Final Exam Course SCE4106 Model Predictive Control with Implementation Friday 12th December 2008 kl. 9.00-12.00

Sluttprøven består av: 3 oppgaver.
Oppgaven teller 70% av sluttkarakteren. Det er 4 sider i sluttprøven.
Tillatte hjelpemidler: vedlegg til oppgaven
Faglig kontakt under eksamen:
Navn: David Di Ruscio
Tlf: 51 68, Rom: B249
Kybernetikk og industriell IT
Institutt for elektro, IT og kybernetikk
Avdeling for teknologiske fag
Høgskolen i Telemark
N-3914 Porsgrunn

Task 1 (25\%): MPC

Given a process described by the linear discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}+v_{k}, \tag{1}\\
y_{k} & =D x_{k}, \tag{2}
\end{align*}
$$

where $x_{k} \in \mathbb{R}^{n}$ is the state vector, $u_{k} \in \mathbb{R}^{r}$ is the control vector and $y_{k} \in \mathbb{R}^{m}$ is the output vector. v_{k} is a process disturbance vector.
Consider the control objective

$$
\begin{equation*}
J_{k}=\frac{1}{2} \sum_{i=1}^{L}\left(\left(y_{k+i}-r_{k+i}\right)^{T} Q_{i}\left(y_{k+i}-r_{k+i}\right)+\left(u_{k+i-1}-u_{i}\right)^{T} P_{i}\left(u_{k+i-1}-u_{i}\right)\right) \tag{3}
\end{equation*}
$$

where $Q_{i} \in \mathbb{R}^{m \times m}$ and $P_{i} \in \mathbb{R}^{r \times r}$ are symmetric weighting matrices. The vector u_{i} represents desired values of the controls at time $k=i$.
a) Give a short descriptions of the basic ingredients in an MPC controller.
b) Show that the control objective can be written as follows

$$
\begin{equation*}
J_{k}=\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)^{T} Q\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)+\left(u_{k \mid L}-u_{0}\right)^{T} P\left(u_{k \mid L}-u_{0}\right) \tag{4}
\end{equation*}
$$

Specify the extended vectors $r_{k+1 \mid L}, y_{k+1 \mid L}$ and $u_{k \mid L}$, as well as the extended weighting matrices Q and P, and the vector u_{0}.
c) Show that the process model (1) and (2) can be written as a prediction model of the form,

$$
\begin{equation*}
y_{k+1 \mid L}=F_{L} u_{k \mid L}+p_{L} . \tag{5}
\end{equation*}
$$

1. Specify expressions for F_{L} and p_{L}.
2. Discuss the structure of p_{L} and possibly how p_{L} may be computed.
d)

- Find the MPC optimal unconstrained future controls of the form

$$
\begin{equation*}
u_{k \mid L}^{*}=f_{1}(\cdot) \tag{6}
\end{equation*}
$$

Specify the function $f_{1}(\cdot)$

- Which optimal MPC control, u_{k}^{*}, is used to control the process at the present time, k ?
e) Assume that we have some output constraints

$$
\begin{equation*}
y_{k+1 \mid L}^{\min } \leq y_{k+1 \mid L} \leq y_{k+1 \mid L}^{\max } \tag{7}
\end{equation*}
$$

Show that the constraints can be written as a linear inequality

$$
\begin{equation*}
\mathcal{A} u_{k \mid L} \leq b \tag{8}
\end{equation*}
$$

Specify the matrix \mathcal{A} and the vector b.
f) The control objective, (4), with the prediction model (5) and the constraints (8) can be formulated as a Quadratic Programming (QP) problem,

Problem 0.1 (MPC QP problem)

Minimize

$$
\begin{equation*}
J_{k}=u_{k \mid L}^{T} H u_{k \mid L}+2 f^{T} u_{k \mid L}+J_{0} . \tag{9}
\end{equation*}
$$

with respect to $u_{k \mid L}$ subject to constraints as in (8).
Specify matrix H and the vector f.

Task 2 (20\%) (Computing present state, x_{k})

Given a discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{10}\\
y_{k} & =D x_{k} . \tag{11}
\end{align*}
$$

From the state space model (10) and (11) we can deduce the Prediction Model (PM)

$$
\begin{equation*}
y_{k+1 \mid L}=p_{L}+F_{L} u_{k \mid L}, \tag{12}
\end{equation*}
$$

a) Give an expression for the term p_{L} in (12).

In order to use this PM in case when the state vector x_{k} is not measured, we have to obtain an estimate \hat{x}_{k}.
b) Show that the present state can be expressed by

$$
\begin{equation*}
x_{k}=A^{J-1} x_{k-J+1}+C_{J-1}^{d} u_{k-J+1 \mid J-1} \tag{13}
\end{equation*}
$$

where J is a horizon into the past. Give an expression for the matrix C_{J-1}^{d} and the vector $u_{k-J+1 \mid J-1}$. Tips: this equation may be deduced from (10).
c) Consider the matrix equation

$$
\begin{equation*}
y_{k \mid J}=O_{J} x_{k}+H_{J}^{d} u_{k \mid J-1} . \tag{14}
\end{equation*}
$$

Define the matrices O_{J} and H_{J}^{d}.
d) Use equations (13) and (14) in order to find an expression

$$
\begin{equation*}
\hat{x}_{k}=f_{2}(\text { past inputs and outputs }) \tag{15}
\end{equation*}
$$

Specify the function $f_{2}(\cdot)$!

Task 3 (25\%)

(MPC control with Integral Action)
We are in this task to study an MPC optimal controller for a system described by the state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}+v \tag{16}\\
y_{k} & =D x_{k}+w \tag{17}
\end{align*}
$$

where v and w are constant disturbances. Furthermore, v and w need not to be known.
Subject to the above state space model we want to design MPC optimal controller which minimizes the following criterion

$$
\begin{equation*}
J_{k}=\frac{1}{2} \sum_{i=1}^{L}\left(\left(y_{k+i}-r_{k+i}\right)^{T} Q_{i}\left(y_{k+i}-r_{k+i}\right)+\Delta u_{k+i-1}^{T} P_{i} \Delta u_{k+i-1}\right) . \tag{18}
\end{equation*}
$$

where $\Delta u_{k}=u_{k}-u_{k-1}$ and r_{k} is a specified reference vector. Q_{i} and P_{i} are symmetric and positive semi-definite matrices.
a) Show that it is possible to write the model in (16) and (17) on deviation form, i.e.,

$$
\begin{align*}
\Delta x_{k+1} & =A \Delta x_{k}+B \Delta u_{k}, \tag{19}\\
\Delta y_{k} & =D \Delta x_{k}, \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta x_{k}=x_{k}-x_{k-1}, \quad \Delta u_{k}=u_{k}-u_{k-1}, \quad \Delta y_{k}=y_{k}-y_{k-1} . \tag{21}
\end{equation*}
$$

What can be gained by doing this?
b) Show that the model in (19) and (20) can be written as follows

$$
\begin{align*}
\tilde{x}_{k+1} & =\tilde{A} \tilde{x}_{k}+\tilde{B} \Delta u_{k} \tag{22}\\
y_{k} & =\tilde{D} \tilde{x}_{k} \tag{23}
\end{align*}
$$

where

$$
\tilde{x}_{k}=\left[\begin{array}{c}
\Delta x_{k} \tag{24}\\
y_{k-1}
\end{array}\right] .
$$

Here you should define the matrices \tilde{A}, \tilde{B} and \tilde{D}.
c) Find the optimal unconstrained control deviation

$$
\begin{equation*}
\Delta u_{k \mid L}^{*}=f_{3}(\cdot) \tag{25}
\end{equation*}
$$

in this case! Specify the function $f_{3}(\cdot)$ in this case.
d) Assume that we have some control rate of change constraints

$$
\begin{equation*}
\Delta u_{k \mid L}^{\min } \leq \Delta u_{k \mid L} \leq \Delta u_{k \mid L}^{\max } \tag{26}
\end{equation*}
$$

and some control amplitude constraints

$$
\begin{equation*}
u_{k \mid L}^{\min } \leq u_{k \mid L} \leq u_{k \mid L}^{\max } \tag{27}
\end{equation*}
$$

Show that the constraints can be written as a linear inequality

$$
\begin{equation*}
\mathcal{A} \Delta u_{k \mid L} \leq b \tag{28}
\end{equation*}
$$

Specify the matrix \mathcal{A} and the vector b in this case.
e) Formulate the MPC problem as a QP problem for computing the optimal future control deviations $\Delta u_{k \mid L}^{*}$.

