Master study
Systems and Control Engineering
Department of Technology
Telemark University College
DDiR, November 5, 2010

SCE4006 Model Predictive Control with Implementation

Exercise 6

Task 1: MPC of non-linear chemical reactor

We are in this exercise to study a chemical reactor. The process model for the behavior from the feed rate, u, to the composition of product $\mathrm{B}, y=x_{2}$, out of the reactor is given by the non-linear model

$$
\begin{align*}
\dot{x_{1}} & =-k_{1} x_{1}-k_{3} x_{1}^{2}+\left(v-x_{1}\right) u \tag{1}\\
\dot{x_{2}} & =k_{1} x_{1}-k_{2} x_{2}-x_{2} u \tag{2}\\
y & =x_{2} \tag{3}
\end{align*}
$$

where the reaction coefficients are given by $k_{1}=50, k_{2}=100, k_{3}=10$. The following steady state values for the states and control variable are given: $x_{1}^{s}=$ $2.5, x_{2}^{s}=1$ and $u^{s}=25$. The composition of product A in the feed rate into the reactor is assumed as a constant disturbance, $v=10$.
a) Check that the steady state variables, x^{s}, u^{s} and v^{s} yields an equilibrium point such that $\dot{x}^{s}=0$.
b) Discuss the implementation of e MPC controller in which the future control deviations are computed, i.e. $\Delta u_{k \mid L}^{*}$. Discuss the following:

- An objective criterion, J_{k}, in terms of future deviations $y_{k+i}-r_{k+i}$ and future control deviations Δu_{k+i-1} only, where $i=1, \ldots, L$ and where L is the prediction horizon.
- A prediction model.

$$
\begin{equation*}
y_{k+1 \mid L}=F_{L}^{\Delta} \Delta u_{k \mid L}+p_{L}^{\Delta} \tag{4}
\end{equation*}
$$

- Process constraints $u_{\min } \leq u_{k+i-1} \leq u_{\max }$ and $\Delta u_{\min } \leq \Delta u_{k+i-1} \leq$ $\Delta u_{\text {max }}$. Formulate the constraints as a linear inequality

$$
\begin{equation*}
A \Delta u_{k \mid L} \leq b \tag{5}
\end{equation*}
$$

- We want offset free control, i.e., $y_{k}=r_{k}$ when $k \rightarrow \infty$. Solve this be a sufficient choice of objective criterion as above.
- We also want the MPC controller to be independent of the constant disturbance, $v=10$. How can we solve this.
- The MPC controller is based on a linearized discrete time state space model obtained from the non-linear model.
c) Implement the MPC controller in order to control the non-linear reactor model. Use explicit Euler in order to discretizise the non-linear model.
d) Compare the MPC controller with a conventional PI controller. How would you tune for a PI controller?

