Partial test SCE4106 Model Predictive Control Friday 5. October 2007 kl. 9.15-11.15, Rom F29

The test consists of 2 tasks.
The test counts 30% of the final grade in the course.
The test consists of two pages.
Aid: paper and pen.
David Di Ruscio
Tlf: 5168, Rom: B249
Master study
Systems and Control Engineering
Department of Technology
Høgskolen i Telemark

1 Partial test MPC

Task 1 (25\%): MPC

Given a process described by the linear discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{1}\\
y_{k} & =D x_{k}, \tag{2}
\end{align*}
$$

where $x_{k} \in \mathbb{R}^{n}$ is the state vector, $u_{k} \in \mathbb{R}^{r}$ is the control vector and $y_{k} \in \mathbb{R}^{m}$ is the output vector.
Consider also the control objective

$$
\begin{equation*}
J_{k}=\sum_{i=1}^{L}\left(\left(y_{k+i}-r_{k+i}\right)^{T} Q_{i}\left(y_{k+i}-r_{k+i}\right)+u_{k+i-1}^{T} P_{i} u_{k+i-1}\right) \tag{3}
\end{equation*}
$$

a) Show that the control objective can be written as follows

$$
\begin{equation*}
J_{k}=\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)^{T} Q\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)+u_{k \mid L}^{T} P u_{k \mid L} . \tag{4}
\end{equation*}
$$

Specify the extended vectors $r_{k+1 \mid L}$ and $y_{k+1 \mid L}$, as well as the extended weighting matrices Q and P.
b) Show that the process model (1) and (2) can be written as a prediction model of the form,

$$
\begin{equation*}
y_{k+1 \mid L}=F_{L} u_{k \mid L}+p_{L} . \tag{5}
\end{equation*}
$$

Specify expressions for F_{L} and p_{L}.
c)

- Find the MPC optimal unconstrained future controls of the form

$$
\begin{equation*}
u_{k \mid L}^{*}=G\left(r_{k+1 \mid L}-p_{L}\right) \tag{6}
\end{equation*}
$$

Specify the matrix G.

- Which optimal MPC control, u_{k}^{*}, is used to control the process at the present time, k ?
d) Assume that we have some input amplitude constraints

$$
\begin{equation*}
u_{k \mid L}^{\min } \leq u_{k \mid L} \leq u_{k \mid L}^{\max } \tag{7}
\end{equation*}
$$

Show that the constraints can be written as a linear inequality

$$
\begin{equation*}
\mathcal{A} u_{k \mid L} \leq b \tag{8}
\end{equation*}
$$

Specify the matrix \mathcal{A} and the vector b.
e) Formulate the control objective, (4), with the prediction model (5) and the constraints (8) as a Quadratic Programming (QP) problem,

Problem 1.1 (MPC QP problem)

Minimize

$$
\begin{equation*}
J_{k}=u_{k \mid L}^{T} H u_{k \mid L}+2 f^{T} u_{k \mid L}+J_{0} \tag{9}
\end{equation*}
$$

with respect to $u_{k \mid L}$ subject to constraints (8).

Specify matrix H and the vector f.

Task 2 (5\%): Optimization

a) Find the minimum variables, x_{1}^{*} and x_{2}^{*}, of the quadratic function

$$
\begin{equation*}
J=2 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-12 x_{1}-10 x_{2} \tag{10}
\end{equation*}
$$

