Final Exam Course SCE4106 Model Predictive Control with Implementation Monday 14th December 2009 kl. 9.00-12.00
 David Di Ruscio
 December 10, 2009

Task 1 (30\%) (MPC with Integral Action)

Consider a system described by the discrete state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}+v, \tag{1}\\
y_{k} & =D x_{k}+w, \tag{2}
\end{align*}
$$

where v and w are possibly unknown constant disturbances.
We want to design an MPC controller which minimizes the following criterion

$$
\begin{equation*}
J_{k}=\sum_{i=1}^{L}\left(\left(y_{k+i}-r_{k+i}\right)^{T} Q_{i}\left(y_{k+i}-r_{k+i}\right)+\Delta u_{k+i-1}^{T} P_{i} \Delta u_{k+i-1}\right), \tag{3}
\end{equation*}
$$

where $\Delta u_{k}=u_{k}-u_{k-1}$ and r_{k} is a specified reference vector. $Q_{i} \geq 0$ and $P_{i} \geq 0$ are weighting matrices.
a) The above MPC criterion, (3), may be written in more compact form as

$$
\begin{equation*}
J_{i}=\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)^{T} Q\left(y_{k+1 \mid L}-r_{k+1 \mid L}\right)+\Delta u_{k \mid L}^{T} P \Delta u_{k \mid L} \tag{4}
\end{equation*}
$$

Specify the matrices Q and P, and the vectors $y_{k+1 \mid L}, r_{k+1 \mid L}$ and $\Delta u_{k \mid L}$ in the objective (4).
b)

1. Show that it is possible to write the model in (1) and (2) on deviation form, i.e.,

$$
\begin{align*}
\Delta x_{k+1} & =A \Delta x_{k}+B \Delta u_{k} \tag{5}\\
\Delta y_{k} & =D \Delta x_{k}, \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta x_{k}=x_{k}-x_{k-1}, \quad \Delta u_{k}=u_{k}-u_{k-1}, \quad \Delta y_{k}=y_{k}-y_{k-1} . \tag{7}
\end{equation*}
$$

What can be gained by doing this?
2. Show that the model in (5) and (6) can be written as follows

$$
\begin{align*}
\tilde{x}_{k+1} & =\tilde{A} \tilde{x}_{k}+\tilde{B} \Delta u_{k} \tag{8}\\
y_{k} & =\tilde{D} \tilde{x}_{k} \tag{9}
\end{align*}
$$

where

$$
\tilde{x}_{k}=\left[\begin{array}{c}
\Delta x_{k} \tag{10}\\
y_{k-1}
\end{array}\right] .
$$

Here you should define the matrices \tilde{A}, \tilde{B} and \tilde{D}.
c) From the augmented state space model (8) and (9) we define a Prediction Model (PM) of the form

$$
\begin{equation*}
y_{k+1 \mid L}=p_{L}+F_{L} \Delta u_{k \mid L} . \tag{11}
\end{equation*}
$$

Specify the matrix F_{L} and the vector p_{L} !
d) Show that the performance index (4) can be written as

$$
\begin{equation*}
J_{k}=\Delta u_{k \mid L}^{T} H \Delta u_{k \mid L}+2 f_{k}^{T} \Delta u_{k \mid L}+J_{0} \tag{12}
\end{equation*}
$$

Specify the matrix H and the vector f_{k} !
e) Find the optimal unconstrained control deviation

$$
\begin{equation*}
\Delta u_{k \mid L}^{*}=f(\cdot), \tag{13}
\end{equation*}
$$

and specify the function $f(\cdot)$! You should also specify the optimal MPC control, u_{k}^{*}, at present time k.
f) Assume that we have some control rate of change constraints

$$
\begin{equation*}
\Delta u_{k \mid L}^{\min } \leq \Delta u_{k \mid L} \leq \Delta u_{k \mid L}^{\max } \tag{14}
\end{equation*}
$$

Show that the constraints can be written as a linear inequality

$$
\begin{equation*}
\mathcal{A} \Delta u_{k \mid L} \leq b \tag{15}
\end{equation*}
$$

Specify the matrix \mathcal{A} and the vector b in this case.

Task 2 (25\%) (Computing present state, x_{k}, and state observer)

Given a discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{16}\\
y_{k} & =D x_{k} . \tag{17}
\end{align*}
$$

From the model (16) and (17) we may construct a Prediction Model (PM) which is a function of the present state, x_{k}. In case when the state vector x_{k} is not measured, we have to obtain an estimate \hat{x}_{k}.
a) From the model (16) and (17) we construct a PM

$$
\begin{equation*}
y_{k+1 \mid L}=p_{L}+F_{L} u_{k \mid L} . \tag{18}
\end{equation*}
$$

Give an expression for the term p_{L} in (18).
b) Show that the present state can be expressed by

$$
\begin{equation*}
x_{k}=A^{J-1} x_{k-J+1}+C_{J-1}^{d} u_{k-J+1 \mid J-1}, \tag{19}
\end{equation*}
$$

where J is a horizon into the past. Give an expression for the matrix C_{J-1}^{d} and the vector $u_{k-J+1 \mid J-1}$. Tips: this equation may be deduced from (16).
c) Consider the matrix equation

$$
\begin{equation*}
y_{k \mid J}=O_{J} x_{k}+H_{J}^{d} u_{k \mid J-1} . \tag{20}
\end{equation*}
$$

Define the matrices O_{J} and H_{J}^{d}.
d) Use equations (19) and (20) in order to find an expression

$$
\begin{equation*}
\hat{x}_{k}=f_{2}(\text { past inputs and outputs }) . \tag{21}
\end{equation*}
$$

Specify the function $f_{2}(\cdot)$!
e) Formulate an alternative state observer, e.g. Kalman filter, way of obtaining an estimate, \hat{x}_{k}, of the present state, x_{k}.

Task 3 (15\%): Optimal control and PLS

Given a discrete time state space model

$$
\begin{align*}
x_{k+1} & =A x_{k}+B u_{k}, \tag{22}\\
y_{k} & =D x_{k}, \tag{23}
\end{align*}
$$

where $k=0,1,2, \ldots, a$ is discrete time. Consider an objective criterion

$$
\begin{equation*}
J=\left(r-y_{a}\right)^{T} Q\left(r-y_{a}\right) . \tag{24}
\end{equation*}
$$

a) Show that the state vector, x_{k}, in (22) at a discrete time $k=a \geq 1$ may be written on the form

$$
\begin{equation*}
x_{a}=A^{k} x_{0}+C_{a} u_{0 \mid a}, \tag{25}
\end{equation*}
$$

where matrix C_{a} is a function of the model matrices A, B and D. Specify the matrix C_{a} and the vector $u_{0 \mid a}$ of controls !
b) Assume that the initial state, $x_{0}=0$. Show that the objective criterion, (24), may be written as

$$
\begin{equation*}
J=u_{0 \mid a}^{T} H u_{0 \mid a}+2 f^{T} u_{0 \mid a}+J_{0} . \tag{26}
\end{equation*}
$$

Specify the matrix H, the vector f and the scalar J_{0} in the objective criterion (26) !
c) Find the optimal controls, $u_{0 \mid a}^{*}$, and the corresponding optimal state vector x_{a}^{*} !

Epilog This task is motivated from the Partial Least Squares (PLS) regression problem, where one may show that the PLS problem may be formulated as an equivalent optimal control problem where the vector of PLS regression coefficients, $B_{P L S}=K_{a}\left(K_{a}^{T} X^{T} X K_{a}\right)^{-1} K_{a}^{T} X^{T} Y$, is equal to the optimal state x_{a}^{*} in the corresponding optimal control problem.

