables.
Traditionally, Matlab only supported �oating point numbers, but later versions of Matlab support

various other data types similar to other programming languages, such as logical (Boolean) variables.
Logical variables can only have two possible outcomes, true or false. Since the early Matlab versions did
not support logical variables, such variables were �emulated�by interpreting the �oating point number
0 to be false, and any �oating point number 6= 0 to be true.

8.3 Relations: functions and operators

In programming languages, relations are statements which are either true or false, i.e. statements
where the result is a logical quantity. Table 8.1 lists Matlab functions and operators for relational
statements.
Matlab�s parser translates the operator expressions into the function form. So if we write x > y,

Matlab sees the function gt(x,y). The output of a relational expression is a logical variable, having the
value true or false.

Examples Consider the following simple examples:

Table 8.1: Matlab relational functions and operators. In the examples, it is assumed that x = 3, y = 4.
Math operator Matlab function Matlab operator Example

< lt < x < y --> true
� le <= x<=y �> true
= eq == x==y �> false
6= ne ~= x~=y -> false
> gt > x>y �> false
� ge >= x>=y �> false
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>> x = 2;
>> y = 3;
>> X = [1,2,3];
>> Y = [4,3,2];
>> x < y
ans =
1
>> y < x
ans =
0
>> x == y
ans =
0

We can also give name to the result from a statement:

>> logic = x == y
logic =
0
>> logic = x < y
logic =
1

We can consider relations between arrays of equal size, where e.g. [x; y; z] � [u; v; w] is interpreted as
[x � u; y � v; z � w]:

>> X < Y
ans =
1 1 0
>> X == Y
ans =
0 0 0
>> log = X >= Y
log =
0 0 1

8.4 Logical expressions

In the previous section, we considered statements about the ranking of �oating point numbers. The
result was logical quantities which assessed the truth of these statements.
It is also useful to work with logical expressions, i.e. combinations of logical variables. Table 8.2 gives

an overview of Matlab operators for combining logical variables.
Any(a) is true if at least one element in a is true. All(a) is true if all elements in a are true.

Examples Consider the following simple examples:

>> 1 & 0
ans =

0
>> 1 & 1
ans =

1
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Table 8.2: Matlab logical functions and operators. In the examples, it is assumed that a = [1; 0; 0]],
b = [1; 1; 0].

Logical operator Matlab function Matlab operator Example
AND and & a & b �> [1 0 0]
OR or j ajb --> [1 1 0]

Exclusive OR xor xor(a,b) --> [0 1 0]
NOT not ~ ~a --> [0 1 1]
Any any any(a) --> 1
All all all(a) --> 0

>> 1 | 0
ans =

1
>> xor(1,0)
ans =

1
>> any([1,0,1])
ans =

1
>> all([1,0,1])
ans =

0
>> all([1,1,1])
ans =

1

Often, the logical expressions are combined with relations:

>> x = 2;
>> y = 3;
>> X = [1,2,3];
>> Y = [4,3,2];
>> (x<y) & (X<Y)
ans =

1 1 0
>> any((x<y) & (X<Y))
ans =

1
>> all((x<y) & (X<Y))
ans =

0

Finally, we can make the logical expressions simpler by introducing logical variables:

>> logic1 = x<y;
>> logic2 = X<Y;
>> logic3 = logic1 & logic2
logic3 =

1 1 0
>> logic4 = any(logic3)
logic4 =

1
>> logic5 = all(logic3)
logic5 =

0
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8.5 Making logical choices: the if statement

8.5.1 Motivating example

As a motivation, consider the formulae for the root x 2 C of a second order polynomial ax2+ bx+ c = 0:

x =

8>><>>:
�b�

p
b2�4ac
2a ; a 6= 0
� cb ; a = 0; b 6= 0
; a = 0; b = 0; c 6= 0
C a = 0; b = 0; c = 0

.

We see that the answer depends on the values of coe¢ cients (a; b; c). In order to write a Matlab script
for the solution x with (a; b; c) is known, we need to be able to test which formulae is relevant.

8.5.2 Structure of if statements

The standard test statement in most programming languages is the if statement. In Matlab, the basic
syntax is as follows:

if expression
statements

end

Here, expression is a logical variable/expression. If the logical variable is true, then the statements are
executed. If not, they are not executed.
In many cases, we want to test for more than one logical variable/expression. We then use the

following extended version of the if statement:

if expression1
statements1

elseif expression2
statements2

elseif expression3
statements3

...
else

statements
end

8.5.3 Example: use of if statement

The following script will �nd the root of the second order polynomial, �g. 8.1. Below are some examples
of the use of this script:

>> a=1;b=2;c=-2;
>> rootscript
Solution x found
>> x
x =

-2.7321
0.7321

>> a=2;b=1;c=2;
>> rootscript
Solution x found
>> x
x =
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Figure 8.1: Script for �nding root of ax2+ bx+ c = 0, where a; b; c are speci�ed in the Matlab Command
Window.

-0.2500 - 0.9682i
-0.2500 + 0.9682i

>> a=0;b=2;c=-3;
>> rootscript
Solution x found
>> x
x =

1.5000
>> a=0;b=0;c=2;
>> rootscript
No solution
>> a=0;b=0;c=0;
>> rootscript
Any complex number is a solution

8.6 Logical choices: the switch statement

When we need to test for a logical variable, or for a (complex) logical expression, we use the if statement
as discussed in the previous section.
In many cases, the if statements are of the following type:

if variable == case_value1
statements1

elseif variable == case_value2
statements2

elseif variable == case_value3
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statements3
...
else

statements
end

This particular kind of if statement structure can be expressed in the slightly more convenient form of
a switch statement:

switch variable
case case_value1

statements1
case case_value2

statements2
case case_value3

statements3
...

otherwise
statements

end

8.7 Repetition loop: the while statement

8.7.1 Motivating example

We have already met the for statement:

for var = array
statements

end

It is characteristic for the for statement that the variable var loops through the values of array a
predetermined number of times.
Sometimes, we do not know in advance how many times we want to repeat an operation. As an

example, suppose we want to �nd

S =
1X
k=1

1

k2
=
�2

6
� 1: 644 9.

to a certain accuracy. We thus use the approximation Sn =
Pn

k=1
1
k2 = Sn�1 +

1
n2 , where n is unknown

but implicitly determined by the required accuracy jSn � Sn�1j < 10�6.

8.7.2 Structure of while statement

To �nd an approximation Sn, we can then use the while statement:

while expression
statements

end

Here, the statements are executed as long as expression is true.
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Figure 8.2: Script for �nding Sn =
Pn

k=1 = Sn�1+
1
n2 to a prespeci�ed accuracy of jSn � Sn�1j < 10

�6.

8.7.3 Example: use of while statement

The following example illustrates how we can compute Sn such that the accuracy requirement is ful�lled,
�g. 8.2. Running this script gives the following answer:

>> whileexample
S = S1000 = 1.6439

A possible problem with the use of the while statement, occurs if we use an erroneous test expression
which never is ful�lled: for that case, the while loop will continue forever, and the only way to stop the
script execution may be to hit the Ctrl+C key.1

8.7.4 Breaking out from for loop

Finally, it should be noted that the same construct can be achieved by combining a for loop with an if
statement, �g. ??. Executing this script leads to:

>> forwhileemulate
S = S1000 = 1.6439

The disadvantage of using the for statement here, is that we do not know in advance how large N
should be. The advantage of using the for statement, is that the loop will not be repeated inde�nitely
even when we make a mistake in the program code.

1Ctrl+C is achieved by holding down the Ctrl key on the computer keyboard, and while your are doing this, press the
C key. This is an emergency action only, which usually (but not always) works.
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Figure 8.3: Script with for loop, where an if statement is used to beak out of the loop.



Chapter 9

Writing your own functions

So far, we have used some of Matlab�s built-in functions. In Matlab it is very easy to write your own
functions if Matlab does not have one that suits your needs.

9.1 Example: Distance to horizon

9.1.1 Basic case

If you look out to the sea, the distance xh to the horizon depends on how high above the sea level
your eyes are, �g. 9.1. Approximating the earth with a perfect sphere and neglecting refraction, the

h

D

R

90E R

xh

Figure 9.1: Distance xh to visible horizon from height h. D and R are the diameter and radius, respec-
tively, of the earth.

Pythagorean law leads to:

R2 + x2h = (R+ h)
2 , xh =

p
h (2R+ h) =

p
h (D + h),

where h is the elevation of your eyes above the sea level and D is the diameter of the earth. xh is
the length of the straight line between your eyes and the horizon. Knowing that the earth�s diameter
D � 12000 km, we can create a Matlab function for this. We open a new document in the editor by
clicking the leftmost button on Matlab�s toolbar and type:

function xh = horizon(h)
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% Distance to the horizon
% Usage: xh = horizon(h)
d = 12e6; % Earth�s diameter
xh = sqrt(h.*(h+d));
We save this file as horizon.m. Now we can test it:
>> horizon(2)
ans =
4899

We have thus chosen to name the function horizon; we thus also save the function �le and give it the
name horizon.m.
Note that we have used element by element operations (.*, ./, .^) rather than matrix operations

(*, /, ^). This ensures the right answer if we want to calculate the function for an array of arguments
at once, as we might want to do for plotting:

>> hp = 1:1000;
>> plot(hp,horizon(hp))

The �rst comment lines are echoed when we write help horizon:

>> help horizon
Distance to the horizon
Usage: xh = horizon(h)

Maybe we want to be able to �nd the distance to the horizon on the moon or some other planet. We
can easily modify the function so that it takes the planet diameter as a second argument:

function xh = horizon2(h,d)
% Distance to the horizon
% Usage: xh = horizon(h,d)
% h : Observer distance above surface
% d : Planet diameter
% xh : Distance to horizon
xh = sqrt(h.*(h+d));

Note that Matlab searches for the �le horizon2.m when we write:

>> horizon2(2,6e6)
ans =
3464.1

We should thus save the new function in a �le horizon2. The function name itself (horizon2) is not
important in itself, but it is considered good practice to let the function name be equal to the �le name.
We can make a version that uses the earth�s diameter as default if we give only h as the argument.

As long as only one argument is used, the user will not note the di¤erence from the original horizon.m,
so we overwrite this �le. Below, nargin knows the number of input arguments that the user has used:

function xh = horizon(h,d)
% Distance to the horizon
% Usage: xh = horizon(h) and xh = horizon(h,d)
% h : Observer distance from surface
% d : Planet diameter Default: 12e6 (Earth)
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% xh : Distance to horizon
if nargin < 2

d = 12e6; % Gives d a value if the user does not
end
xh = sqrt(h.*(h+d));

9.1.2 Returning more than one result

We may also return more than one value:

function [xh, angle] = horizon3(h,d)
% Distance to the horizon
% Usage: xh = horizon(h) and xh = horizon(h,d)
% h : Observer distance from surface
% d : Planet diameter Default: 12e6 (Earth)
% xh : Distance to horizon
% angle: angle between radius to horizon and to observer (degrees)
if nargin < 2

d = 12e6; % Gives d a value if the user does not
end
xh = sqrt(h.*(h+d));
angle = atan(xh/(d/2))*180/pi;

Test:

>> [xh,angle]=horizon3(1e4)
xh =

3.4655e+005
angle =

3.3057

From an airplane at 10 000m above Oslo (60�N) you can see most of the way to Trondheim (63:5�N).
We can ask for the second output value by specifying it in the calling statement (otherwise, it is

discarded):

>> xh=horizon3(1e4)
xh =

3.4655e+005

We can obtain the number of output arguments from within the function. This can save some
computer time if some outputs require a lot of calculations. Below, nargout knows the number of
output arguments that the user has asked for:

function [xh, angle] = horizon4(h,d)
% Distance to the horizon
% Usage: xh = horizon(h) and xh = horizon(h,d)
% h : Observer distance from surface
% d : Planet diameter Default: 12e6 (Earth)
% xh : Distance to horizon
% angle: angle between radius to horizon and to observer (degrees)
if nargin < 2

d = 12e6; % Gives d a value if the user does not
end
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xh = sqrt(h.*(h+d));
if nargout > 1

angle = atan(xh/(d/2))*180/pi;
end

It is good practice to test that the arguments given by the user are valid:

function xh = horizon(h)
% Distance to the horizon
% Usage: xh = horizon(h) and xh = horizon(h,d)
if h < 0

error(�Argument must be positive�)
end
xh = sqrt(h.*(h+d));

9.1.3 Exercises

Exercise 9.1 The Fibonacci numbers fk are de�ned by:

f1 = 1

f2 = 1

fk+1 = fk + fk�1; k > 2.

Thus the �rst 8 Fibonacci numbers are: 1; 1; 2; 3; 5; 8; 13; 21.

� Write a function fib(n) that returns Fibonacci number n.

� Let the function return the vector of numbers up to and including fn in an optional second return
variable. Also make the function able to take a two-element array as an optional second input
variable. The two elements of the vector should be used as alternative starting values. E.g.:
[fn,s]=fib(6,[8,3]) should return fn = 39 and s = [8,3,11,14,25,39].

Exercise 9.2 When calculating the distance to the horizon xh from an elevation h, the distance from
the �shore�to the horizon will also be approximately xh when h� D.

� Write a function that computes h when xh is known.

� Approximately, how high above the ground do you need to be to be able to see from one end of
Lake Mjøsa1 to the other end? Assume that Lake Mjøsa is 120 km long.

� Approximately, how high above the ground do you need to be to be able to see from the southern
shore of Norway to the northern shore of Denmark? Assume that the distance is 150 km.

� A possible approximative expression for h is

h � 1

D
x2h.

Write another function for computing h based on this approximation. Compare the expression
with the exact expression for a number of distances xh, and suggest how large xh can be before
the simple formula h � x2h=D becomes inaccurate.

1Lake Mjøsa is the largest inland lake in Norway.
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9.2 Workspaces and variables

Like most programming languages, Matlab uses several workspaces or contexts. As long as you issue
commands in the command window or use scripts, you work in the base workspace. All variables that
you have created are available to you until you clear them or until the session is terminated. Inside a
function, you do not have access to the variables in the base workspace. This function will never work,
even if you de�ne the variable a before calling the function:

function s = testsum(x)
s = x + a;

We can try:

>> a = 4;
>> s = testsum(3)
??? Undefined function or variable �a�.
Error in ==> C:\HiT\Matlabkurs\testsum.m
On line 2 ==> s = x + a;

Inside the function, Matlab does not �see�the a from the base workspace. Information to the function
is passed only through the function�s arguments. Likewise, variables that you create or change inside a
function have no direct in�uence on the base workspace. Information can pass back only through the
returned variables. Only the sequence of input and output variables is signi�cant. Which variable names
you use have no e¤ect.

Example

Consider these examples:

function s = vartest(x,y)
a = 2;
s = x + a*y;

We test the function:

>> a = 4;
>> x = 1; y = 2;
>> z = vartest(x,y)
z =

5
>> a
a =

4
>> z = vartest(y,x)
z =

4

We see that the assignment a=2; in the function workspace does not a¤ect the variable a in the base
workspace. Furthermore, interchanging the sequence of x and y in the call gives two di¤erent results. In
fact, we could have used some totally di¤erent variable names in the call:

>> arg1 = 1; arg2 = 2;z = vartest(arg1,arg2)
z =
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5
>> z=vartest(1,2)
z =

5

Assigning the answer to the variable s in the function�s workspace has no e¤ect in the base workspace:

>> s
??? Undefined function or variable �s�.

Understanding this segregation between workspaces is essential to understanding how functions work.

9.3 Loops vs. matrix operations

Say we want to calculate the inner product of two vectors a and b. The inner product is de�ned as

a � b =
nX
i=1

aibi,

where n is the number of elements of a and b. Say we represent both a and b as Matlab column vectors.
Then we can calculate the inner product by using the formula above, but we can also exploit the fact
that the inner product is the same as the matrix product between the transpose of a with b. The latter
gives a much simpler expression:

% Inner product example
a = [3;6;-2;1];
b = [-3; 0; 4; 1];
% Loop formulation
s1 = 0;
for k = 1:length(a)

s1 = s1+a(k)*b(k);
end
% Matrix/vector expression:
s2 = a�*b;

In older versions of Matlab, the matrix expression was much quicker than the loop form, but from
Matlab v. 6.5, the loop runs almost as fast. You should use the formulation that results in the most
easily readable code. Very often, this is the matrix form.

Exercise 9.3 Element Cij in the product C = A �B is de�ned as Cij =
Pn

k=1AikBkj .

� Write function C = matmult(A,B) that multiplies two square matrices without using Matlab�s
matrix operations. Test that the matrices are indeed square and of the same size, and abort using
the error statement if this is not the case.

(Hint: The value of C(i,j) is the inner product of A(i,:) with B(:,j).

� Using two random matrices (A = rand(3); B= rand(3);), compare the output to A*B.
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Advanced use of the Matlab editor

10.1 Errors and the debugger

I really hate this damn machine.
I wish that they would sell it.
It never does quite what I mean,
but only what I tell it!
� The programmer�s lament

We inevitably make mistakes when we write functions and scripts in Matlab. Some are syntax errors:
we write something that does not make sense to Matlab, no matter what the variables contain. Matlab
spots these errors before it tries to execute your code. We may for instance forget the multiplication
operator *:

>> a = 2b
??? a = 2b
|
Error: Missing operator, comma, or semicolon.

Matlab tells you what it believes is wrong and marks the spot where it had to give up.
Syntax errors are usually relatively easy to correct. However, even when there are no syntax errors

in the Matlab code, there may be logical errors or algorithmic errors which occur during run-time and
lead to unintended results or even program crash � these are not always easy to �nd. Run-time errors
depend on the contents of your variables. When the running of the Matlab code terminates, Matlab
reverts to the base workspace, and we no longer have access to the variables in the function workspace.
This makes it di¢ cult to �nd out what went wrong.
One simple remedy is to have the function print intermediate results, either by using the disp

statement, or simply by omitting the semicolon at the end of selected statements. However, these are
not good strategies for �nding errors, because when the code has been debugged and errors �xed, we
need to remove the disp commands and insert semicolons; this may be a major job.
A more advanced solution is to use the debugger. The debugger is a powerful tool to help you

understand what is going on inside your functions, �g. 10.1. In order to activate the debugger, a breakpoint
must have been de�ned in the Matlab �le, see �g. 10.1. With one or more breakpoints in the Matlab
�le, the debugger can be started as follows:

� if you want to debug a script �le, either click on the (Saven and) Run icon in the editor, or type
the name of the script �le in the command window;

� if you want to debug a function �le, either call the function (with appropriate arguments) from the
command line, or run a script that calls the function.

The debugger allows you to stop execution inside a script or function. You can stop at a speci�ed
line, or when a warning or error is triggered. A breakpoint marks one or more lines of code where you
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Exit Debug ModeContinue

Breakpoint: set/remove by clicking
in breakpoint column of line

Step execution

Debugger Tools

Figure 10.1: Some debugger tools.

want execution to pause. You de�ne the breakpoints by clicking the button showing a red circle on the
edge of the paper, or from the Breakpoints menu.
When the debugger halts execution, you will see a special prompt in the command window :

K>>

At the same time: in the editor window, a green arrow points to the line about to be executed, see
�g. 10.1. You may now examine the contents of variables. This can be done by letting the cursor hover
over a variable in the editor window � the value of the chosen variable will then appear in a yellow box
over the editor window. Or you can browse the workspace browser and use the array editor. Or you can
type commands in the command window:

>> horizon1(1000,64e3)
K>> h
h =

1000
K>> d
d =

64000
K>> h*d
ans =

64000000

You may step from line to line or into subfunctions, using one of the three Step execution icons, see
�g. 10.1. All debugger buttons show yellow information balloons when you let the cursor hover over
them, so �nding your way around the debugger is quite intuitive.
To get out of the debugger, click the Exit Debug Mode icon (�g. 10.1, or enter the command

K>> dbquit
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Figure 10.2: Example of Matlab code with �lint�: statement Sn_new = 1; is super�uous and should
have been removed.

in the command window.
Finally: the Debug menu in the Editor window should also be consulted. This menu contains the

same operations as can also be carried out using the debugger icons.
The debugger is useful for understanding runtime errors, but even more so for �nding out why your

Matlab code does not return the answer that you expected. If you are serious about using Matlab as a
tool, learning to use the debugger is mandatory.

10.2 De-linting the code

Developing complicated Matlab code in the Matlab editor will to some degree involve some trial and
error: we try with some code, then change our mind and modify the code. In this development, it is very
common that we forget to remove unnecessary code, or that we forget to de�ne some variables. This
problem is illustrated in the (not very realistic) example of �g. 10.2.
We can use the M-Lint tool to �nd such code: type Tools/Check Code with M-Lint, and the report

in �g.10.3 is provided.
As the report in �g. 10.3 indicates, the statement on line 2 of the code in �g. 10.2 should be removed.

(Clearly, Matlab can not guess that statement on line 3 is without interest.)

10.3 Structuring the �le

From Matlab 7 of, it is possible to structure Matlab code in the editor by de�ning text cells. Essentially,
a text cell is initiated by putting the symbol %% (double % character) in the �rst position of a line. The
cell ends on the line preceding the next %% symbol. After the %% symbol, a space should be inserted,
followed by a descriptive text. The Matlab editor marks a cell by framing it with a yellow box: when
you put the cursor in a cell, the frame is shown. In order for this to work, the Cell Mode must have been
Enabled, see the Cell menu of the Matlab editor. Figure 10.4 illustrates a simple script where cells have
been de�ned.
A simple use of such cells is use it for browsing a long Matlab �le: click on the Show cell titles

icon, �g. 10.5
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Figure 10.3: Report from checking the code of �g. 10.2 with M-Lint.

Figure 10.4: Example of text cells in the Matlab editor.

Tools for using cells
Show cell titles

Figure 10.5: Tools for taking advantage of cells in Matlab �les. The Show cell titles tool can be used
for browsing through the cells: clicking this tool, gives a list of the cells.



10.3. STRUCTURING THE FILE 113

and a list of the cell headlines (descriptive text following %% symbol) pops up. By clicking on the
relevant cell title, the cursor is positioned in the cell head. This allows for easy navigation of large Matlab
�les.
However, cells can be used for much more. It is e.g. possible to insert markup commands in the

Matlab �le, e.g. making text boldface, etc., and also markup text using TEX syntax so that it can be
interpreted as mathematics. The Matlab �le can then be published as an HTML document, a LATEX
document, a Word document, etc., in such a way that the published document documents the code with
headlines, section heads, with computed results, etc.
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Chapter 11

Data structures in Matlab

Historically, the matrix was the only data type in Matlab. Vectors and scalars are special cases of
the general matrix. Since Version 5, some important new data structures have arrived. One is a the
multi-dimensional array, which just extends the matrix to more than two dimensions. More important
newcomers are the structure and the cell array.

11.1 Structures

A structure is a data structure that can hold diverse data types, not necesarrily numbers, and with
named �data containers�called �elds, similar to a record with �elds in a database. Example:

>> tank1.diameter = 0.5;
>> tank1.height = 0.4;
>> tank1.type = �cylinder�;

This is useful if we want to collect several items of information about some object. We can now tell
e.g. a function to calculate the volume: all it needs to know about tank1 by using the tank1 structure
as function argument:

function V = volume(a)
switch a.type

case �cylinder�
V = pi*a.diameter^2*a.height/4;

case �box�
V = a.length*a.width*a.heigth;

case �sphere�
V = pi*a.diameter^3/6;

otherwise
error(�unknown type�)

end

Here we have used a new �ow control structure, switch ... case ... otherwise ... end.

>> volume(tank1)
ans =
0.025
>> tank2.type = �sphere�;
>> tank2.diameter = 2;
>> volume(tank2)
ans =
4.1888
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Structures may be used to limit the number of arguments needed by a function. This can be achieved
by collecting all parameters in a parameter structure.

11.2 Cell arrays

A cell array is a data structure that can hold diverse data types, not necessarily numbers. The File
Import Wizard returns text and data as cell arrays, as we saw in Part I of the course. We can collect
items into a cell array by enclosing them in curly brackets:

>> A = rand(4);
>> C = {A sum(A) prod(prod(A))}
C =
[4x4 double] [1x4 double] [8.7912e-006]

We access the contents of the individual cells by curly brackets:

>> b = C{2}
b =
2.1251 1.8055 2.8766 2.8019

The Matlab Help contains much more information about structures and cell arrays.
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Handle graphics

As you have seen, simple plotting in Matlab is quite easy. At the same time, Matlab graphics is very
�exible, and you have great freedom to get the exact graphics that you need. Here, we will demonstrate
how to modify some properties of graphs. You can �nd out more by consulting Matlab�s help system.
We consider the plotting of two Taylor series for cosx, and compare them to the exact function:

cosx �
�
T1 = 1� 1

2x
2 + 1

24x
4

T2 = �
�
x� �

2

�
+ 1

6

�
x� �

2

�3 ,

To make sure that we can distinguish between the three lines, we use markers for T1 and T2:

x = linspace(0,pi/2,25);
f = cos(x);
T1 =1 - x.^2/2 + x.^4/24;
T2 = -(x-pi/2)+(x-pi/2).^3/6;
figure(1)
h = plot(x,f,x,T1,�*�,x,T2,�+�);

The result is displayed in �g. 12.1.
Note the form of the plot command. The variable h now contains handles to each of the three curves.

In fact, h is an object with certain properties, and we can get a list of all of the properties for the �rst
curve by typing get(h(1)):

>> get(h(1))

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12.1: Comparison of cosx, and two Taylor expansions of cosx.
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Color: [0 0 1]
EraseMode: �normal�
LineStyle: �-�
LineWidth: 2

Marker: �none�
MarkerSize: 6

MarkerEdgeColor: �auto�
MarkerFaceColor: �none�

XData: [1x25 double]
YData: [1x25 double]
ZData: [1x0 double]

BeingDeleted: �off�
ButtonDownFcn: []

Children: [0x1 double]
Clipping: �on�
CreateFcn: []
DeleteFcn: []
BusyAction: �queue�

HandleVisibility: �on�
HitTest: �on�

Interruptible: �on�
Selected: �off�

SelectionHighlight: �on�
Tag: ��
Type: �line�

UIContextMenu: []
UserData: []
Visible: �on�
Parent: 150.0048

DisplayName: ��
XDataMode: �manual�

XDataSource: ��
YDataSource: ��
ZDataSource: ��

We can now use the handles to change the properties of the curves. For instance, we may increase
the line width of the �rst curve by;

>> set(h(1),�linewidth�,2)

(note: Matlab is not case sensitive when it comes to property names).
The properties can also be modi�ed interactively, as we have seen in Section 3.2.2 p. 44. Using handles

enables us to specify the desired look from our scripts and functions. Once we get the script right, we
get the right look every time. Furthermore, using handles makes it possible to automate the look in
repetition loops.
As an example, we may even modify the data to be plotted in the graph. This enables the creation

of animations. Example:

% animation example
x = linspace(0,1,100);
y = 0*sin(x*pi);
figure(2);
h=plot(x,y);
set(h,�erasemode�,�xor�) % Redraw only curve, not full figure
axis([0 1 -1 1])
for i = 1:1000
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pause(0.01); % Wait 0.01 seconds to slow things down
y = sin(i/100*pi)*sin(x*pi);
set(h,�ydata�,y) % Enter new y-data
drawnow % Update graph

end

For more information on graphics and graphics properties, see the interactive help. (Matlab help or
Full product help, from the help menu.)

Exercise 12.1 Make a plot of sinx and cosx on [0; �].

1. Write a script that changes the line style of the �rst curve to �-.� and the second to �:�, and the
colors of both to black (�k�). You can get handles to all line objects of the current axes by the
command:

h = findobj(gca,�Type�,�line�)

2. Repeat the exercise, this time using the Figure Properties Editor. This is accessible from the Edit
menu on the �gure window.

This kind of modi�cation may be useful if you want to copy your paper using black and white copiers.
The Matlab Help System contains much more information on how to tailor your graphs to suit your

needs.
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Chapter 13

Problems

In the following problems, use the debugger and Matlab�s help facilities to sort out the troubles you are
sure to encounter:

Problem 13.1 An integer k is called a proper divisor of n if 0 < k < n, and if the fraction n=k is an
integer. Write a function propdiv(n) that �nds all proper divisors of the positive integer n. A simple
algorithm for this is to test every integer k � n=2 to �nd those that give no remainder when n is divided
by k. Use the standard Matlab function rem to do this.

Problem 13.2 Write a function perfect(n) that �nds the �rst perfect number > n. A perfect number
is the sum of all its proper divisors. The �rst three perfect numbers are 1, 6 (= 1 + 2 + 3), and 28
(= 1 + 2 + 4 + 7 + 14).

The following problems relate to graphics in Matlab.

Problem 13.3 Let t = linspace(0,2*pi). Let x1 = sin(t), y1 = cos(t), y2 = sin(2*t), y3 =
cos(3*t), and y4 = sin(4*t). Create a �gure containing a 2 by 2 subplot array. In subplot 1, plot y1
vs. x. In subplot 2, plot y2 vs. x, and so on. Use the interactive plotting tools to change line colors,
add markers, and stretch or move the subplot axes. You may also change background colors and make
other modi�cations as you like.

Problem 13.4 Use the generate m-file menu choice in the �gure�s file menu to save the �gure
set-ups as an m-�le function, which you may call createfigure.m. Use createfigure to make a new
�gure identical to the �rst, only now the x-axis data for each �gure is x2 = cos(t).

Problem 13.5 Modify createfigure to add xlabels and ylabels to each subplot. The ylabel for
subplot 1 may be �cos (t)�and so on.

Problem 13.6 In this problem, do not use the interactive plotting tools. Make a new �gure, this time
showing y1 through y4 vs. x1 in the same axes. Let the plot command return handles to each graph,
and use the handles to add markers and modify colors and line types of each graph.

To solve the next problem, it is necessary to study Appendix D.

Problem 13.7 Write the Matlab commands: x=0:0.25:2; y=0:0.5:5; [X,Y] = meshgrid(x,y). Ex-
amine X and Y to see the e¤ect of the meshgrid function. Let Z = X.^2 + sin(Y). Plot Z as a function
of X and Y using the following commands: surf, mesh, contour, contourf. Write labels on the axes.
Rotate and move the graphs using the various interactive tools, including those on the camera toolbar.
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Part III

Becoming a Matlab Master
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Chapter 14

The once and future Matlab Master

14.1 Revisiting Part II

Numerical methods with Matlab

� Repetition of functions from Part I, and some new functions.

Writing your own functions

� Introduction through example: distance to horizon

�Basic use of functions

�Returning more than one result

� Workspaces and variables: local value of variables within functions

� Relational and logical expressions

� Program �ow control

� Loops vs. matrix operations

� Errors and the debugger

Data structures in Matlab

� Structures

� Cell arrays

Handle graphics

� Figures and handles

� Modi�cation of �gures through handles and setting properties

� Animation

14.2 Overview of new material

� Functions and function handles

� Calling functions through their handles

� Anonymous functions

� Function functions

125



126 CHAPTER 14. THE ONCE AND FUTURE MATLAB MASTER

�Writing your own Newton solver

�Generalizing the newton solver

� ODE solvers

�Writing your own Euler solver

�Generalizing the Euler solver

�Built-in Matlab solvers



Chapter 15

Functions and function handles

15.1 Function handles

A function handle is a Matlab value which can be used for calling a function indirectly. Basically, the
function handle is an address to the function.
A function handle can be created as follows:

>> mysin = @sin
mysin =

@sin

Here, sin is a function name � the built-in Matlab function to compute the sine of the argument. By
preceding the function name by the handle indicator @, @sin is the handle for the sine function, and
points to the built-in sine function. Finally: with the statement mysin = @sin, we declare variable
mysin to be the function handle @sin.
From Matlab 7 of, we can use the variable name mysin containing the function handle of the sin

function, just as if it was the sin function:

>> x = linspace(0,2*pi);
>> plot(x, mysin(x))

In older versions of Matlab, other and more arcane techniques must be used.1

The function handle is a mapping to the memory address of the function. We can treat function
handles as any variable, e.g. copying the handle:

>> myothersin = mysin;

Next, we can use myothersin just as we used mysin, and

>> plot(x, myothersin(x));

will give the same result as plot(x, mysin(x)). Function handles can e.g. be stored in cell arrays:

>> mysin = @sin;
>> mycos = @cos;
>> mytrig = {mysin, mycos}

1 In older versions of Matlab, we would have to write the plot statement below as plot(x, feval(mysin, x)).
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mytrig =

[sin] [cos]

Then we can use mytrig to plot the sine function:

>> x = linspace(0,2*pi);
>> plot(x, mytrig{1}(x))

A very important feature of the function handle, is that we can transfer the handle as an input
argument to a function, and then use the function handle from within the new function � because of
this, we talk about function handles as �function functions�.

15.2 Function functions

We have already seen examples of many built-in Matlab functions. With some of the built-in Matlab
functions, the user has to supply an additional function. As an example, Matlab has built-in functions for
performing numerical integration, e.g. the quad function2 . But the user has to supply the function that
he/she wants to integrate. In the simplest case, the arguments of quad are: (i) the function handle for
the function we want to integrate, (ii) lower integration boundary, and (iii) upper integration boundary.
Suppose we want to �nd Z �

0

sinxdx

by numeric integration. This can be done as follows:

>> quad(@sin,0,pi)

ans =

2.0000

The point here is that Matlab function quad is a general function that can integrate any function
numerically, and we, the user must supply the function handle for the function which we want to integrate
� @sin in this case. Because we supply the function handle @sin, Matlab function quad can internally
make calls to the speci�ed function sin.
Similarly, we can compute Z �

4

0

cosxdx

as follows:

>> quad(@cos,0,pi/4)

ans =

0.7071

Some Matlab functions that require a user speci�ed function are shown in Table 15.1.
We have previously seen how we can de�ne our own functions in m-�les, where the function name and

the �le name coincide. We can then transfer the reference to such functions using the function handle
technique, e.g. to the built-in functions in Table 15.1. It is also possible to de�ne functions in a simpler
way, without writing speci�c m-�les for them. Such functions are denoted anonymous functions.

2Numerical integration is often called quadrature.
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Table 15.1: Some built-in Matlab functions that require a function reference (function handle) as input
argument.

Function Comment
quad, quadl Numerical integration, quadrature
fzero Find a zero of a function of one variable
fminbnd Find a minimum of a function of one variable
fminsearch Find a minimum of a function of several variables
fplot Plot a function
ode23, ode45 Solve an ODE system
ode15s Solve an ODE or DAE system

15.3 Anonymous functions

Anonymous functions give you a quick way to de�ne functions without writing m-�les. In mathematics
and in computer algebra systems such as Maple, Mathematica, MuPAD, etc., we can de�ne functions as
follows:

f : x! y.

Here, the f before the colon : is the name of the function, x is the input argument, and y is the mapping
of x. As an example, we can de�ne a function named g as

g : x! sin2 x.

Figure 15.1 illustrates how such a function de�nition can be carried out in a Computer Algebra System
such as MuPAD.
In Matlab3 , we can de�ne such a function using the following syntax:

>> g = @(x) (sin(x)).^2;

Here, we notice that we have prepared g (x) for accepting array inputs x. Then we can compute g (x)
for selected values of x as follows:

>> x = linspace(0,2*pi,10);
>> g(x)
ans =
Columns 1 through 6

0 0.4132 0.9698 0.7500 0.1170 0.1170
Columns 7 through 10
0.7500 0.9698 0.4132 0.0000

Similarly, we can plot g (x) as follows:

>> plot(x,g(x))

Let us also consider another example:

sinc : x! sinx

x
.

Using Matlab, we �nd:

>> sinc = @(x) sin(x)./x;

3Matlab 7 and later versions.
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Figure 15.1: De�nition of function g : x! sin2 x in Computer Algebra System (CAS) MuPAD. Note in
particular that the mapping g is independent of what we choose to name the argument.
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Figure 15.2: Plot of sincx = sin x
x , x 2 [�6�; 6�].

Here, we have prepared our sinc function to accept array input argument x. We can now use the sinc
function handle as follows:

>> x = linspace(-6*pi,6*pi);
>> plot(x, sinc(x))

to �nd the well known plot of the sincx function, �g. 15.2.
We can also use function handles of anonymous functions as input arguments to the functions in

Table 15.1. As an example, we could consider the problem of computingZ 6�

0

sincxdx.

In the simplest case, the arguments of quad are: (i) a function handle for the function we want to
integrate, (ii) lower integration boundary, and (iii) upper integration boundary. We have previously
done this for the sinx function, and in principle, we could carry out a similar integration with the
anonymous function handle sinc in the interval x 2 [0; 6�]:

>> quad(sinc, 0, 6*pi)
Warning: Divide by zero.
> In @(x) sin(x)./x
In quad at 62

ans =
1.5180

We see that Matlab has a problem since sinx=x is not handled very well at x = 0. This illustrates
a problem with anonymous functions. The general syntax is @(args) expr, where args is a list of
comma-separated input arguments, and expr is a one line Matlab expression which depends on the
input arguments. In the case of the sincx function, we would really like to have more than one Matlab
expression in the de�nition, e.g. @(x) if x == 0, 1; else, sin(x)/x; end; this is, however, more
than one expression, hence is not a valid expression for the anonymous function.
One more example of anonymous functions: we have in previous chapters searched for the root of

sinx = 0:5. We can �nd this root by combining the idea of anonymous functions with function fzero in
Table 15.1, specifying 1 as the initial guess of the root x:
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>> func = @(x) sin(x) - 0.5;
>> fzero(func,1)
ans =

0.5236

As indicated, anonymous functions can be functions of more than one argument:

>> sin2 = @(x,y) sin(x)*sin(y);
>> sin2(1,2)
ans =

0.7651

15.4 Function functions: motivating example

15.4.1 Implementation of Newton method

We want solve the equations sinx = 0:5, using Newton�s metod. We use the following code and store it
as a script in �le newton0.m:

x0 = 1;
xi = x0;
fi = sin(xi)-0.5;
Ji = cos(xi);
while abs(fi) > 1e-10

xip1 = xi-fi/Ji;
disp([�xi = �, num2str(xi)]);
xi = xip1;
fi = sin(xi)-0.5;
Ji = cos(xi);

end
disp([�sin(xi) - 0.5 = �, num2str(sin(xi)-0.5)]);

Here is a brief description of how the Newton method works. We want to solve the equations

f (x) = 0,

where in the example case above,
f (x) = sinx� 0:5.

Here are the steps in the Newton method:

Algorithm 1 Newton method:

1. Let x� denote the correct solution such that f (x�) = 0; x� is currently unknown. We want to �nd
an approximation x1 of x� through iteration.

2. First, we have to guess an initial value x0. The closer x0 is to the correct solution x�, the faster
we will �nd the our approximate estimate x1 of x�. Set counter i = 0.

3. Next, we �nd a �rst order Taylor series approximation of f (x) in the point xi:

f (x) � f (xi) +
df (x)

dx

����
x=xi

(x� xi) .
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4. We now let the next iterate xi+1 be de�ned by f (xi+1) � 0:

0 = f (xi) +
df (x)

dx

����
x=xi

(xi+1 � xi)

+

xi+1 = xi �
1

df(x)
dx

���
x=xi

f (xi) .

5. Hopefully, by iterating in�nitely many times, x1 � x�. Since we do not have in�nitely much time,
we need to terminate the approximation after a �nite number of approximation. We thus need tests
to see whether we are close to x1. One possible tests is:

jf (xi+1)j � "f ,

and if this test is satis�ed, we set
x� � xi+1,

and terminate the iteration. But other tests are possible, e.g.:

jf (xi+1)� f (xi)j � "�f ,

which will indicate that we do not improve our approach to the correct solution in the ordinate
direction. When satis�ed, we set

x� � xi+1,

and terminate the iteration. Or we could require that

jxi+1 � xij � "�x,

which will indicate that we do not improve our approach to the correct solution in the abscissa
direction. When satis�ed, we set

x� � xi+1,

and terminate the iteration.

In reality, we may stop the iteration when one of the test above are satis�ed, or we may require that
each of them are satis�ed. In practice, it may also be necessary to introduce a maximal number of
iterations imax, in case the Newton method doesn�t work. Other re�nements may also be necessary.

6. If the iteration is not terminated, we increase the iteration counter by 1: i = i + 1, and return to
step 3.

Let us illustrate the method by plotting f (x) = sinx� 0:5 together with the linear approximation

f (x) � f (1) + df (x)

dx

����
x=1

(x� 1) = sin 1� 0:5 + (cos 1) (x� 1) ,

see �g. 15.3.
Here is the result of running the Matlab code above:

>> newton0
xi = 1
xi = 0.368
xi = 0.51831
xi = 0.52359
sin(xi) - 0.5 = -1.596e-011

We see how the iterates approach the correct solution x� = arcsin (0:5) = 0:523 599 .
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Figure 15.3: Plot of function f (x) = sinx � 0:5 (black), and linear approximation at x = 1 : f (x) �
sin 1� 0:5 + (x� 1) cos 1 (gray). We want to �nd x : f (x) = 0.

15.4.2 Generalizing the Newton method

Natural we observe that the Newton method is not restricted to the problem sinx = 0:5. Furthermore,
we observe that the Newton method is the same for any problem f (x) = 0, and that the only thing
that is special is the form of the function f (x) and the form of the Jacobian J (x) = df (x) =dx. It is
thus natural to consider separating the Newton algorithm itself from the form of the functions f (x) and
J (x).
We could consider the following strategy:

1. De�ne the function f (x) in a Matlab function myfunction, with input argument x, and output
argument f (x).

2. De�ne the Jacobian J (x) = df (x) =dx in Matlab function myjacobian, with input argument x and
output argument J (x).

3. Write a Newton solver function mynewtonsolver, with input argument x0, and output argument
x� (or an approximation of x�).

Here is how our code works:

>> x0 = 1;
>> mynewtonsolver(x0)
ans =

0.5236

In order to get this result, we have written the function mynewtonsolver for a general Newton solver:

function xsolution = mynewtonsolver(x0)
%
xi = x0;
fi = myfunction(xi);
Ji = myjacobian(xi);
while abs(fi) > 1e-10

xip1 = xi-fi/Ji;
xi = xip1;
fi = myfunction(xi);
Ji = myjacobian(xi);
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end
xsolution = xi;

In addition, we have written the special function myfunction for de�ning f (x) = sinx� 0:5:

function fx = myfunction(x)
%
fx = sin(x) - 0.5;

and the special function myjacobian for de�ning J (x) = df (x) =dx = cosx.

function Jx = myjacobian(x)
%
Jx = cos(x);

15.4.3 Some �nal thoughts

We have now seen how we can separate a general algorithm (the Newton method) from a special case
(�nding the root of f (x) = sinx� 0:5) by writing a general function for the Newton method, and then
implement the speci�c functions f (x) and J (x) in separate Matlab functions.
Still, our implementation is not satisfactory :

� With the current implementation, we can de�ne one and only one problem f (x) = 0 per directory
on our computer! This is so since we are only allowed to have a single �le with the name myfunction,
and a single �le named myjacobian.

� Clearly, this is too limiting. We need to be able to de�ne many problems for each directory.

� The solution is to change the code of the Newton solver so that the user can de�ne the �le names
where f (x) and J (x) are stored.

This modi�cation of our Newton solver is the topic of the next section.

15.5 Function handles as function arguments

To make our Newton solver more general, i.e., such that the user can choose the name of the functions
where f (x) and J (x) = df (x) =dx, we need to transfer information about the function names to the
mynewtonsolver. The best way to transfer the names, is as input arguments to the Newton solver.
In Matlab, we do not transfer the names of the functions, but rather so-called function handles,

which are pointers to the memory address of the functions. In order to specify that we mean the
function handles, we precede the function names by the function handle indicator @. Here is a typical
call structure to our new Newton solver, which we name mynewtsolver:

>> x0 = 1;
>> mynewtsolver(@mysinfunc, @mysinjacobian, x0)

Here, we notice:

1. The new function (which we have yet to code/write), is named mynewtsolver, and is quite similar
to mynewtonsolver.

2. Compared to our previous solver mynewtonsolver, the new solver requires two additional input
arguments: the function handles to the function where f (x) is de�ned (in this case function:
mysinfunc) and where J (x) = df (x) =dx is de�ned (in this case function: mysinjacobian). We
have to write both of these new functions.
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3. In addition, we need to specify an initial guess x0, i.e. x0.

4. Notice that the order of the input arguments is arbitrary � we can choose the order as we want.
However, when we have chosen the function order, we must stick to it!

Below is an example of how we can run the new code:

>> x0 = 1;
>> mynewtsolver(@mysinfunc, @mysinjacobian, x0)
ans =

0.5236

Here is what the new function mynewtsolver looks like:

function xsolution = mynewtsolver(myfunc, myjac, x0)
%
% Prepared for Matlab 7
%
xi = x0;
fi = myfunc(xi);
Ji = myjac(xi);
while abs(fi) > 1e-10\qquad \qquad % Here, we could introduce more stop criteria

xip1 = xi-fi/Ji;
xi = xip1;
fi = myfunc(xi);
Ji = myjac(xi);

end
xsolution = xi;

The functions mysinfunc and mysinjacobian are de�ned just as before (but with other names):

function fx = mysinfunc(x)
%
fx = sin(x) - 0.5;

and:

function Jx = mysinjacobian(x)
%
Jx = cos(x);

What have we gained from this change? The important thing is that we can now use the Newton
solver with new function names without changing the code within the Newton solver. This is very
important: never write functions that the user is supposed to modify!
Suppose we want to use the code to solver another function, e.g.

f (x) = cosx� 0:5.

This function is displayed in �g. 15.4. The Jacobian of this function is

J (x) = � sinx,

and let us use x0 = 0:5 as an initial guess. We have to write two new functions, where we de�ne f (x)
and J (x). Function mycosfunc is:
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Figure 15.4: Function f (x) = cosx� 0:5.

function fx = mycosfunc(x)
%
fx = cos(x) - 0.5;

and function mycosjacobian is:

function Jx = mycosjacobian(x)
%
Jx = -sin(x);

We solve the equation f (x) = cosx� 0:5 = 0 as follows:

>> x0 = 0.5;
>> mynewtsolver(@mycosfunc, @mycosjacobian, x0)
ans =

1.0472

This idea of using function handles generalizes to any application that we may want to write. Here, it
could be mentioned that there exist code that can automatically �nd the Jacobian of a vector function;
such methods are denoted automatic di¤erentiation.

15.6 Exercises

Exercise 15.1 In the previous sections, we have solved sinx = 0:5 (f (x) = sinx� 0:5 = 0) with initial
guess x0 = 0:5.

� Use the functions that we have developed with initial values x0 = 1:3, x0 = 1:4, x0 = 1:5. Comment
on the results.

� Explain the result with the various initial guesses.

Exercise 15.2 Redo the case f (x) = sinx� 0:5 = 0, with x0 = �=2 and with x0 = 0:999 � �=2.

� Explain the results.
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� Why may it be necessary to put restrictions on the maximal number of iterations, imax?

� Modify the Newton solver mynewtsolver such that there is a limit to the number of iterations, and
let your code write a message to the user if this maximum number is reached.

Exercise 15.3 Use the developed code to �nd roots for the functions:

� f (x) =
p
x� 1,

� f (x) = x5 � 1:5,

� f (x) = tanx� 0:5.

Exercise 15.4 For some functions, it may be a hassle to �nd an analytic expression for the Jacobian
J (x) = df (x) =dx. A possible alternative is to develop a function for computing the Jacobian numerically.

� Write a function for computing a numerical approximation for J (x) based on the central di¤erence

J (x) � f (x+�x)� f (x��x)
�x

(or other approximations of the derivative). The code should automatically choose a relevant value
for �x, e.g. as �x = x=100, �x = 10�5, etc.

(Hint: Make sure that you avoid the possible problem that x may have the value x = 0, e.g. by
setting �x = max

�
x
100 ; 10

�5�.)
� Modify your Newton solver to automatically detect whether the user has speci�ed a function for
the Jacobian. If not, call the numerical approximation.

(Hint: Use the function nargin to �nd the number of arguments used by the user.)

Exercise 15.5 Write a function grad(f,x) that �nds the numerical gradient of a function of several
variables. Assume that the function has form f (x) where x is a vector of several variables.
(Hint: To �nd the i-th component of the gradient, you must evaluate f at x + �x etc. where

element i of �x di¤ers from zero, while all other elements of �x are zero. Test grad on the function
sin (x1) + cos (x2).)

Exercise 15.6 Write a Newton solver that can solve the equation f (x) = 0 for the general case, when
both x and f (x) are vectors. It can be assumed that the number of unknowns x equals the number of
equations f (x) = 0.
(Hint: You may assume that function f returns both the vector of function values, and the Jacobian,

i.e. has the Matlab form [f,J] = f(x). Remember that one Newton step in Matlab has the scalar case
form [f,J] = f(x); x = x - f/J;. In the multivariable case, we need to change the scalar case line x
= x - f/J; (x := x� f

J ) to the multivariable version x = x - Jnf; (x := x� J
�1f). Iterate until the

norm of x-J/f is less than 10�5. Make sure that the iteration will stop eventually, even if the iteration
does not converge.

Exercise 15.7 Test your Newton solver in the previous exercise, on the function

f1 (x) = x21 + x
2
2 � 4

f2 (x) = exp (x1) + x2 � 1.

Exercise 15.8 Write a function jacobian(f,x) that �nds the numerical Jacobian matrix of a vector
function f as a function of a vector x of variables. Thus: x 2 Cn and f (x) 2 Cm.

Exercise 15.9 Modify the Newton solver so that if the user has not speci�ed the Jacobian of the system,
then the numerical Jacobian is computed using Jacobian.
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Exercise 15.10 Write a simple function myint for �nding the integral I =
R b
a
f (x) dx, where the integral

is approximated by

I �
N�1X
i=0

f

�
a+ i � b� a

N

�
��x.

Test function myint with functions f (x) = x2 and f (x) = sinx, and compare the result with what you
get using the built-in Matlab function quad.
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Chapter 16

Simulation of dynamic systems

16.1 Solution of ODEs using Euler integration

We consider the damped mass-spring system in �g. 16.1. A model for the system in �g. 16.1 is:

dx

dt
= v (16.1)

dv

dt
= � k

m
(x� x0)�

�

m
v � g + F

m
. (16.2)

The parameters, initial conditions, and input signals in Table 16.1 are to be used for this system.
Notice that we have not stated any reference position for x! It is natural to assume that the unloaded

spring hangs downwards. Since Table 16.1 speci�es the unloaded spring position to be x0 = 1m, this
must mean that the spring hangs from a position > 1m (the x-axis points upwards!). Furthermore, since
it is speci�ed that xjt=0 = 1:5m, this means that the spring at t0 is compressed relative to its unloaded
length.
In addition to the relationships above, we can express the kinetic energy K, the potential energy P ,

and the total energy E as follows:

K =
1

2
mv2

P = mgx+
k

2
(x� x0)2

E = K + P .

dy

dt
� y (t+ h)� y (t)

h
:

k W
x

xm

G F

g

x0F d

Figure 16.1: Sketch of damped mass-spring system.
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Table 16.1: Numerical values for damped mass-spring system.
Numerical values

g = 9:81 m= s2 gravitational acceleration
k = 2 J=m2 spring constant
� = 0:5 N= (m s) damping constant
x0 = 1 m unloaded spring position
m = 5 kg mass
xjt=0 = 1:5 m initial value for x
vjt=0 = 0 m= s initial value for v
F = 0 N external force

We will now see how we can use the Explicit Euler Method to solve the ODE for x and v. The
Explicit Euler Method works as follows:

Algorithm 2 In the Explicit Euler Method, we consider equations of form

dy

dt
= f (y; u; t) .

1. Assume that y (t0) is known, together with u (t0) ; u (t0 + h) ; u (t0 + 2h) ; : : :.

2. Use the approximation
dy

dt
� y (ti + h)� y (ti)

h
,

and rewrite the ODE to the following approximation:

y (ti + h) = y (ti) + h � f (y (ti) ; u (ti) ; ti) .

3. With y (t0) given, together with t0 and u (t0), compute y (t0 + h). Then iterate to compute y (ti).

The following script �le eulersim.m will solve these equations, and compute x (t), v (t), as well as
K (t), P (t), and E (t).

1. Run the �le by typing >>eulersim.

2. Plot the result using commands >>plot(T,Y(:,1)), >>plot(T,Y(:,2)) and >>plot(T,E).

3. Explain the �gures.

Here is an example of what the �le eulersim.m can look like:

% Script for simulating a damped mass-spring system
% using the Explicit Euler Method

% Defining system parameters
data;

% Specifying simulation time Tfin, step length h,
% and computing the necessary number of steps N
Tfin = 150;
h = 0.1;
N = ceil(Tfin/h); % Rounds the necessary steps up to the nearest integer

% Allocating space for the time vector T, as well as the state matrix Y
% and the energy function E
T = zeros(N,1);
Y = zeros(N,2);
E = zeros(N,2);
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% Initial values for the states
Y(1,:) = [1.5, 0];

% Running the simulation
for I = 1:(N-1),

x = Y(I,1);
v = Y(I,2);
fx = v;
fv = - my*v/m - k*(x-x0)/m - g + F/m;
Y(I+1,1) = x + h*fx;
Y(I+1,2) = v + h*fv;
T(I+1) = T(I) + h;

end

%Post processing to find the time response of energy E
K = 0.5*m*Y(:,2).*Y(:,2);
P = m*g*Y(:,1) + 0.5*k*(Y(:,1)-x0).^2;
E = K + P;

Note the command data. This command runs a script �le (data.m) which holds the numerical values
for parameters, etc.:

g = 9.81; \qquad \qquad % m/s^2, gravitational acceleration
k = 2; % J/m^2, spring constant
my = 0.5; \qquad \qquad % N/m/s, damping constant
x0 = 1; % m, unloaded spring position
m = 5; % kg, masse hanging in the spring
F = 0; % N, external force on mass

Also, notice the following post processing step at the end of script �le eulersim.m:

Y(:,2).*Y(:,2)
(Y(:,1)-x0).^2

Here we have used array processing to compute the energy.

16.2 Generalizing our Euler solver

The script eulersim.m is unfortunate in the sense that we have mixed a general algorithm (the Euler
method) with a speci�c problem (the damped spring-mass system). This unfortunate formulation is
similar to a previous case, where we mixed a general method (the Newton method) with a speci�c
problem (solving sinx = 0:5).
Just as in the case of developing a general Newton solver, we want to develop a general Euler solver

where we separate the general method from the speci�c problem. Here is what we need to do:

� Separate the Euler solver from the speci�c model (the ODE), by specifying the ODE in separate
functions.

� Allow for the user to specify the function name where the ODE is de�ned, with a free choice of the
name of this function.

The following listing of �le odexeu.m gives a relatively general ODE solver1 based on the Explicit
Euler Method:

1ODE = ordinary di¤erential equation. In fact, the ODE solvers require that the system is in state space form, i.e.
ODEs of form dy=dt = f (t; y) where y may be a vector, y 2 Rn.



144 CHAPTER 16. SIMULATION OF DYNAMIC SYSTEMS

function [T,Y] = odexeu(filehandle,Tspan,y0,h);
%
% Function call: [T,Y] = odexeu(filename,Tspan,y0,h)
%
% The function utilizes the Explicit Euler Method
% to solve the ordinary differential equation (ODE) dy/dt = f(t,y)
% where y may be a vector, and f(.,.) denotes the
% vector field of the ODE
%
% Interpretation of variables:
% filehandle: the function handle of the file where the vector field is defined
% Tspan: a vector [t0,tf] specifying the initial and final time of the simulation
% y0: the vector of initial values, y(t0)
% h: the step length of the simulation
% T: the resulting vector of time instances where y is computed
% Y: a matrix of the time response of the states, one response fore each column of Y
%
% As an example, the time response of state 1 can be plotted using
% command: >>plot(T,Y(:,1))

% Prepared for Matlab 7

% Computing of the number of time steps in the Euler method:
t0 = Tspan(1);
tf = Tspan(2);
N = ceil(tf/h);\qquad \qquad % rounds the iteration number upwards to nearest integer
% Allocates space to store the results
n = length(y0);
T = zeros(N,1);
Y = zeros(N,n);
% Inserts initial values in T and Y
T(1) = t0;
Y(1,:) = y0�;
% Computes y(t) in a for loop:
for I=1:(N-1);

y = Y(I,:)�;
t = T(I);
fy = filehandle(t,y);
Y(I+1,:) = (y + h*fy)�;
T(I+1) = T(I) + h;

end

The following script �le (e.g. named dampms.m � damped mass spring) simulates the damped mass-
spring system.

% Script for simulating damped mass-spring system

% Necessary data
Tfin = 150;
h = 0.1;
y0 = [1.5;0];
% Simulating system
[T,Y] = odexeu(@dampedspring,[0,Tfin],y0,h);
% Computes the energy
data;
K = 0.5*m*Y(:,2).*Y(:,2);
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P = m*g*Y(:,1) + 0.5*k*(Y(:,1)-x0).^2;
E = K + P;

The data for the system is given in the �le data.m, see p. 143. Also, we de�ne the �vector �eld�for the
di¤erential equation in the function dampedspring.m:

function fy = dampedspring(t,y)
%

% Defining data
data;
% Defining vector field
x = y(1);
v = y(2);
fx = v;
fv = - my*v/m - k*(x-x0)/m - g + F/m;
% Setting up vector field
fy = [fx;fv];

In order to run the program, issue the Matlab command >>dampms. The result is plotted using the
command >>plot(T,E), etc.

Exercise 16.1 With h = 0:1 s, simulate the system in the interval t 2 [0; 150] s (as indicated in the
script �le dampms.m. Plot the time response of x (Y(:,1)) and v (Y(:,2)) as functions of time (T).

Exercise 16.2 Plot the time response of the total energy E (E) as a function of the time. From the
relationship dE=dt = ��v2 < 0 (assuming F = 0), it follows that E must decrease monotonously with
the time t. Why is this theoretical fact not supported by the plot of E (t)?

Exercise 16.3 Experiment with various values on the step length h, and see if this changes the time
response of E. What is the largest step length you can use, and still get a relatively good result from
the simulations?
(Hint: Even if E (t) oscillates, we will get a relatively good picture of E by averaging the energy

over a few oscillation periods. For what value of h will the energy E (t) �take o¤�?)

Exercise 16.4 Experiment with other values on the parameters (g, k, �, x0, m) and the initial values
(xjt=0 = 1:5, vjt=0 = 0). Will the changes in the parameter values or the initial values a¤ect the
requirement on step length h such that the simulation gives a good approximation of E (t)?

Exercise 16.5 Study the undamped case � = 0 when F = 0. In this case, the energy E should be
constant according to theory, dE=dt = 0. Simulate the system with � = 0 and step length h = 0:1 (it
su¢ ces to simulate the system for 50 s, i.e. set Tfin=50). What happens with E? Is the theoretically
correct result that dE=dt = 0, satis�ed?

Exercise 16.6 In the previous exercise, we simulated the undamped case (� = 0), and in this case, E
should theoretically be constant. With h = 0:1, it turns out that the the energy increases, which implies
that the approximation we introduced is imperfect. One possible way to improve the simulation is to use
a better approximation for dy=dt. Alternatively, we can attempt to rectify the error in the approximation
by introducing an arti�cial damping, i.e. increasing � until the energy on the average is constant.
What value � must be used such that the energy E averaged over some oscillation periods becomes

constant?
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Table 16.2: Table Caption
ODE solver Comment
ode45 Fourth order (explicit) Runge-Kutta method.
ode23 Second order (explicit) Runge-Kutta method.
ode113 Variable order Adams-Bashforth-Moulton method.
ode15s Variable-order multistep solver (1st - 5th order).
ode23s Second order modi�ed Rosenbrock single step method.
ode23t Second order trapezoidal method.
ode23tb Second order implicit Runge-Kutta method.

16.3 ODE solvers in Matlab

Matlab comes with a number of ODE solvers as standard. All of them are named odeXXX, where the
addition XXX speci�es what type of method is used in the particular solver. This should be compared to
our solver odexeu from the previous section, where XXX is equal to xeu denoting eXplicit EUler method.
A list of available solvers is shown in Table 16.2.
As a general comment, the methods are more accurate the higher their order. However, higher order

methods require more computing time to �nd the solution. If a solution reaches a constraint (e.g. if
y � ymax, such as when a vessel becomes full), then the accuracy is lost when y = ymax.
Most methods are single step methods, meaning that for an ODE of type

dy

dt
= f (t; y) ,

yi is computed from the knowledge of yi�1. Two methods in Table 16.2 are multistep solvers (ode113
and ode15s), meaning that yi is computed from the knowledge of yi�1, yi�2, etc. Multistep solvers are
usually more e¢ cient than single-step solvers, but this is not true if the solver needs to be reset often �
as an example, at start-up, only y (t0) is known, and multistep solvers need to use a single-step method
in the beginning.
Finally, the �rst three solvers in Table 16.2 are non-sti¤ solvers, while the four following methods are

sti¤ solvers. As a general rule, sti¤ problems have modes with very di¤erent time constants. For such
problems, non-sti¤ solvers are very slow at �nding the solution, while sti¤ solvers may �nd the solution
rapidly. As an example, for some sti¤ problems, solver ode15s may be several hundred times faster than
ode45.
We have seen that we call our odexeu solver as follows:

[T,Y] = odexeu(@dampedspring,[0,Tfin],y0,h);

Here, the �nal input argument is the time increment h. In fact, it is very important to �nd a good choice
of the time increment h. With too large values of h, the approximation may become very poor, even
unstable. For too small values of h, the solution becomes ine¢ cient: it takes too much time to �nd the
solution.
All of the Matlab solvers in Table 16.2 have algorithms for automatically computing the time in-

crement h. As an example: for ode45, it is postulated that the error in the simulation is equal to the
di¤erence between the fourth order solution and the �fth order solution, and then the time increment h
is adjusted to achieve su¢ cient accuracy in the solution.
Consequently, it is not necessary to inform Matlab about the time increment � in fact, Matlab varies

h from iteration number to iteration number. Apart from this modi�cation, the input arguments to the
ODE solvers in Table 16.2 are identical to the arguments for odexeu. If we want to use solver ode45 to
solve the damped mass-spring system, we need to modify the script �le dampms into the following:

% Script for simulating damped mass-spring system

% Necessary data
Tfin = 150;
h = 0.1;
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Table 16.3: Parameters and nominal operating conditions for CSTR.
Parameter/variable Symbol Nominal value
Volume of reactor V 100 l
Volumetric feed �ow q 100 lmin�1

Feed concentration of A cAf 1mol l�1

Feed temperature Tf 350K
Volumetric coolant �ow qc 100 lmin�1

Coolant inlet temperature Tcf 350K

Densities �; �c 1000 g l�1

Speci�c heat capacities cv; cvc 1 cal g�1K�1

Preexponential factor k0 7:2� 1010min�1
Exponential factor E=R 9:98� 103K
Reaction order m 1

Reaction enthalpy �� ~Hr 2:0� 105 calmol�1
Overall heat transfer factor hA 7� 105 calmin�1K�1
Discretization time �t 0:01min

Initial value, cA cA (t = 0) 8:235� 10�2mol l�1
Initial value, T T (t = 0) 441:81K
Nominal value, qc qc (t) 100 lmin�1

y0 = [1.5;0];
% Simulating system
tic;
%[T,Y] = odexeu(@dampedspring,[0,Tfin],y0,h);
[T,Y] = ode45(@dampedspring,[0,Tfin],y0);
%[T,Y] = ode15s(@dampedspring,[0,Tfin],y0);
toc
% Computes the energy
data;
K = 0.5*m*Y(:,2).*Y(:,2);
P = m*g*Y(:,1) + 0.5*k*(Y(:,1)-x0).^2;
E = K + P;

Here, we have also inserted the commands tic/toc to measure the time it takes to solve the ODE using
the various methods. For this simple case, we will �nd that the Euler method by far is the most e¢ cient
method. However, the other methods are more accurate, and with the built-in Matlab solvers, we do not
have to �nd/choose the step-length h.
Finally, we should mention that we can set some parameters for the ODE solvers via the function

odeset.

16.4 Exercises

Exercise 16.7 Consider the following reactor model:

dcA
dt

=
q

V
(cAf � cA)� k0 exp

�
�E
RT

�
cmA

dT

dt
=

q

V
(Tf � T ) +

�
�� ~Hr

�
�ĉv;S

k0
m
exp

�
�E
RT

�
cmA +

Q

�V ĉv;S
,

where supplied heat Q is expressed as:

Q = �cqcĉvc

�
1� exp

�
� hA

�cqcĉvc

��
(Tcf � T ) .

Numerical values for parameters and nominal operating conditions are given in Table 16.3.
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� Implement the reactor model and use the explicit Euler solver odexeu developed in this chapter.

� How much time does it take to solve the reactor model when you simulate 8min of operation.

� Use the built-in Matlab solvers ode45 and ode15s, and compare the execution time for simulating
8min of operation with each other, and with odexeu.

� Change the simulation such that after 1min of simulated time, the coolant �ow:

� Increases by 10%.

�Decreases by 10%.

What do you observe?



Part IV

Closing

149





Chapter 17

Conclusions

These lectures notes give a relatively simple introduction to Matlab, and how Matlab can be used to
do engineering computations. The notes have been updated to cover Matlab 7.0. Matlab is constantly
being improved: the user interface changes, new data structures are introduced, and so on. This means
that it is di¢ cult to keep lecture notes for Matlab up to date. Fortunately, there is also a large number
of books on Matlab: both introductory books, specialized books (e.g. how to use Matlab do develop
numerical algorithms, how to design graphical user interfaces (GUI) for your Matlab code), etc. As with
computer books at large, some of the Matlab books are good, and others are less useful.
The �rst part of the lecture notes covers Arrays: what they are, how to name them, and how to create

and manipulate them. Next, basic plotting is treated. A chapter on simple data analysis is provided,
and �nally the automation of tasks is introduced, with basic string handling, the basic repetition loop
(the for loop), as well as the concept of Matlab scripts and the Matlab editor.
In the second part, more techniques for program �ow control is introduced, and then the important

concept of functions is introduced. Followed by this is a discussion of more advanced use of the Matlab
editor such as the debugger. Finally some more advanced data structures are introduced (structures, cell
arrays), and some basic information about objects are given (handle graphics).
In the third part, functions and function handles are introduced, their usefulness are illustrated

through examples (a Newton solver), and �nally, there is an overview of how ODE solvers work, as an
introduction to the use of built-in Matlab ODE solvers.
In appendices, more details are given. In the �rst appendix, there is a discussion of vectors and ma-

trices; this should be contrasted with the concept of arrays. In the second appendix, there is a technical
discussion of the intricacies of indexing arrays. The third appendix gives an example of how hexadecimal
numbers relate to decimal numbers; hexadecimal numbers are the native numbers of computers. Ap-
pendix four discusses three dimensional plotting, as well as the housekeeping of plots. In appendix �ve,
a more advanced discussion of string manipulation is given. In appendix six, some numerical methods
for vectors and matrices are discussed; Matlab is particular useful for handling linear algebra problems.
Appendix seven discusses how anonymous functions can be used to handle extra parameters in function
calls. Finally, appendix eight discusses how di¤erential algebraic equations (DAEs) can be solved in
Matlab.
To really learn to use Matlab, it is necessary to use it, explore the help browser, but also to study

Matlab in more detail. Books such as Hanselman & Little�eld (2005) and Higham & Higham (2000) will
provide a good start for becoming a Matlab master.
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Appendix A

Arrays vs. vectors and matrices*

A.1 Vectors

De�nition A.1 A vector is an element of a vector space.

De�nition A.2 A vector space is a set V together with an addition on V: u+ v, u; v 2 V, and a scalar
multiplication on V: av, a 2 F and v 2 V, such that the following properties hold:

1. Commutativity: u+ v = v + u for all u; v 2 V.

2. Associativity: (u+ v) + w = u+ (v + w) and (ab) v = a (bv) for all u; v; w 2 V and all a; b 2 F.

3. Additive identity: there exists an element 0 2 V such that v + 0 = v for all v 2 V.

4. Additive inverse: for every v 2 V, there exists w 2 V such that v +w = 0. Normally, w is denoted
�v.

5. Multiplicative identity: there exists an element 1 2 F such that 1v = v for all v 2 V.

6. Distributive properties: a (u+ v) = au+av and (a+ b)u = au+bu for all a; b 2 F and all u; v 2 V.

What does this mean? The vector space is a set, and the operation of addition between vectors, and
multiplication of vectors with a scalar must be de�ned. The operation of addition and multiplication
must satisfy the requirements above.

Example A.1 Let us consider the set of n-tuples of real numbers, V = Rn, i.e. the ordered list
(v1; : : : ; vn) where each vi 2 R. In addition, let us de�ne addition of the elements of the set, v + u ,
as

v + u = (v1 + u1; : : : ; vn + un) .

Thus, the operation of addition is well de�ned. Furthermore, let us de�ne F = I = f1; 2; ; 3; : : :g, i.e. the
positive integers, and let us de�ne scalar multiplication as

av = (a � v1; : : : ; a � vn) .

Thus, the operation of scalar multiplication is well de�ned. It is easy to see that Properties 1; 2; 6 are
ful�lled. Furthermore, let us de�ne 0 , (0; � � � ; 0). Here it is vital to realize that the vector 0 (which
is a list of n scalar zeros) is di¤erent from the scalar 0. Obviously, 0 2 Rn, so Property 3 is ful�lled.
Furthermore, obviously Property 4 is ful�lled. Finally, scalar 1 2 I = F, and thus Property 5 is ful�lled.

Example A.2 Consider the set of all n-th order polynomials pn = p0 + p1x+ � � � pnxn, where normally
pi 2 R or pi 2 C. We de�ne the addition of such polynomials as pn + qn = (p0 + q0) + (p1 + q1)x +
� � � + (pn + qn)xn, thus addition is well de�ned. Furthermore, we de�ne a set F, e.g. F = I, and scalar
multiplication as apn = (ap0) + (ap1)x + � � � + (apn)xn, hence scalar multiplication is well de�ned. It
is straightforward to show that Properties 1�6 are ful�lled, hence the polynomials constitute a vector
space, and e.g. p5 = 1� x3 + 2x5 is a vector.
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The most commonly used vector space, is the space where V = Rn (or V = Cn), and where F = R
(or F = C) and where addition and scalar multiplication is de�ned as in Example A.1. In fact, Matlab
is tailor-made for the vector space V = Cn, F = C. Addition of vectors is performed with the operator
+, and multiplication by scalar by the operator *, and vectors are represented by either row arrays or
column arrays:

>> vec1 = [1,2,3]

vec1 =

1 2 3

>> vec2 = [4,5,6]

vec2 =

4 5 6

>> scalar = 3

scalar =

3

>> vec1 + vec2

ans =

5 7 9

>> scalar*vec1

ans =

3 6 9

It should be noted that Matlab is strict in the sense that vector addition only works between two row
arrays, or between two column arrays.
Note also that the operator + plays several rôles in Matlab: the plus operator can be used to add

scalars. In addition, the plus operator can be used to add a vector and a scalar: in that case, the scalar
is interpreted as follows: vector + scalar = vector + scalar*ones(size(scalar)), i.e., the scalar
is �rst expanded into a vector, and then the vector addition is used.
In conclusion: vectors are more than simply arrays. But the most common vectors can be represented

as row or column arrays with the addition of well de�ned vector addition and scalar multiplication. In
fact, it can be shown that every vector space of dimension n in some sense is identical to the vector space
given by V = Cn and F = C with addition and multiplication de�ned as above.
This means that Matlab is well equipped to compute with vectors. The relevant functions for per-

forming such operations, belong to a course in linear algebra.

A.2 Matrices

Often, the wordmatrix is used as a synonym to array. However, since there has been developed an algebra
of matrices, and furthermore, since matrices can be considered collections of vectors or as operators on
vector spaces, we will use matrix to denote something more than arrays � in these notes, and array is
simply and organization/storage of data as detailed in Section 2.2.
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As an example, we often de�ne matrix addition and the multiplication of matrices with scalar �
much in the same way as we do with vector spaces. Also, several de�nitions of matrix multiplication
exist:

Cayley product: Named after Arthur Cayley, who often is considered the founder of matrix algebra,
the Cayley (or matrix) product of matrices A and B, C = A �B, is de�ned as:

Ci;j =
X
k

Ai;k �Bk;j .

It follows that the number of columns of A must equal the number of rows of B.

Schur product: The Schur- (or Direct- or Array-) product of matrices A and B, C = A�B, is de�ned
as

Ci;j = Ai;j �Bi;j .
It follows that A and B must have the same number of rows and columns.

Kronecker product: We have already met the Kronecker product of matrices A and B (see p. 162),
C = A
B, which is de�ned as

C =

0BBB@
A1;1B A1;2B � � � A1;nB
A2;1B A2;2B A2;nB
...

. . .
...

Am;1B Am;2B � � � Am;nB

1CCCA .
It follows that there are no restrictions on the sizes of A and B.

Another use/interpretation of matrices is that each column may represent a column vector, or that
each row may represent a row vector. With these interpretations, matrices are related to vector spaces.
A third use of matrices is as a mapping/an operator on vectors, typically written as Av where A is

the matrix and v the vector. Usually, the standard (Cayley) matrix product is assumed in the notation
Av, and in that case, it is necessary that v is considered a column vector/a column matrix.
In Matlab, the operator + can be used to add matrices in a natural way, and furthermore, the operator

* works on arrays according to the Cayley matrix product:

>> A = rand(2,3);
>> B = rand(3,2);
>> C = ones(2,3);
>> A+C

ans =

1.9501 1.6068 1.8913
1.2311 1.4860 1.7621

>> A*B

ans =

1.1771 1.5018
0.7405 1.0054

Matlab also has a large number of built-in functions for treating matrices as collections of vector spaces,
e.g. rank, null, orth, etc., or as operators, e.g. det, eig, etc. In addition, there are a large number of
built-in functions for dealing with linear equations of form

Ax = b:

This means that Matlab is well equipped to compute with matrices. The relevant functions for
performing such operations, belong to a course in linear algebra.
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Appendix B

Manipulation of Arrays and Array
Functions*

B.1 Indexing arrays

Suppose array A is given. We often wish to pick out element (i; j) from array A. Let us denote element
(i; j) of array A by Ai;j , which in Matlab is given as A(i,j).
For array A, it can also be useful to be able to pick a subarray which has indices over the rectangle

given by row i1 to row i2, and column j1 to j2. This submatrix can be denoted as Ai1:i2;j1:j2 . In Matlab,
this subarray is speci�ed as A(i1:i2, j1:j2):

>> rand(�state�,0)
>> A = rand(3,4)

A =

0.95013 0.48598 0.45647 0.4447
0.23114 0.8913 0.018504 0.61543
0.60684 0.7621 0.82141 0.79194

>> A(1,3)

ans =

0.45647

>> A(2:3,2:3)

ans =

0.8913 0.018504
0.7621 0.82141

Let us do some careful thinking here! We remember that the notation i1 : i2 in fact constructs a row
array consisting of the following elements: (i1; i1 + 1; : : : ; i2), and similarly for j1 : j2. Let us therefore
try to de�ne the row arrays v1 and v2 of integers, and consider the notation Av1;v2 :

>> v1 = [1,3]; v2 = [4,2,2];
>> A(v1,v2)

ans =

159
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0.4447 0.4860 0.4860
0.7919 0.7621 0.7621

With v1 being a row array of length m, and v2 being a row array of length n, we see that Matlab in fact
works as follows:

Av1;v2 =

0BBB@
Av1(1);v2(1) Av1(1);v2(2) � � � Av1(1);v2(n)
Av1(2);v2(1) Av2(2);v2(2) Av2(2);v2(n)

...
. . .

Av1(m);v2(1) � � � Av1(m);v2(n)

1CCCA .
What then if we only use one argument, e.g. a row array?

>> A(v1)

ans =

0.95013 0.60684

Now it is slightly more di¢ cult to �gure out what is going on. But we see that A assumes the shape
of v1, and that

A (v1) =
�
A (v1 (1)) A (v1 (2)) � � � A (v1 (m))

�
,

where one-dimensional addressing has been used. Similarly, if we use one argument where the argument
is a two-dimensional array:

>> B = [1,3,2; 4,2, 2]

B =

1 3 2
4 2 2

>> A(B)

ans =

0.95013 0.60684 0.23114
0.48598 0.23114 0.23114

Quite often, we are interested in picking out all rows in a column, or every column in a row. We can
specify every row with the symbol :, e.g. A:;v2 where row array v2 suggests which columns should be
included, and every column as Av1;: where row array v1 indicates which rows of A should be included.
The smallest index in Matlab is always 1. The largest index in rows and columns can be speci�ed

with the symbol end in Matlab, e.g.: A1:end;v2 , A:;v2 . This notation is particularly useful if we want to
partition an array into two (or more) parts, e.g. with arrays A1:i;: and Ai+1:end;::

>> A(:,1:1)

ans =

0.9501
0.2311
0.6068

>> A(:,1+1:end)
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ans =

0.4860 0.4565 0.4447
0.8913 0.0185 0.6154
0.7621 0.8214 0.7919

B.2 Building superarrays

B.2.1 Toeplitz and Hankel arrays

The structure of Toeplitz and Hankel arrays are best illustrated by examples. Let�s �rst take a look at
Toeplitz arrays:

>> c = [1,2,3]; r = [4,5,6,7];
>> toeplitz(c,r)
Warning: First element of input column does not match first element of input row.

Column wins diagonal conflict.
(Type "warning off MATLAB:toeplitz:DiagonalConflict" to suppress this warning.)
> In C:\MATLAB6p5\toolbox\matlab\elmat\toeplitz.m at line 18

ans =

1 5 6 7
2 1 5 6
3 2 1 5

>> toeplitz(c)

ans =

1 2 3
2 1 2
3 2 1

>> toeplitz(r)

ans =

4 5 6 7
5 4 5 6
6 5 4 5
7 6 5 4

We see that Toeplitz arrays have constant elements along the diagonals. Notice also that if there is a
con�ict between the �rst element of c and the �rst element of r (these have to be equal!), the �rst element
of c �wins�.
Next, we look at Hankel arrays:

>> hankel(c,r)
Warning: Last element of input column does not match first element of input row.

Column wins anti-diagonal conflict.
(Type "warning off MATLAB:hankel:AntiDiagonalConflict" to suppress this warning.)
> In C:\MATLAB6p5\toolbox\matlab\elmat\hankel.m at line 27
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ans =

1 2 3 5
2 3 5 6
3 5 6 7

>> hankel(c)

ans =

1 2 3
2 3 0
3 0 0

>> hankel(r)

ans =

4 5 6 7
5 6 7 0
6 7 0 0
7 0 0 0

We see that Hankel arrays have constant elements along the anti-diagonals. Notice that if there is a
con�ict between the last element of c and the �rst element of r (these have to be equal!), then the last
element of c �wins�.

B.2.2 Kronecker product

The Kronecker product of two arrays (or matrices) A and B is denoted A 
 B. If A is an array of size
m� n and B is an array of size k � `, then the product is of size m � k � n � `, and the result generated
as follows:

C = A
B =

0BBBB@
A1;1B A1;2B � � � A1;nB

A2;1B
. . .

...
...

. . .
...

Am;1B � � � � � � Am;nB

1CCCCA .
Here, Ai;jB means the value of element Ai;j multiplied into every element of array B.
A common problem is to replicate array B in a certain pattern, e.g. we want to insert array B

instead of a unit scalar in array A:

A =

�
1 0 1
1 1 0

�
.

By using the Kronecker product which is achieved by kron(A,B), we can produce the concatenated
superarray

C = A
B =
�
B 0 B
B B 0

�
.

The Matlab syntax for this operation is kron(A,B):

>> A = [1,0,1; 1,1,0]

A =

1 0 1
1 1 0

>> B = rand(3,2)
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B =

0.4565 0.4447
0.0185 0.6154
0.8214 0.7919

>> kron(A,B)

ans =

0.4565 0.4447 0 0 0.4565 0.4447
0.0185 0.6154 0 0 0.0185 0.6154
0.8214 0.7919 0 0 0.8214 0.7919
0.4565 0.4447 0.4565 0.4447 0 0
0.0185 0.6154 0.0185 0.6154 0 0
0.8214 0.7919 0.8214 0.7919 0 0

Obviously, we can use the Kronecker product to achieve the same e¤ect as the function repmat(A,m,n)
as follows: kron(ones(m,n), A). However, the repmat function is more e¢ cient than using the kron
function.

B.2.3 Block diagonal arrays

Function blkdiag is used for block diagonal concatenation of arrays:

>> A = rand(2,2);
>> B = randn(2,3);
>> C = blkdiag(A,B)

C =

0.9218 0.1763 0 0 0
0.7382 0.4057 0 0 0

0 0 -0.4326 0.1253 -1.1465
0 0 -1.6656 0.2877 1.1909

>> D = blkdiag(A,B,-1)

D =

0.9218 0.1763 0 0 0 0
0.7382 0.4057 0 0 0 0

0 0 -0.4326 0.1253 -1.1465 0
0 0 -1.6656 0.2877 1.1909 0
0 0 0 0 0 -1.0000

Note that it is not possible to specify a diagonal o¤ the main diagonal in the case of block diagonal
arrays.
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Appendix C

Hexadecimal numbers*

Each byte (1 byte = 8 bits) is composed of 2 hexadecimal numbers, where the �rst hexadecimal number
represents the �rst four bits, and the second hexadecimal number represents the four last bits of the
byte. The 16 hexadecimal digits are f0; 1; 2; : : : ; 9; a; b; c; d; e; fg. The �rst half of the �rst byte of 1=3 is
given by hexadecimal number 316, which in the decimal number system is 310 � the subscript indicates
the base of the number, i.e. 16 (hexadecimal) or 10 (decimal). The binary equivalent of this number is
00112 =

�
0 � 23 + 0 � 22 + 1 � 21 + 1 � 20

�
10
= 310. The next half of the �rst byte is f16 = 1510 = 11112.

In total, the �rst byte of the representation of 1=3 is thus 00111111. Similarly, the �rst half of the
second byte is given by d16 = 1310 = 11012. Likewise, 516 = 510 = 01012. Thus, the second byte is
11010101. The remaining 6 bytes are simply 01010101. We can thus write the binary representation of
1=3 as 001111111110101012010101013 � � � 010101017010101018 � this time, the subscript indicates the
byte number. Let us number the bits from 1 to 64 as b1b2 � � � b64, such that in this number, b1 = 0,
b2 = 0, b3 = 1, b4 = 1, etc.
According to the IEEE standard, the representation of �oating point numbers is composed of a

mantissa part m, and an exponent part e, and the number is given as m � 2e, see (Gentle 1998).
Typically, b1 signi�es the sign of the mantissa (0 means positive number, 1 means negative number),
b2�b12 (11 bits) gives the exponent (~e), while b13�b64 gives the mantissa (52 bits). The mantissa is scaled
such that the �rst bit in the mantissa is always 1. Since it is always 1, it is not included, and we have
to add a bit with value 1 at the beginning of the mantissa. Thus, b13 is really the second bit in the
mantissa. Finally, there is no sign bit in the exponent ~e. Instead, a �xed number ê is subtracted from
the exponent to get e = ~e� ê before we evaluate 2e.
Let us consider the representation of 1=3. b1 = 0, which means a positive sign. Next, the mantissa is

given as

m = 1b13b14 � � � b64 = 101012010101013 � � � 010101017010101018
= 1 � 2�1 + b13 � 2�2 + b14 � 2�3 + � � �+ b63 � 2�52 + b64 � 2�53

= 1 � 2�1 + 0 � 2�2 + 1 � 2�3 + 0 � 2�4 + 1 � 2�5

+
8X
i=3

�
0 � 2�6�(i�3)�8 + 1 � 2�7�(i�3)�8 + 0 � 2�8�(i�3)�8 + 1 � 2�9�(i�3)�8 + 0 � 2�10�(i�3)�8

+1 � 2�11�(i�3)�8 + 0 � 2�12�(i�3)�8 + 1 � 2�13�(i�3)�8
�

= 0:666 666 666 666 666 629 66.

The exponent is given as

~e = b2b3 � � � b12 = 011111111101
= b12 � 20 + b11 � 21 + b10 � 22 + � � �+ b3 � 29 + b2 � 210

= 1 � 20 + 0 � 21 + 1 � 22 + � � �+ 1 � 29 + 0 � 210

= 1 � 20 + 0 � 21 +
9X
i=2

1 � 2i + 0 � 210

= 1021.

To handle the sign of the mantissa, approximately half of the maximal exponent number is subtracted
from the exponent before evaluating 2e.: the maximal number is

P11
i=1 2

i�1 = 2047, and half of this

165



166 APPENDIX C. HEXADECIMAL NUMBERS*

is 2047=2 = 1023: 5. In practice, the number ê = 1022 is subtracted. Thus, the real exponent is
e = 1021� 1022 = �1. The number represented by the 8 bytes is thus:

0:666 666 666 666 666 629 66� 2�1 = 0:333 333 333 333 333 314 83.

We see that at the 16 �rst digits are correct.



Appendix D

Three Dimensional Plots and Plot
Housekeeping*

D.1 Three dimensional plots

Let us consider the function

f (x; y) = sinx cos y exp

�
� 1
10

�
x2 + y2

��
,

which is displayed in �g. D.1. How can we plot this function using Matlab? We wish to plot the function
in the region (x; y) 2 [�2�; 2�]� [�2�; 2�]. First we need to de�ne the variation in x and y:

>> x = linspace(-2*pi,2*pi);
>> y = linspace(-2*pi,2*pi);

Remember that these variables (x, y) are row vectors.
The simplest way to compute the functional value of z = f (x; y) is by using array operations. We

need to compute z for all possible combinations of x and y, i.e. for [�2�; 2�]� [�2�; 2�]. We do this by
generating arrays X and Y as follows:

>> [X,Y] = meshgrid(x,y);

Both X and Y are arrays of size nx � ny, where nx = length(x) and ny = length(y). Array X is
composed of ny columns with copies of row array x, while array Y is composed of nx rows with copies
of row array y. The usefulness of this construction, is that if we take an arbitrary element X(i,j) and
Y(i,j), then these elements are the ones we need for computing Z(i,j):

>> Z = sin(X).*cos(Y).*exp(-(X.^2 + Y.^2)/10);

Now, we have computed z for a selected number of values of x and y, and the result is found in array
Z. There are a number of functions for plotting z as a function of x and y, depending on what we want
to display. The most basic function is the mesh function:

>> mesh(X,Y,Z)

The result of this command is displayed in �g. D.2. Note that the default length of arrays generated
using the linspace function, is 100. Thus, the graph in �g. D.2 is generated from 100 � 100 = 104 data
points, and the resulting picture �le behind �g. D.2 is relatively large. Figure D.3 illustrates how we can
interactively rotate the graph, in order to look for a more interesting viewpoint.
Sometimes, we want to see contour lines for the 3D plot: these are like iso-curves in a map:
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Figure D.1: Graph of function sinx cos y exp
�
� 1
10

�
x2 + y2

��
generated using a CAS system (Computer

Algebra System, here: MuPAD from within the word processor Scienti�c WorkPlace).

Figure D.2: Graph of function f (x; y) = sinx cosx exp
�
� 1
10

�
x2 + y2

��
generated in Matlab.
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Figure D.3: In order to rotate 3D plots: click the rotation icon on the toolbar, click-and-hold in the plot,
and �rotate�using the mouse.

>> meshc(X,Y,Z)

Note the small, but important di¤erence between functions mesh and meshc. The resulting plot is shown
in �g. D.4.
If we only want to see the contour lines, this is achieved using function contour:

>> contour(X,Y,Z,20)

draws contour lines at 20 levels, see �g. D.5.
Matlab function surf works similarly to function mesh.

Exercise D.1 Check out the help �les for the following Matlab 3D functions: plot3, contour, contourf,
contour3, mesh, meshc, meshz, surf, surfc, waterfall, bar3, bar3h, pie, fill3, comet3, scatter3,
stem3.

It should be noted, that in many cases, it is advantageous to plot 3D results in two dimensions, e.g.:

>> plot(x,Z)

The result of this command is shown in �g. D.6, and should be compared to �g. D.2. Perhaps the current
example is not the best example, but it is often di¢ cult to understand 3D plots.

D.2 Housekeeping

Sometimes, it is necessary to clear the content of a �gure. With the �gure window selected, issue the
command clf: the �gure window is still open, but it is greyed out. In order to close a chosen �gure
window, issue command close.
It is possible to open more than one �gure window at the same time. This is done by issuing

the figure command. When this command is issued, the �gure window is opened, and a so-called
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Figure D.4: Graph of function f (x; y) = sinx cosx exp
�
� 1
10

�
x2 + y2

��
generated in Matlab, with added

contour lines.

Figure D.5: Contour lines of function f (x; y) = sinx cosx exp
�
� 1
10

�
x2 + y2

��
.
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Figure D.6: Graph of function f (x; y) = sinx cosx exp
�
� 1
10

�
x2 + y2

��
, mapped on the x-z plane.

handle for the �gure is returned. This can later on be used to address the �gure using the command
figure(<handleno.>), which will make the �gure window with the relevant handle the selected window.
The handle for the �gure can also be used to close a �gure (close(<handleno.>) � clf can only clear
the selected/current window. The following Matlab session illustrates the use of these commands:

>> f1 = figure;
>> f2 = figure;
>> f3 = figure;
>> figure(f1);
>> plot(x,y);
>> figure(f3);
>> plot(x,exp(-x))
>> figure(f2);
>> plot(x,cos(x));
>> figure(f3);
>> clf;
>> close(f3)
>> close(f2)

It is also possible to enforce a certain number on a �gure window by using the command figure(N)
where N is an integer no. This number can then also be used in place of the handle no.
It is useful to be able to save �gures from the command line. This can be done using function saveas

with the following arguments: saveas(H,�FILENAME�,�FORMAT�). Here, H is the handle of the �gure,
FILENAME is the �le name with or without extension, and FORMAT is the �le format. If the chosen format
is fig, then it is also possible to open the �gure for more manipulation in Matlab. For �gures that are
more or less �nished, possible formats are bmp, jpg, etc.
The syntax for opening a �gure, is open <filename>. The following example illustrates how the

saveas function and the open commands may be used:

>> saveas(f1,�figure1�,�fig�)
>> close(f1)
>> open figure1.fig
>> saveas(f1,�figure1�,�bmp�)
>> saveas(f1,�figure1�,�jpg�)
>> dir fig*
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figure1.bmp figure1.fig figure1.jpg



Appendix E

Automation and String Operations*

E.1 Motivating example: generating sequence of plots

Based on the data in �g. 4.8 p. 68, suppose we want to produce a number of plots of the experimental
data, and how well a polynomial model of order i �ts the data when using the representation T (p),
e.g. as in �g. 4.11 p. 71. Let us suppose that we also want to save the �gures to �les which are named
according to its content. The following Matlab session would do the job:

Import Wizard created variables in the current workspace.
>> T = data(3:end,1);
>> p = data(3:end,2);
>> pp = linspace(min(p),max(p));
>> fig1 = figure;
>> % ======= Ready to generate fig. for first order fit =======
>> plot(p,T,�kx�)
>> xlabel(�p [atm]�)
>> ylabel(�T [C^{\circ}]�)
>> title(�Temperature vs. pressure for saturated steam�)
>> Tpar = polyfit(p,T,1);
>> hold on;
>> plot(pp,polyval(Tpar,pp),�k-�)
>> saveas(fig1,�satvappfit1�)
>> clf
>> % ======= Ready to generate fig. for second order fit =======
>> plot(p,T,�kx�)
>> xlabel(�p [atm]�)
>> ylabel(�T [C^{\circ}]�)
>> title(�Temperature vs. pressure for saturated steam�)
>> Tpar = polyfit(p,T,2);
>> hold on;
>> plot(pp,polyval(Tpar,pp),�k-�)
>> saveas(fig1,�satvappfit2�)
>> dir satvappfit*

satvappfit1.fig satvappfit2.fig
>> % ======= Ready to generate fig. for third order fit =======
>> % ... etc. ...

Clearly, it is a major job to generate �gures for every model order up to, say, 60: we have 61 data points,
which means that a polynomial model of order 60 implies interpolation. There must be a simpler way,
i.e. it must be possible to automate the generation of these plots.
In order to understand how to automate the generation of these plots, we need to discuss strings and

string operations, as well as automatic repetition of operations.
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Table E.1: Some basic functions for operating on strings.
Function Description
s = �abc� Creates a string s containing the character sequence abc.
length(s) The number of characters in string s.
blanks(n) Creates a string of n blank elements (spaces).
s(i) If s is a string and i is a positive integer, s(i) is the string �s(i)�.
char(i) If i is a an integer representing the ASCII value of a character, char(i) is

the resulting character string.
[s1,s2] Concatenates strings s1 and s2.
strcat(s1,s1) Concatenates strings s1 and s2, but neglects blank strings.
deblank(s) Strips trailing blanks from the end of strings.
class(obj) Responds with the type of the obj.
isa(obj,�char�) If obj is a string of characters, the result is boolean TRUE; otherwise

FALSE.
ischar(obj) If obj is a string of characters, the result is boolean TRUE; otherwise

FALSE.
isletter(s) Creates a row array of length length(s), with value 1 for corresponding

letters in s, and 0 otherwise.
isspace(s) Creates a row array of length length(s), with value 1 for corresponding

spaces in s, and 0 otherwise.
isequal(s1,s2) If strings s1 and s2 are equivalent, the result is boolean TRUE; otherwise

FALSE.
str2num(s) If s is a string of characters representing a �oating point number,

str2num(s) converts the string to the number.
num2str(x) If x is a �oating point number, num2str(x) is the character string for the

number.

E.2 Strings and string operations

It is useful to have some knowledge of strings in Matlab, since these are important for some types of task
automation. A string is a sequence of characters. When de�ning the string, the sequence of characters
must be surrounded by an apostrophe �:

>> clear
>> mystr1 = �a�;
>> mystr2 = �abc�;
>> whos
Name Size Bytes Class

mystr1 1x1 2 char array
mystr2 1x3 6 char array

Grand total is 4 elements using 8 bytes

We see that each character in a string takes up 2 bytes of memory.
Some basic functions for operating on strings are shown in Table E.1.
Let us see how these functions work with a simple string:

>> mystring = �John Donne�;
>> length(mystring)
ans =

10
>> find(mystring == � �)
ans =

5
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>> mystr1 = mystring(1:5-1)
mystr1 =
John
>> mystr2 = mystring(5+1:end)
mystr2 =
Donne
>> [mystr1, � �, mystr2]
ans =
John Donne
>> strcat(mystr1, � �, mystr2)
ans =
JohnDonne
>> [mystr2, �, �, mystr1]
ans =
Donne, John
>> mystring(1)
ans =
J
>> mystring(2)
ans =
o
>> mystring(1:4)
ans =
John
>> mystring(end:-1:1)
ans =
ennoD nhoJ

In particular, note how we can change the sequence of characters in the string by using the command
mystring(end:-1:1).
Let us also see how strings and numbers can be mixed and matched:

>> mynum = pi
mynum =

3.1416
>> mynumstr = num2str(mynum)
mynumstr =
3.1416
>> class(mynum)
ans =
double
>> class(mynumstr)
ans =
char
>> isa(mynumstr,�char�)
ans =

1
>> isa(mynum,�char�)
ans =

0
>> ischar(mynumstr)
ans =

1
>> isequal(mynum,mynumstr)
ans =

0
>> isequal(mynumstr,�3.1416�)
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Table E.2: More advanced functions for operating on strings.
Function Description
lower(s) Converts any upper case character in string s to lower case.
upper(s) Converts any lower case character in string s to upper case.
strjust(s,type) Returns a justi�ed string of string s according to type = �right�, �left�,

or �center�.
strrep(s,s1,s2) Replaces any occurrence of string s1 in string s, with s2.
findstr(s1,s2) Returns the starting indices of any occurrences of the shorter of the two

strings s1, s2 in the longer.
strcmp(s1,s2) Returns 1 if strings s1 and s2 are the same, and 0 otherwise.
strcmpi(s1,s2) Returns 1 if strings s1 and s2 are the same except for case, and 0 otherwise.
strfind(s,s1) Returns the starting indices of any occurrence of string s1 in string s.
strncmp(s1,s2,n) Returns 1 if the �rst n characters of the strings s1 and s2 are the same,

and 0 otherwise.
strncmpi(s1,s2,n) Returns 1 if the �rst n characters of the strings s1 and s2 are the same

except for case and 0 otherwise.
eval(s) Execute string s with MATLAB expression.

ans =
1

>> isequal(mynum,pi)
ans =

1
>> myprod = [mynumstr, �*2�]
myprod =
3.1416*2
>> str2num(myprod)
ans =

6.2832

Some more advanced functions for operating on strings are shown i Table E.2.
It is also possible to operate with regular expressions such as �fig*�, see >>help regexp. Some

of the functions also accept other arguments � see the Matlab help system for more details.

E.3 Example: automatic generation of �gures

Let us see how we can automate the task discussed in Section E.1. We assume that we manually import
the data and de�ne variables T and p, and we want to store the �gures in �les satvappfigI � saturated
vapor pressure �gure where I takes on values from 1 to 60. The script �le displayed in �g. E.1 does the
job of generating 60 �gures.
The following Matlab command runs the script:

Import Wizard created variables in the current workspace.
>> tic; RepetitionDemoModelFit; toc

Note that the Matlab command tic resets an internal clock, while command toc tells the elapsed time
(in seconds) since the clock was reset.
The response to this command is:

Warning: Polynomial is badly conditioned. Remove repeated data points
or try centering and scaling as described in HELP POLYFIT.

(Type "warning off MATLAB:polyfit:RepeatedPointsOrRescale" to suppress this warning.)
> In C:\MATLAB6p5\toolbox\matlab\polyfun\polyfit.m at line 75
In C:\MyProjects\Documents\FAG\Matlab\Matlab\RepetitionDemoModelFit.m at line 11
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Figure E.1: Script �le RepetitionDemoModelFit.m.

%
%... this warning is repeated a number of times for large values of I
%
elapsed_time =

4.0750

During the execution of the script �le, the following �les have been created:

>> dir satvappfit*

satvappfit1.fig satvappfit24.fig satvappfit39.fig satvappfit53.fig
satvappfit10.fig satvappfit25.fig satvappfit4.fig satvappfit54.fig
satvappfit11.fig satvappfit26.fig satvappfit40.fig satvappfit55.fig
satvappfit12.fig satvappfit27.fig satvappfit41.fig satvappfit56.fig
satvappfit13.fig satvappfit28.fig satvappfit42.fig satvappfit57.fig
satvappfit14.fig satvappfit29.fig satvappfit43.fig satvappfit58.fig
satvappfit15.fig satvappfit3.fig satvappfit44.fig satvappfit59.fig
satvappfit16.fig satvappfit30.fig satvappfit45.fig satvappfit6.fig
satvappfit17.fig satvappfit31.fig satvappfit46.fig satvappfit60.fig
satvappfit18.fig satvappfit32.fig satvappfit47.fig satvappfit7.fig
satvappfit19.fig satvappfit33.fig satvappfit48.fig satvappfit8.fig
satvappfit2.fig satvappfit34.fig satvappfit49.fig satvappfit9.fig
satvappfit20.fig satvappfit35.fig satvappfit5.fig
satvappfit21.fig satvappfit36.fig satvappfit50.fig
satvappfit22.fig satvappfit37.fig satvappfit51.fig
satvappfit23.fig satvappfit38.fig satvappfit52.fig

We can check the �t of e.g. a 15-th order polynomial model by opening the �gure:
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Figure E.2: The model �t of 15-th order polynomial model. Notice that although the model goes through
most experimental data points, the model is very poor for interpolation at �high�pressures.

Table E.3: Some functions for number conversion.
Function Description
dec2bin(I) Converts a decimal integer to a binary string. Leading zeros are dropped.
hex2dec(s) Converts hexadecimal string s (16 characters) to decimal integer.
hex2num(s) Converts IEEE hexadecimal string to double precision number, where s is

a 16 character string.

>> open satvappfit15.fig

The result is shown in �g. E.2. Notice that although the model goes through most experimental data
points, the model is very poor for interpolation at �high� pressures. For higher order models, the
interpolation properties of the polynomial model is even poorer.

E.4 Example: hex 2 �oating point

Let us consider the algorithm for converting hexadecimal numbers to �oating point numbers, as indicated
in the footnote p. 21. In doing so, it is convenient to introduce a handful of new Matlab functions, see
Table E.3.
See also functions dec2base, base2dec, dec2hex, and bin2dec using the Matlab help system.
The following script does the job:

% Assume that a hexadecimal number hexnum is given as a
% string of 16 hexadecimal numbers

% First we find the binary number binnum that represents hexnum:

iter = length(hexnum);
binnum = ��;
for I = 1:iter,

% We find the 4 bit equivalent of each hex number, with leading zeros:
bytedummy = �0000�;
bytenum = dec2bin(hex2dec(hexnum(I)));
blen = length(bytenum);
bytedummy(5-blen:end) = bytenum;
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bytenum = bytedummy;
% We add 4 bit strings to previous string:
binnum = [binnum, bytenum];

end

% Next we pick out the mantissa sign, the mantissa, and the exponent:
fsign = binnum(1);
fmantissa = binnum(13:64);
fexp1 = binnum(2:12);

% We then add the assumed binary digit "1" in front of the mantissa:
fmantissa = [�1�, fmantissa];

% Next, we convert the mantissa to decimal numbers:
mlen = length(fmantissa);
fman = 0;
for I = 1:mlen

fman = fman + str2num(fmantissa(I))*2^(-I);
end

% We also need to include the sign of the mantissa:
fman = fman*sign(0.5 - str2num(fsign));

% Next, we compute the value of the temporary exponent:
elen = length(fexp1);
fexp1 = fexp1(elen:-1:1); % Reversing the bit order to simplify evaluation
fex1 = 0;
for I=1:elen,

fex1 = fex1 + str2num(fexp1(I))*2^(I-1);
end

% Next, we subtract the offset of the exponent:
fexp = fex1 - 1022;

% Finally, we compute the floating point number:
fnum = fman*2^fexp

In this script, we assume that we have available the hexadecimal representation of the �oating point
number as 16 hexadecimal digits, where each digit is either of f0; 1; 2; : : : ; 9; a; b; c; d; fg. This hexadecimal
representation must be stored in the variable hexnum.
Let us see how the script (named: hex2num_script) works:

>> decnum = 1/3
decnum =

0.33333
>> format hex
>> decnum
decnum =

3fd5555555555555
>> hexnum = �3fd5555555555555�
hexnum =
3fd5555555555555
>> format short g
>> hex2num_script
fnum =

0.33333
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We see that we found the same answer using hex2num_script, as we started with.
Let us try another hex string where we do not know the answer:

>> hexnum = �701322c182aa1135�
hexnum =
701322c182aa1135
>> hex2num_script
fnum =
7.4272e+231

We can check the result by using the built-in Matlab function hex2num:

>> hex2num(hexnum)
ans =
7.4272e+231

The result appears to be identical to what was found using the script hex2num_script.



Appendix F

Numerical methods with Matlab*

F.1 Numerical functions

The functions in Table F.1 take arrays as arguments.

Table F.1: Some numerical functions in Matlab.
Matlab function Description
diff di¤erence operator
gradient gradient using quadratic interpolating polynomials
trapz numeric integral of vector, using the trapeze method
cumtrapz As trapz, but returning vector of cumulative values
polyfit least squares �t of polynomial to data
polyval evaluate polynomial
interp1 interpolation, various methods, 1D
interp2 interpolation, various methods, 2D
roots roots of polynomial

We met most of these functions in Part I, and will now apply them to some more examples. We
shall learn something about the inner workings of several of these functions later in the course Numerical
Mathematics with Matlab. For now, we treat them as �black boxes�and just assume that they do their
job properly.

Exercise F.1 Generate the following vectors:
x = (0:0.2:10)�;
y = cos(x);

� Use diff to generate a vector dy containing approximate values of the derivative of cosx.

� Plot dy together with � sinx in the same plot.

NB! Note that diff(y) has one element less than y. What should we use as abscissa axis variable
(x-axis variable) when plotting dy?

Exercise F.2 Repeat the previous exercise using the gradient function to �nd approximate values of
the derivative.

Exercise F.3 Repeat Exercise F.1, but generate approximate values of the integral instead of the deriv-
ative. Plot these together with sinx.

Exercise F.4 Use interp1 and x and y from Exercise F.1 to �nd the value of sin(p/2).

181
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Table F.2: Basic binary operations among scalars s and matrices M .
Operation Legal/Illegal Interpretation
s1+s2, s1-s2 L Addition/subtraction of scalars
s1*s2, s1/s2 L Standard scalar product/division
s+M, s-M I Interpreted as s*ones(size(M))+M, etc.
s*M L Standard multiplication by scalar
s/M I �
M/s I Interpretation: M./(s*ones(size(M)))
M1+M2, M1-M2 L M1 and M2 must have identical size
M1*M2 L No. of columns of M1 must equal no. rows of M2
M1/M2 I �
M^n L Legal if M is quare matrix (including scalar)

F.2 Arrays vs. Vectors and Matrices

In Part I, we considered mainly arrays, which we �de�ned�as tables where the content of each element
is of the same type. We also considered unary functions on array elements, and basic binary operations
between arrays. In the case of binary operations, we required the two arrays, e.g. A;B, to be of the same
size, e.g. A 2 Cm�n and B 2 Cm�n. Furthermore, we de�ned addition, subtraction, multiplication,
and division of arrays to be element-by-element operations. In Matlab, these are performed using the
notation:

� array addition: A+B

� array subtraction: A-B

� array multiplication: A.*B

� array division: A./B

In Section A of Part I, we considered vector spaces and matrices. We saw that a wide-spread
vectorspace is Cn, which conveniently can be represented either by a row array (C1�n) or by a column
array (Cn�1); for simplicity, we will denote these as a row vector and a column vector, respectively. For
vectors, we need to de�ne vector addition and subtraction � these �t well with the concepts of array
addition and subtraction (+, -). Furthermore, we need the operation of scalar multplication. Since a
scalar and a vector, considered as arrays, have di¤erent sizes, we can not use array multiplication as the
vector multiplication operation. Instead, Matlab supports the binary operation * among a scalar and
a vector. Next: additive and multiplicative identities �ts well with the array representation of Matlab.
Finally, association, distribution, and commutativity is built into the way Matlab interprets parentheses.
Matrices can also be represented by arrays (e.g. Cm�n), where matrix addition and subtraction

are identical to array addition and multiplication. It is also convenient to expand the meaning of the
operator for scalar-vector multiplication (*), to also denote the Cayley product of two matrices. In other
words, the (Cayley) matrix product A*B is de�ned if the number of columns of matrix A is the same as
the number of rows of matrix B, in other words: if A 2 Cm�k and B 2 Ck�n, then the product AB is
well de�ned, and AB 2 Cm�n.
There is no division operation between vectors or matrices, thus symbol / does not really have a

meaning when vectors and matrices are involved.
Finally, it should be noticed that for binary operations between two scalars, addition, subtraction,

multiplication, and division is represented by the symbols +, -, *, and /, respectively. Furthermore,
Matlab has a special interpretation for some operations that are theoretically illegal. The operations are
summarized in Table F.2.
Note that although matrix addition commutes (i.e. A+B = B+A), in general, matrix multiplication

does not commute (i.e. A �B 6= B �A).
Also note that matrix transpose MT is achieved as follows: M.�. If we want to simultaneously �nd

the transpose and take the complex conjugate of the matrix elements (often written as MH or M�), this
is achieved as follows: M�.
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Table F.3: Basic Matrix operations.
Matlab function Description
rank Matrix rank, i.e. number of linearly independent rows/columns
det Determinant, valid for square matrices.
cond Condition number, measure of how close matrix is to singularity
inv Matrix inverse, valid for square, non-singular matrices
n Solve linear equations using Gauss elimination
norm Matrix/vector norm, extension of Pythagorean length of vectors
eig Eigenvalues and eigenvectors

F.3 Matrix operations

F.3.1 Basic operations

Some basic matrix functions are given in Table F.3.

Exercise F.5 For the set of equations:

4x1 � 2x2 + x3 = 15

�3x1 + x2 + 4x3 = 8

x1 � x2 + 3x3 = 13,

formulate the equations as a matrix equation of form Ax = b.

Exercise F.6 For matrix A of Exercise F.5:

� Find the rank of A.

� Find the determinant of A.

� Find the condition number of A.

� If possible, �nd the inverse of A.

Exercise F.7 For vector b and matrix A in Exercise F.5:

� Find the norm of vector b.

� Find the norm of matrix A.

� Experiment with other norms for b and A than the default norm (Hint: use the help system), and
compare the results.

Exercise F.8 If possible:

� Find the solution x of the equation Ax = b in Exercise F.5 using the backslash operator /.

� Verify that you get the same result using the matrix inverse.

F.3.2 Matrix factorizations/decompositions1

Matlab allows for the basic matrix factorizations/decompositions in Table F.4.

1These methods are used extensively in linear algebra.
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Table F.4: Basic matrix factorizations in Matlab.
Factorization of A Matlab command Comment
A = RTR R=chol(A) Cholesky factorization: A is positive de�nite, R is

upper triangular
PA = LU [L,U,P] = lu(A) LU factorization: A is square, L is lower triangu-

lar, U is upper triangular, P is permutation matrix
(PTP = I)

AE = QR [Q,R,E] = qr(A) QR decomposition: E is permutation matrix
(ETE = I), Q is unitary matrix (QHQ = I), R is
upper triangular

A = USV H [U,S,V] = svd(A) Singular value decomposition: U and V are uni-
tary matrices (UHU = I, V HV = I), and S is
diagonal

F.3.3 Vector space commands2

With A 2 Cm�n and x 2 Cn, Ax can be considered as the column vector Ax =
Pn

i=1 xiai, where ai 2 Cm
is column i of matrix A. The subspace consisting of all possible vectors Ax (i.e. by varying x) is known
as the column space of matrix A, R (A). This subspace has the same number of so-called basis vectors,
as the rank of A, rankA.

� The command orth(A) responds with a matrix with columns which constitute a complete set of
basis vectors for R (A).

The particular matrix equation Ax = 0 may have many solutions. The set of possible solutions
forms a subspace of Cn which is known as the nullspace of A, denoted N (A). The nullspace can be
characterized by a complete set of basis vectors. With A 2 Cm�n, it can be shown that the number of
basis vectors in N (A) is n� rankA.

� The command null(A) responds with a matrix with columns which constitute a complete set of
basis vectors for N (A).

� The command null(A,�r�) has the same response as null(A), but with operation null(A,�r�),
the resulting basis vectors are rational numbers.

The concepts column space R (A) and nullspace N (A) are used in order to assess the solvability of
equations Ax = b. In particular:

1. A solution exists for equation Ax = b if and only if b 2 R (A). We have that b 2 R (A) ,
rank [A; b] = rankA.

2. If a solution exists for Ax = b, then the solution is unique if and only if N (A) = f0g (i.e. the
nullspace has zero basis vectors).

2These methods are used extensively in advanced linear algebra.
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Extra parameters and anonymous
functions*

Before going into more details about how to use function functions, let us consider how anonymous
functions can simplify the interface between our own functions and built-in Matlab functions.
Many of the built-in Matlab functions, e.g. in Table 15.1, accept extra input parameters. As an

example, the quad function accepts the more general form:

quad(fh1, a, b, tol, trace, P1, P2, ...)

Here, the �rst input argument is the function handle to the function we want to integrate (fh1), the second
input argument is the lower integration limit (a), the third input argument is the upper integration limit
(b), the fourth input argument is a user speci�ed integration tolerance (tol), the �fth input argument
speci�es whether the user wants to see the intermediate results during the iteration for a solution (trace),
while the remaining input arguments are extra parameters to the function referenced by the function
handle (fh1). If we do not want to use parameters tol and trance, we can replace each of these by []:

quad(fh1, a, b, [], [], P1, P2, ...)

We can alternatively use extra parameters with quad by introducing an anonymous function as an
interface:

fh2 = @(x) fh1(x, P1, P2, ...);
quad(fh2, a, b)

Using the anonymous function as an interface function, the notation and use of function functions with
extra arguments becomes simpler.
Let us illustrate this idea with an example. We shoot up a projectile with an initial velocity v0 at an

angle ' with the horizon. The velocities in the horizontal an vertical directions are

vx = v0 sin'

vy = v0 cos'� gt

The speed is thus

v =
q
v2x + v

2
y =

q
v20 + g

2t2 � 2v0gt cos'

If the ground is in the horizon plane, the time before the projectile hits the ground is the solution for
t > 0 of

R tmax
0

vy (t) dt = 0 or v0tmax cos'� 1
2gt

2
max = 0:

tmax =
2v0
g
sin'
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We now want to �nd the arc length of the trajectory, de�ned as

L =

Z tmax

0

vdt

If we were only interested in the result for one set of speci�ed values for v0, ', and g , then we could
hard code those values in a function and integrate it using quad. But it is more �exible if we write a
function with those parameters as input variables:

function v = speed(t, v0 , phi, g)
% Speed of projectile shot up with initial velocity v0 at angle
% phi with the horizon. g: gravitational acceleration
vx = v0*cos(phi);
vy = v0*sin(phi)-g*t;
v = sqrt(vx^2+vy.^2);

There are two ways of integrating this function using quad. Without using an anonymous function
as interface, we have:

>> v0 = 10;g = 10;phi = pi/4;
>> tmax = 2*v0*sin(phi)/g;
>> L = quad(@speed, 0, tmax, [], [], v0, phi, g)
L =
11.4779

This works �ne, but the user has to enter values (or empty arrays as placeholders) to ensure that
the parameter arguments come at the right place in the function call. Another, perhaps more serious,
problem is that the method for passing extra parameters when writing your own function functions is
not so straightforward. In fact, most users �nd it a constant source of frustration.
In Matlab 7, we can alternatively use the anonymous function facility to de�ne a new interface

function:

>> f = @(t) speed(t, v0, phi, g)
f =
@(t) speed(t,v0,phi,g)

Next, we can integrate f to �nd the arc length:

>> L = quad(f,0,tmax)
L =
11.4779

We can also de�ne the function inside the call to quad. In this example, we change the angle a bit,
just to demonstrate that the parameters do indeed in�uence the result:

>> phi = pi/3;
>> L = quad(@(t)speed(t,v0,phi,g),0,tmax)
L =
9.1949
>> L = quad(f,0,tmax)
L =
11.4779

Note that f is una¤ected by the value change of the parameter.
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DAE solvers in Matlab*

Two of the Matlab ODE solvers can also solve DAEs: ode15s and ode23t. Regarding the damped
mass-spring system, we could alternatively have posed this as a DAE system:

dx

dt
= v (H.1)

dE

dt
= Fv � �v2 (H.2)

P = mgx+
k

2
(x� x0)2 (H.3)

E = K + P (H.4)

K =
1

2
mv2. (H.5)

However, this models is not entirely equivalent to the model in eqs. 16.1 �16.2: with the given initial
values, (x; v)t=0 = (1:5; 0), we see that dx=dt = 0 and dE=dt = 0, hence the model in eqs. H.1 �H.5 will
predict that the system stays at rest!
Instead, we choose to consider the following DAE:

dx

dt
= v

dv

dt
= � k

m
(x� x0)�

�

m
v � g + F

m

0 = P �mgx� k
2
(x� x0)2

0 = K � 1
2
mv2

0 = E �K � P .

This model obviously is equivalent: we simply use the same model for x and v, and add three algebraic
equations in order to compute P , K and E. These equations constitute a DAE: a di¤erential algebraic
equation with 2 ordinary di¤erential equation, and 3 additional algebraic equations. The standard form
for DAEs in Matlab is

M
dy

dt
= f (t; y) .

Here, we de�ne
y = (x; v; P;K;E)

T .

In standard form, we have:0BBBB@
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCA
0BBBB@

dx
dt
dv
dt
dP
dt
dK
dt
dE
dt

1CCCCA =

0BBBB@
v

� k
m (x� x0)�

�
mv � g +

F
m

P �mgx� k
2 (x� x0)

2

K � 1
2mv

2

E �K � P

1CCCCA .
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Notice that we have to specify F as a function of t or y in order to have the system in standard form.
Notice also that we have a choice as to which of the algebraic equations belongs to dv=dt, dK=dt, and
dP=dt. We can make that choice more or less as we like.
Since Matlab will attempt to compute y, notice that this formulation allows for automatic computa-

tion of all quantities of interest: x;E; v;K; P , and that no post processing is necessary.
The main problem with solving DAEs is that we need consistent conditions for y (0) and dy (0) =dt.

Here, it is simplest to specify x (0) and v (0), and to compute E (0), K (0), and P (0) from the algebraic
equations. Furthermore, we need a strategy for �nding dy (0) =dt. We need to require that

M
dy (0)

dt
= f (0; y (0)) ,

which is a simple, linear algebra equation of type Ax = b, where A =M , the unknown is x = dy (0) =dt,
and b = f (0; y (0)). We can solve this equation using the pseudo inverse of M , which in Matlab is
computed through the use of function pinv.
Here is how we call DAE solvers for the damped mass-spring system (script �le dampmsdae.m):

% Script for simulating damped mass-spring system

% Necessary data
Tfin = 150;
data;
xinit = 1.5;
v0 = 0;
P0 = m*g*xinit + k*(xinit-x0)^2/2;
K0 = m*v0^2/2;
E0 = K0 + P0;

% Setting up initial values:
y0 = [xinit, v0, P0, K0, E0]�;

% Setting up the M matrix in M*dy/dt = f(t,y):
M = zeros(length(y0));
M(1,1) = 1;
M(2,2) = 1;

% Computing consistent value for dy(t0)/dt:
Mdy0dt = dmsdae(0,y0);
dy0dt = pinv(M)*Mdy0dt;

% Specifying options for the ode solver:
opt = odeset(�Mass�,M,�MassSingular�,�yes�, �MstateDependence�, �none�,...

�InitialSlope�, dy0dt, �AbsTol�, 1e-6, �RelTol�, 1e-3);

% Simulating system - notice that we include the options opt
tic;
[T,Y] = ode15s(@dmsdae, [0,Tfin], y0, opt);
toc

Next, we need to de�ne function dmsdae:

function fy = dmsdae(t,y)
%
% Defining data
data;
% Naming variables
x = y(1);



189

v = y(2);
P = y(3);
K = y(4);
E = y(5);
% Defining elements of the vector field
fx = v;
fv = -k*(x-x0)/m - mu*v/m - g + F/m;
fP = P - m*g*x - k*(x-x0)^2/2;
fK = K - m*v^2/2;
fE = E - K - P;
% Setting up the vector field
fy = [fx, fv, fP, fK, fE]�;

The DAE is solved by running the script �le dampmsdae. Solving the DAE (variables: x; v; P;K;E)
takes approximately 3 times as long as solving the simple ODE (variables: x; v), but then we �nd more
variables.
To sum up:

� Describing models as DAEs reduces1 the necessary amount of formula manipulation.

� We can reduce/eliminate the necessary work to �nd auxiliary variables2 , if we describe models as
DAEs.

1Note: in this case, we didn�t really save much manipulation, but normally we can save work by formulating models as
DAEs.

2 In this case, we eliminated the necessary post processing to �nd P , K, and E.
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