Final Exam Course SCE4106 Model Predictive Control with Implementation Friday December 9, 2011 kl. 9.00-12.00

David Di Ruscio
December 5, 2011

Task 1 (10\%) (Linear quadratic problem)

Given an objective function

$$
\begin{equation*}
J=(y-r)^{T} Q(y-r)+u^{T} P u, \tag{1}
\end{equation*}
$$

where y, r and u are vectors and Q and P symmetric positive matrices of appropriate dimensions, and where

$$
\begin{equation*}
y=F u+p \tag{2}
\end{equation*}
$$

a) Show that the objective (1) with model (2) may be written as

$$
\begin{equation*}
J=u^{T} H u+2 f^{T} u+J_{0} . \tag{3}
\end{equation*}
$$

Specify the matrix H, the vector f and the scalar parameter J_{0} !
b) Show that the optimal solution may be written on the form

$$
\begin{equation*}
u^{*}=G(r-p) . \tag{4}
\end{equation*}
$$

Specify the feedback matrix G.

Task 2 (30\%) (MPC with Integral Action)

Consider a system described by the discrete state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}+v, \tag{5}\\
y_{k} & =D x_{k}+w, \tag{6}
\end{align*}
$$

where v and w are possibly unknown constant disturbances.
We want to design an MPC controller which minimizes the following criterion

$$
\begin{equation*}
J_{k}=\sum_{i=1}^{L}\left(\left(y_{k+i}-r_{k+i}\right)^{T} Q_{i}\left(y_{k+i}-r_{k+i}\right)+\Delta u_{k+i-1}^{T} P_{i} \Delta u_{k+i-1}\right), \tag{7}
\end{equation*}
$$

where $\Delta u_{k}=u_{k}-u_{k-1}$ and r_{k} is a specified reference vector. $Q_{i} \geq 0$ and $P_{i} \geq 0$ are weighting matrices.
a) Usually linear and linearized non-linear models of dynamic systems are of the form

$$
\begin{align*}
\delta x_{k+1} & =A \delta x_{k}+B \delta u_{k} \tag{8}\\
\delta y_{k} & =D \delta x_{k} \tag{9}
\end{align*}
$$

where the variables $\delta x_{k}=x_{k}-x_{0}, \delta u_{k}=u_{k}-u_{0}$ and $\delta y_{k}=y_{k}-y_{0}$ in the linear state space model (8) and (9) are deviation variables valid around some nominal steady state values x_{0}, u_{0} and y_{0}.
Show that the linear model (8) and (9) may be written in terms of the actual physical variables x_{k}, u_{k} and y_{k}, and on the form as the linearized model in (5) and (6) ? Define v and w in this case!
b) The above MPC criterion, (7), may be written in more compact form as

$$
\begin{equation*}
J_{i}=\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)^{T} Q\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)+\Delta u_{k \mid L}^{T} P \Delta u_{k \mid L} \tag{10}
\end{equation*}
$$

Specify the matrices Q and P, and the vectors $y_{k+1 \mid L}, r_{k+1 \mid L}$ and $\Delta u_{k \mid L}$ in the objective (10).
c)

1. Show that it is possible to write the model in (5) and (6) on deviation form, i.e.,

$$
\begin{align*}
\Delta x_{k+1} & =A \Delta x_{k}+B \Delta u_{k}, \tag{11}\\
\Delta y_{k} & =D \Delta x_{k}, \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta x_{k}=x_{k}-x_{k-1}, \quad \Delta u_{k}=u_{k}-u_{k-1}, \quad \Delta y_{k}=y_{k}-y_{k-1} . \tag{13}
\end{equation*}
$$

What can be gained by doing this?
2. Show that the model in (11) and (12) can be written as follows

$$
\begin{align*}
\tilde{x}_{k+1} & =\tilde{A} \tilde{x}_{k}+\tilde{B} \Delta u_{k} \tag{14}\\
y_{k} & =\tilde{D} \tilde{x}_{k} \tag{15}
\end{align*}
$$

where

$$
\tilde{x}_{k}=\left[\begin{array}{c}
\Delta x_{k} \tag{16}\\
y_{k-1}
\end{array}\right] .
$$

Here you should define the matrices \tilde{A}, \tilde{B} and \tilde{D}.
d) From the augmented state space model (14) and (15) we define a Prediction Model (PM) of the form

$$
\begin{equation*}
y_{k+1 \mid L}=p_{L}+F_{L} \Delta u_{k \mid L} . \tag{17}
\end{equation*}
$$

Specify the matrix F_{L} and the vector p_{L} !
e) Show that the performance index (10) can be written as

$$
\begin{equation*}
J_{k}=\Delta u_{k \mid L}^{T} H \Delta u_{k \mid L}+2 f_{k}^{T} \Delta u_{k \mid L}+J_{0} . \tag{18}
\end{equation*}
$$

Specify the matrix H and the vector f_{k} !
f) Find the optimal unconstrained control deviation

$$
\begin{equation*}
\Delta u_{k \mid L}^{*}=f(\cdot), \tag{19}
\end{equation*}
$$

and specify the function $f(\cdot)$! You should also specify the optimal MPC control, u_{k}^{*}, at present time k.
g) Assume that we have the following constraints

$$
\begin{align*}
\Delta u_{k \mid L}^{\min } \leq \Delta u_{k \mid L} & \leq \Delta u_{k \mid L}^{\max } \tag{20}\\
u_{k \mid L}^{\min } \leq u_{k \mid L} & \leq u_{k \mid L}^{\max } . \tag{21}
\end{align*}
$$

- Show that the constraints can be written as a linear inequality

$$
\begin{equation*}
\mathcal{A} \Delta u_{k \mid L} \leq b . \tag{23}
\end{equation*}
$$

Specify the matrix \mathcal{A} and the vector b in this case.

- How can we solve the constrained MPC problem ? i.e., minimizing the objective (18) with respect to $\Delta u_{k \mid L}$ subject to the linear inequality (23). Describe short with words.

Task 3 (15\%) (Computing present state, x_{k})

Given a discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{24}\\
y_{k} & =D x_{k} . \tag{25}
\end{align*}
$$

From the model (24) and (25) we may construct a Prediction Model (PM) which is a function of the present state, x_{k}. In case when the state vector x_{k} is not measured, we may use an estimate \hat{x}_{k}.
a) From the model (24) and (25) we construct a PM

$$
\begin{equation*}
y_{k+1 \mid L}=p_{L}+F_{L} u_{k \mid L} . \tag{26}
\end{equation*}
$$

Define expressions for the terms p_{L} and F_{L} in Eq. (26).
b) Show that the present state can be expressed by

$$
\begin{equation*}
x_{k}=A^{J-1} x_{k-J+1}+C_{J-1}^{d} u_{k-J+1 \mid J-1}, \tag{27}
\end{equation*}
$$

where J is a horizon into the past. Give an expression for the matrix C_{J-1}^{d} and the vector $u_{k-J+1 \mid J-1}$. Tips: this equation may be deduced from (24).
In particular define the terms in Eq. (27) for $J=4$.
c)

- Consider the matrix equation

$$
\begin{equation*}
y_{k \mid J}=O_{J} x_{k}+H_{J}^{d} u_{k \mid J-1} . \tag{28}
\end{equation*}
$$

Define the matrices O_{J} and H_{J}^{d} in terms of the model matrices A, B and D. Use $J=4$ as an example.

- Use equations (27) and (28) in order to find an estimate of the present state of the form

$$
\begin{equation*}
\hat{x}_{k}=K_{y} \tilde{y}+K_{u} \tilde{u} . \tag{29}
\end{equation*}
$$

Define the gain matrices K_{y} and K_{u} and the vectors \tilde{y} and \tilde{u} !

Task 4 (15\%) Diverse MPC related questions

a) A Finite Impulse Response (FIR) model

$$
\begin{equation*}
y_{k}=h_{1} u_{k-1}+h_{2} u_{k-2}+h_{3} u_{k-3}, \tag{30}
\end{equation*}
$$

can be written as a state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{31}\\
y_{k} & =D x_{k} . \tag{32}
\end{align*}
$$

Define the model matrices A, B and D.
b) Given a state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{33}\\
y_{k} & =D x_{k} . \tag{34}
\end{align*}
$$

Define a Prediction Model (PM) of the form

$$
\begin{equation*}
y_{k+1 \mid L}=F_{L} u_{k \mid L}+p_{L}, \tag{35}
\end{equation*}
$$

from the state space model (33) and (34). Define the matrix F_{L} and the vector p_{L} where L is the prediction horizon.
c) Consider the FIR model in step 4a), i.e.,

$$
\begin{equation*}
y_{k}=h_{1} u_{k-1}+h_{2} u_{k-2}+h_{3} u_{k-3} . \tag{36}
\end{equation*}
$$

Chose a prediction horizon $L=4$ and find a Prediction Model (PM) of the form

$$
\begin{equation*}
y_{k+1 \mid 4}=F_{4} u_{k \mid 4}+p_{4}, \tag{37}
\end{equation*}
$$

directly from the FIR model (36). Define the matrix F_{4} and the vector p_{4} ? Tips: they are functions of the model parameters h_{1}, h_{2} and h_{3}.

