Master study
Systems and Control Engineering
Department of Technology
Telemark University College
DDiR, September 20, 2007

## SCE4006 Model Predictive Control with Implementation

## Exercise 5 (Optimization)

## Task 1

Consider the QP problem to minimize

$$
\begin{equation*}
J(x)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2.5\right)^{2} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
x_{1}-2 x_{2}+2 & \geq 0  \tag{2}\\
-x_{1}-2 x_{2}+6 & \geq 0  \tag{3}\\
-x_{1}+2 x_{2}+2 & \geq 0  \tag{4}\\
x_{1} & \geq 0  \tag{5}\\
x_{2} & \geq 0 \tag{6}
\end{align*}
$$

a) Show that the above QP problem can be formulated as to minimize the quadratic function

$$
\begin{equation*}
J(x)=x^{T} H x+2 f^{T} x \tag{7}
\end{equation*}
$$

subject to inequality constraints

$$
\begin{equation*}
A x \leq b \tag{8}
\end{equation*}
$$

Write up the matrices $H, f, A$ and $b$.
b) Find the minimizing solution, $x^{*}$, numerically by using MATLAB and the quadprog function.
c) Check if some of the constraints are active at the solution.

## Task 2

Consider the quadratic function

$$
\begin{equation*}
J(x)=x^{2}+2 x+1 \tag{9}
\end{equation*}
$$

a) Find the minimum, $x^{*}$, of this function analytically.
b) Find the minimum, $x^{*}$, by using the MATLAB branch and bound function fminbnd when you are assuming that the solution lies in the interval $-10 \leq x \leq 10$.

## Task 3

Consider the non-linear Rosenbrock function

$$
\begin{equation*}
J(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{10}
\end{equation*}
$$

a) Show that

$$
x^{*}=\left[\begin{array}{l}
1  \tag{11}\\
1
\end{array}\right]
$$

is a local minimum and that the Hessian matrix at the solution is positive definite.
b) Use the MATLAB function fminsearch in order to obtain the solution numerically.

## Task 4

Consider the non-linear Rosenbrock function

$$
\begin{equation*}
J(x)=2\left(x_{1}-1\right)^{2}+x_{1}-2+\left(x_{2}-2\right)^{2}+x_{2} \tag{12}
\end{equation*}
$$

a) Use the MATLAB function fminsearch in order to obtain the solution, $x^{*}$, numerically.
b) Show that the optimal solution

$$
x^{*}=\left[\begin{array}{l}
x_{1}  \tag{13}\\
x_{2}
\end{array}\right]
$$

is a local minimum and that the Hessian matrix at the solution is positive definite. This means that you should check wether

$$
\begin{equation*}
g(x)=\frac{d J(x)}{d x}=0 \in \mathbb{R}^{p} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(x^{*}\right)=\frac{d g(x)}{d x^{T}}=\frac{d^{2} J(x)}{d x^{T} d x}>0 \quad \in \mathbb{R}^{p \times p} \tag{15}
\end{equation*}
$$

at the solution $x=x^{*}$ and where $p$ is the number of unknown parameters in $x$.

## Task 5

Perform a m-file implementation of the Newton's method for searching for the minimum of $J(x)$, i.e., implement the search

$$
\begin{equation*}
x_{i+1}=x_{i}-\alpha_{i} H\left(x_{i}\right)^{-1} g\left(x_{i}\right) \quad \forall i=1,2, \ldots, i_{\max } \tag{16}
\end{equation*}
$$

where $g\left(x_{i}\right)$ is the gradient and $H\left(x_{i}\right)$ the Hessian of the function $J(x)$. For Newtons method we have that the line search parameter is $\alpha_{i}=1$. You may fix the maximum number of iterations $i_{\max }$.
You may here use analytical expressions for the gradient and the Hessian. Take the functions in Task 3 and 4 as specific examples for the implementation.

