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1.2 The discrete maximum principle

Given a discrete time dynamic process described by the model

xk+1 − xk = f(xk, uk, k), (1.1)

where k is discrete time. f(·) is in general a nonlinear vector function.
Furthermore, we assume an optimal performance index (criterion) of the form

Ji = S(xN ) +
N−1∑

k=i

L(xk, uk), (1.2)

where S(·) is a scalar weighting function of the state at the final time instant
N , L(·, ·) is a scalar weighting function of the state vector xk and the control
input vector uk over the time horizon i ≤ k ≤ N − 1. Both S(·) and L(·, ·) may
be non linear functions.
By investigating this criterion we se that the discrete start time is k = i and
that the discrete final time is k = N . We assume that N > i. The criterion is
defined over a time horizon of N − i+1 discrete time instants. We also observe
that the criterion only is dependent of the control inputs at N− i time instants.
Hence, this means that a part ov the criterion is not dependent of the unknown
control inputs, and the criterion may be splitted into two parts. More of this
later on.
We will in the following present the discrete time Maximum Principle which is
a method for solving the discrete time optimal control problem
We define the discrete time Hamiltonian function corresponding to the contin-
uous case. We have

Hk = L(xk, uk) + pT
k+1f(xk, uk, k)

= L(xk, uk) + pT
k+1(xk+1 − xk). (1.3)

In order for the existence of an optimal control which minimize the criterion Ji

it is necessary that:

• The impulse vector, p, and the state vector, x, satisfy the differential
equations

xk+1 − xk =
∂Hk

∂pk+1
= f(xk, uk, k), (1.4)

pk+1 − pk = −∂Hk

∂xk
, (1.5)

with known boundary (initial and final value) conditions

xi = x0, (1.6)

pN =
∂S

∂xN
. (1.7)
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The state space model (1.1) have boundary conditions at the initial time
instant. But remark that the model for the impulse vector (1.7) have
boundary condition at the final time instant. This is defined as a two-
point boundary value problem.

• The Hamiltonian function, Hk, must have an a absolute minimum (ore
maximum) with respect to the unknown control uk ∈ U where U is the
allowed control space. This must hold for all time instants k = i, · · · , N−1.
This means that we may include constraints on the control vector uk.
Those constraints define the control space U .

Conditions for a minimum is that

∂Hk

∂uk
= 0, (1.8)

and

∂2Hk

∂u2
k

> 0. (1.9)

1.3 Discrete optimal control of linear dynamic sys-
tems

Assume that the process may be described by the discrete time state space
model

xk+1 = Akxk + Bkuk, (1.10)

where xk ∈ Rn is the state vector of the dynamic process and uk ∈ Rr is the
control vector. Ak ∈ Rn×n is the transition matrix which in general may be
time variant Bk ∈ Rn×r is the control input system matrix.
Consider an ptimal criterion of the Linear Quadratic (LQ) form

Ji =
1
2
xT

NSNxN +
1
2

N−1∑

k=i

(xT
k Qkxk + uT

k Pkuk), (1.11)

where SN , Qk and Pk are symmetric weighting matrices. Note that the weight-
ing matrices in general may be time variant. We will later on specify further
detectability assumptions on the weighting matrices.
We will in the following find the optimal control, u∗k, which minimize the optimal
criterion Equation (1.11). We start by writing down the Hamiltonian function,
i.e.,

Hk =
1
2
(xT

k Qkxk + uT
k Pkuk) + pT

k+1((Ak − I)xk + Bkuk). (1.12)

We have used that the state space model equation (1.10) may be written as

xk+1 − xk = (Ak − I)xk + Bkuk. (1.13)
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The optimal control is then given by

∂Hk

∂uk
= Pkuk + BT

k pk+1 = 0, (1.14)

which may give

uk = −P−1
k BT

k pk+1. (1.15)

if the weighting matrix is non-singular (invertible). One should note that we
later on will present a version which does not involve the inversion of Pk.
Putting this into the state space model gives

xk+1 = Akxk −BkP
−1
k BT

k pk+1. (1.16)

We will later on use this expression for xk+1 in order for defining an expression
for the optimal control. The impulse vector is defined from Equation (1.5). We
have

pk+1 − pk = −∂Hk

∂xk
= −Qkxk − (Ak − I)T pk+1, (1.17)

which may be presented simply as

pk = Qkxk + AT
k pk+1. (1.18)

Equations (1.16) and (1.18) defines an autonomous system, i.e.,
[

xk+1

pk

]
=

[
Ak −H
Qk AT

k

] [
xk

pk+1

]
, (1.19)

where the matrix H is defined as

H = BkP
−1
k BT

k . (1.20)

This matrix should not be compared with the Hamiltonian function Hk.
Note that in Equation (1.19) the state vector and the impulse vector are defined
at different time instants at the same side of the equality sign. In case when
Ak is non-singular we find from (1.16) that

xk = A−1
k xk+1 + A−1

k Hpk+1. (1.21)

Putting this into (1.18) we find that

pk = QkA
−1
k xk+1 + (AT

k + QkA
−1
k H)pk+1. (1.22)

Equationse (1.21) and (1.22) may be written in matrix form as follows

[
xk

pk

]
=

F︷ ︸︸ ︷[
A−1

k A−1
k H

QkA
−1
k AT

k + QA−1
k H

] [
xk+1

pk+1

]
. (1.23)
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Note that the transition matrix Ak is invertible if the model is obtained by
discretizing a continuous time model. You should note that (1.23) may be used
in order to show that there is a linear relationship between pk and xk, i.e.,
pk = Rkxk as well as to find an equation for Rk.
The prof of this is as follows. From (1.7) we find the boundary condition
pN = SNxN . This indicates that there is a linear relationship between xk and
pk. Putting k = N − 1 in (1.23) gives, with using the boundary conditions, two
equations with three unknown, pN−1, xN−1 og xN . Eliminating xN we find the
linear relationship

pN−1 = RN−1xN−1, (1.24)
RN−1 = (F21 + F22SN )(F11 + F12SN )−1. (1.25)

Putting k = N − 2 into (1.23) and doing the same, i.e., finding a linear rela-
tionship between pN−2 and xN−2. Since that we have a series to do, we use
the induction principle for the prof, i.e., we can prove that there is a linear
relationship between pk and xk. We will later on generalize this to hold also
when Ak is singular.
In the same way as in the continuous case, and which is sketched above, we may
show that there is a linear relationship between the impulse vector, pk, and the
state vector, xk. Hence, we may show and assume that

pk = Rkxk. (1.26)

This means that if we may find an equation for defining/computing Rk then
we indeed have proved that there exist such a relationship as described above.
This also indicates an alternative prof of the LQ optimal solution to the one
given above. This prof is presented in the following
Putting (1.18) into (1.26) gives

Rkxk = Qkxk + AT
k pk+1. (1.27)

Expressing (1.26) at time instant k + 1 and putting this expression into (1.27)
we find

Rkxk = Qkxk + AT
k Rk+1xk+1. (1.28)

We will now find an expression for xk+1 and putting this into (1.28). Putting
the relationship (1.26) into (1.16) gives

xk+1 = Axk −BkP
−1
k BT

k Rk+1xk+1. (1.29)

From this last equation we find an expression for for xk+1

xk+1 = (I + BkP
−1
k BT

k Rk+1)−1Akxk. (1.30)

Note that (1.30) have to be an expression for the closed loop system. Putting
equation (1.30) into (1.28) gives

Rkxk = Qkxk + AT
k Rk+1(I + BkP

−1
k BT

k Rk+1)−1Akxk. (1.31)
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This equation must hold for an arbitrarily state vector xk 6= 0. This gives the
following matrix equation for finding Rk.

Rk = Qk + AT
k Rk+1(I + BkP

−1
k BT

k Rk+1)−1Ak. (1.32)

This is one formulation of the famous Riccati equation named after Count
Riccati which lived in the 1600 century. However, this formulation assumes
that the control weighting matrix, Pk, is non-singular. We will later show that
there exist a more general formulation of the discrete Riccati equation wich
does not involve the inversion of Pk.
An alternative formulation in the case when Rk+1 is non-singular is

Rk = Qk + AT
k (R−1

k+1 + BkP
−1
k BT

k )−1Ak. (1.33)

From (1.7) we find the boundary condition

pN = SNxN . (1.34)

Expressing the relationship (1.26) at k = N we find that

pN = RNxN . (1.35)

Comparison of (1.34) and (1.35) gives the boundary condition

RN = SN , (1.36)

which gives the boundary condition for the discrete time Riccati equation. This
means that the solution Rk (at time k) may be found by iterating the Riccati
equation backward in time, to the present time instant k, from the final time
instant, k = N .
An expression for the optimal control can now be found by putting (1.26) into
(1.15), i.e.,

uk = −P−1BT Rk+1xk+1. (1.37)

Putting (1.30) into (1.37) gives

uk = Gkxk, (1.38)
Gk = −P−1BT Rk+1(I + BP−1BT Rk+1)−1A. (1.39)

As we see, the above solution assumes that the weighting matrix Pk is non-
singular. We will in the next section propose a better solution which does not
involve the inversion of Pk.
Consider now the case in which the time horizon is larghe, i.e., N → ∞, then
we have that Rk+1 = Rk = R is a constant matrix. This gives us the Discrete
time Algebraic Riccati Equation (DARE). Furthermore, we may show that
when chosing the weighting matrices properly then the LQ optimal solution
results in a stable closed loop system. In general we have that the LQ optimal
control system is stable when N → ∞, under the assumptions that (A,B)
is stabilizable, (

√
Q,A) is detectable and P a positive definite matrix. As

mentioned above, there may also in certain circumstances exist an LQ optimal
solution also when P is singular.
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1.3.1 Derivation of the optimal control: intuitive formulation

The solution to the discrete time LQ optimal control problem may be formulated
in different ways and with different equations. In case when the transition
matrix Ak is non-singular then we may find pk+1 from Equation (1.18), i.e.,

pk+1 = A−T (pk −Qkxk) = A−T (Rk −Qk)xk, (1.40)

where we have assumed that pk = Rkxk. Putting this into the expression for
the optimal control given by Equation (1.15), we find

uk = Gkxk, (1.41)
Gk = −P−1

k BT
k A−T

k (Rk −Qk). (1.42)

This solution demands that both Ak and Pk are non-singular matrices. Ak

is usually non-singular. This is in particular the case when Ak is found from
discretizing a continuous time model. There may however exist cases in which
Ak is singular. This is the case for systems with a static component and for
systems with time delay modeled as extra ”dummy” states in the system in
order to take care of the time delay.

1.3.2 Derivation of the optimal control: a better formulation

We may show that there exist a formulation of the discrete LQ optimal solution
which does not involve the inversion of the matrices Ak and Pk. We have from
the condition for a minimum, equation (1.14), that

Pkuk = −BT
k Rk+1xk+1, (1.43)

where we have assumed pk+1 = Rk+1xk+1. Putting the state space model into
(1.43) gives

Pkuk = −BT
k Rk+1(Akxk + Bkuk). (1.44)

This gives

(Pk + BT
k Rk+1Bk)uk = −BT

k Rk+1Akxk. (1.45)

This gives the following nice expression for the optimal control

u∗k = Gkxk, (1.46)
Gk = −(Pk + BT

k Rk+1Bk)−1BT
k Rk+1Ak. (1.47)

Rk+1 may be found from the Riccati equation (1.32) or (1.33). However, we
will in the next section derive a 3rd formulation of the discrete time Riccati
equation which is to be preferred compared to Equations (1.32) and (1.33).
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1.3.3 Alternative formulations of the discrete time Riccati equa-
tion

The discrete time Riccati equation in the LQ optimal control solution may be
formulated in different ways. In Section (1.3) we have derived two different
formulations. Se Equations (1.32) and (1.33). We will in this section propose
two different formulations which does not involve the inversion of the weighting
matrix Pk. These formulations are may be the most used formulations.
The starting point is as shown earlier, i.e., by putting Equation (1.18) into
(1.26), we have

Rkxk = Qkxk + AT
k Rk+1xk+1, (1.48)

where we have used that at pk+1 = Rk+1xk+1.
An expression for the closed loop system is obtained by putting the optimal
control (1.46) and (1.47) into the discrete time state Equation xk+1 = Akxk +
Bkuk. This gives

xk+1 = (Ak −Bk(Pk + BT
k Rk+1Bk)−1BT

k Rk+1Ak)xk. (1.49)

Putting (1.49) into (1.48) gives

Rkxk = Qkxk + AT
k Rk+1(Ak −Bk(Pk + BT

k Rk+1Bk)−1BT
k Rk+1Ak)xk. (1.50)

This equation must hold for all states xk 6= 0. Hence we have,

Rk = Qk + AT
k (Rk+1 −Rk+1Bk(Pk + BT

k Rk+1Bk)−1BT
k Rk+1)Ak. (1.51)

This formulation of the discrete time Riccati equation is to be preferred. As
we see, only the matrix Pk + BT

k Rk+1Bk have to be inverted. Note that the
boundary condition is as before, i.e. RN = SN .
Finally, we will present a 4th formulation of the Riccati equation. Hence, we
may show that

Rk = (Ak + BkGk)T Rk+1(Ak + BkGk) + GT
k PkGk + Qk, (1.52)

Gk = −(Pk + BT
k Rk+1Bk)−1BT

k Rk+1Ak. (1.53)

This formulation of the discrete time Riccati equation is known in the litterature
as the Josephs stable version of the Riccati equation. As we see, this Riccati
equation consists only of symmetric terms. This formulation is to be preferred
in numerical calculations.
We also se that for a given control gain matrix, Gk, then Equation (1.52)
is a discrete time Lyapunov equation. Equations (1.52) and (1.53) can with
advantage be used in order to iterate to find the stationary solution to the LQ
optimal control problem, i.e. the problem with infinite horizon N →∞.
Note that the boundary conditions to the different formulations of the Riccati
equation is the same, i.e., RN = SN where SN is the weighting matrix for the
final state, xN .
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1.3.4 Numerical example

Example 1.1 (Singular transition matrix)
Given a system described by a linear discrete state space model with the fol-
lowing model matrices

A =
[

0 1
0 0

]
, B =

[
0√
2

]
, D =

[
1 −1

]
, (1.54)

and with weighting matrices

P = 1, Q = DT D =
[

1 −1
−1 1

]
, SN = Q. (1.55)

We chose the following initial value for the state vector, i.e.,

xi =
[

x1,i

x2,i

]
=

[
2
1

]
, (1.56)

and simulate the optimal closed loop system over the time horizon i ≤ k ≤ N
where i = 0 and N = 5. This gives after N = 5 iterations of the Riccati
equation (1.53)

R0 =
[

1 −1
−1 1.4993

]
, R1 =

[
1 −1

−1 1.497

]
, R2 =

[
1 −1

−1 1.488

]
,(1.57)

R3 =
[

1 −1
−1 1.455

]
, R4 =

[
1 −1

−1 1.333

]
, R5 =

[
1 −1

−1 1

]
(1.58)

and where R5 = S5 is defined from the specified final boundary value condition.
It can be shown, se Pappas og Laub (1980), that the solution of the stationary
discrete Riccati equation, i.e. the solution when N →∞, is given by

R =
[

1 −1
−1 3

2

]
. (1.59)

In general we have that limN→∞R0 = R. We se that even for a ”short” horizon
as N = 5 then R0 is a relatively good approximation to the stationary solution,
for this example.
Furthermore, the optimal time variant feedback matrices are given by

Gk =
[

0
√

2
1+2r22,k+1

]
∀ k = 0, . . . , 4 (1.60)

where r22,k+1 is the lower right element in Rk+1. This means that the optimal
control is given by a feedback

uk =
√

2
1 + 2r22,k+1

x2,k (1.61)

where x2,k is the 2nd state in the state vector (1.56). For this system it is
optimal to only take feedback from one of the two states in the system. This is
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unusual because it in general is optimal with a feedback from all states in the
system.
We remark that the system (A,B) is controllable and that (D, A) is observable.
One special remark is that the system have two poles (eigenvalues) in origo.
This means that the open loop system has infinite fast dynamics. The optimal
system minimizes the objective Ji. The objective will in general obtain a small
value if the state xk goes fast to zero. It is therefore not optimal to make the
system slower then necessary.
Simulations of the optimal control uk = Gkxk and xk is shown in Figure 1.1.
We end this example by mentioning that for systems with transport delay mod-
eled as extra states, then the transition matrix will have eigenvalues in origo,
and the optimal control will have a structure relatively equal to the above ex-
ample.
4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4
Control inputs u_k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
States x_k

Diskrete time [samples]

x_k^1

x_k^2

Figure 1.1: The Figure illustrates simulations of uk and xk for example 1.1.
The discrete initial time is i = 0 and the final time instant is N = 5.

1.3.5 Summing up

We will summing up the results in this section in the following theorem

Theorem 1.3.1 (Discrete time Linear Quadratic optimal regulator)
Given the discrete time system

xk+1 = Akxk + Bkuk, (1.62)

where k ≥ i and the initial value of the state vector, xi, is given.
Consider given a LQ criterion valid over the time horizon i ≤ k ≤ N , i.e.,

Ji =
1
2
xT

NSNxN +
1
2

N−1∑

k=i

(xT
k Qkxk + uT

k Pkuk), (1.63)
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where SN , Qk and Pk are symmetric weighting matrices.
The optimal control vector, u∗k, which is minimizing the LQ criterion, Ji, is
given by

uk = Gkxk, (1.64)
Gk = −(Pk + BT

k Rk+1Bk)−1BT
k Rk+1Ak, (1.65)

where Rk+1 is the positive solution to the discrete time Riccati equation

Rk = Qk + AT
k (Rk+1 −Rk+1Bk(Pk + BT

k Rk+1Bk)−1BT
k Rk+1)Ak, (1.66)

with final value boundary condition

RN = SN . (1.67)

Furthermore, the minimum value of the criterion, Ji, is given by

Ji =
1
2
xT

i Rixi. (1.68)

and where Ri is found from the Riccati equation. 4

Merknad 1.1 In some references it is common to define the state feedback
matrix as Kk = −Gk, and uk = −Kkxk instead of uk = Gkxk as in these lecture
notes. This is in particular the case as e.g. in Lewis and Syrmos (1995). The
MATLAB Control System Toolbox also uses the notation K = −G, se e.g. the
dlqr function.


