Discrete time Linear Quadratic Optimal Control

Dr. David Di Ruscio
Telemark Institute of technology
N-3914 Porsgrunn, Norway
E-mail: David.Di.Ruscio@hit.no

October 31, 2008

1.2 The discrete maximum principle

Given a discrete time dynamic process described by the model

$$
\begin{equation*}
x_{k+1}-x_{k}=f\left(x_{k}, u_{k}, k\right), \tag{1.1}
\end{equation*}
$$

where k is discrete time. $f(\cdot)$ is in general a nonlinear vector function. Furthermore, we assume an optimal performance index (criterion) of the form

$$
\begin{equation*}
J_{i}=S\left(x_{N}\right)+\sum_{k=i}^{N-1} L\left(x_{k}, u_{k}\right), \tag{1.2}
\end{equation*}
$$

where $S(\cdot)$ is a scalar weighting function of the state at the final time instant $N, L(\cdot, \cdot)$ is a scalar weighting function of the state vector x_{k} and the control input vector u_{k} over the time horizon $i \leq k \leq N-1$. Both $S(\cdot)$ and $L(\cdot, \cdot)$ may be non linear functions.
By investigating this criterion we se that the discrete start time is $k=i$ and that the discrete final time is $k=N$. We assume that $N>i$. The criterion is defined over a time horizon of $N-i+1$ discrete time instants. We also observe that the criterion only is dependent of the control inputs at $N-i$ time instants. Hence, this means that a part ov the criterion is not dependent of the unknown control inputs, and the criterion may be splitted into two parts. More of this later on.
We will in the following present the discrete time Maximum Principle which is a method for solving the discrete time optimal control problem
We define the discrete time Hamiltonian function corresponding to the continuous case. We have

$$
\begin{align*}
H_{k} & =L\left(x_{k}, u_{k}\right)+p_{k+1}^{T} f\left(x_{k}, u_{k}, k\right) \\
& =L\left(x_{k}, u_{k}\right)+p_{k+1}^{T}\left(x_{k+1}-x_{k}\right) . \tag{1.3}
\end{align*}
$$

In order for the existence of an optimal control which minimize the criterion J_{i} it is necessary that:

- The impulse vector, p, and the state vector, x, satisfy the differential equations

$$
\begin{gather*}
x_{k+1}-x_{k}=\frac{\partial H_{k}}{\partial p_{k+1}}=f\left(x_{k}, u_{k}, k\right), \tag{1.4}\\
p_{k+1}-p_{k}=-\frac{\partial H_{k}}{\partial x_{k}} \tag{1.5}
\end{gather*}
$$

with known boundary (initial and final value) conditions

$$
\begin{align*}
& x_{i}=x_{0} \tag{1.6}\\
& p_{N}=\frac{\partial S}{\partial x_{N}} . \tag{1.7}
\end{align*}
$$

The state space model (1.1) have boundary conditions at the initial time instant. But remark that the model for the impulse vector (1.7) have boundary condition at the final time instant. This is defined as a twopoint boundary value problem.

- The Hamiltonian function, H_{k}, must have an a absolute minimum (ore maximum) with respect to the unknown control $u_{k} \in U$ where U is the allowed control space. This must hold for all time instants $k=i, \cdots, N-1$. This means that we may include constraints on the control vector u_{k}. Those constraints define the control space U.

Conditions for a minimum is that

$$
\begin{equation*}
\frac{\partial H_{k}}{\partial u_{k}}=0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} H_{k}}{\partial u_{k}^{2}}>0 . \tag{1.9}
\end{equation*}
$$

1.3 Discrete optimal control of linear dynamic systems

Assume that the process may be described by the discrete time state space model

$$
\begin{equation*}
x_{k+1}=A_{k} x_{k}+B_{k} u_{k} \tag{1.10}
\end{equation*}
$$

where $x_{k} \in \mathbb{R}^{n}$ is the state vector of the dynamic process and $u_{k} \in \mathbb{R}^{r}$ is the control vector. $A_{k} \in \mathbb{R}^{n \times n}$ is the transition matrix which in general may be time variant $B_{k} \in \mathbb{R}^{n \times r}$ is the control input system matrix.
Consider an ptimal criterion of the Linear Quadratic (LQ) form

$$
\begin{equation*}
J_{i}=\frac{1}{2} x_{N}^{T} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} P_{k} u_{k}\right) \tag{1.11}
\end{equation*}
$$

where S_{N}, Q_{k} and P_{k} are symmetric weighting matrices. Note that the weighting matrices in general may be time variant. We will later on specify further detectability assumptions on the weighting matrices.
We will in the following find the optimal control, u_{k}^{*}, which minimize the optimal criterion Equation (1.11). We start by writing down the Hamiltonian function, i.e.,

$$
\begin{equation*}
H_{k}=\frac{1}{2}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} P_{k} u_{k}\right)+p_{k+1}^{T}\left(\left(A_{k}-I\right) x_{k}+B_{k} u_{k}\right) \tag{1.12}
\end{equation*}
$$

We have used that the state space model equation (1.10) may be written as

$$
\begin{equation*}
x_{k+1}-x_{k}=\left(A_{k}-I\right) x_{k}+B_{k} u_{k} \tag{1.13}
\end{equation*}
$$

The optimal control is then given by

$$
\begin{equation*}
\frac{\partial H_{k}}{\partial u_{k}}=P_{k} u_{k}+B_{k}^{T} p_{k+1}=0 \tag{1.14}
\end{equation*}
$$

which may give

$$
\begin{equation*}
u_{k}=-P_{k}^{-1} B_{k}^{T} p_{k+1} . \tag{1.15}
\end{equation*}
$$

if the weighting matrix is non-singular (invertible). One should note that we later on will present a version which does not involve the inversion of P_{k}.
Putting this into the state space model gives

$$
\begin{equation*}
x_{k+1}=A_{k} x_{k}-B_{k} P_{k}^{-1} B_{k}^{T} p_{k+1} . \tag{1.16}
\end{equation*}
$$

We will later on use this expression for x_{k+1} in order for defining an expression for the optimal control. The impulse vector is defined from Equation (1.5). We have

$$
\begin{equation*}
p_{k+1}-p_{k}=-\frac{\partial H_{k}}{\partial x_{k}}=-Q_{k} x_{k}-\left(A_{k}-I\right)^{T} p_{k+1}, \tag{1.17}
\end{equation*}
$$

which may be presented simply as

$$
\begin{equation*}
p_{k}=Q_{k} x_{k}+A_{k}^{T} p_{k+1} \tag{1.18}
\end{equation*}
$$

Equations (1.16) and (1.18) defines an autonomous system, i.e.,

$$
\left[\begin{array}{l}
x_{k+1} \tag{1.19}\\
p_{k}
\end{array}\right]=\left[\begin{array}{cc}
A_{k} & -H \\
Q_{k} & A_{k}^{T}
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
p_{k+1}
\end{array}\right],
$$

where the matrix H is defined as

$$
\begin{equation*}
H=B_{k} P_{k}^{-1} B_{k}^{T} . \tag{1.20}
\end{equation*}
$$

This matrix should not be compared with the Hamiltonian function H_{k}.
Note that in Equation (1.19) the state vector and the impulse vector are defined at different time instants at the same side of the equality sign. In case when A_{k} is non-singular we find from (1.16) that

$$
\begin{equation*}
x_{k}=A_{k}^{-1} x_{k+1}+A_{k}^{-1} H p_{k+1} . \tag{1.21}
\end{equation*}
$$

Putting this into (1.18) we find that

$$
\begin{equation*}
p_{k}=Q_{k} A_{k}^{-1} x_{k+1}+\left(A_{k}^{T}+Q_{k} A_{k}^{-1} H\right) p_{k+1} . \tag{1.22}
\end{equation*}
$$

Equationse (1.21) and (1.22) may be written in matrix form as follows

$$
\left[\begin{array}{c}
x_{k} \tag{1.23}\\
p_{k}
\end{array}\right]=\overbrace{\left[\begin{array}{cc}
A_{k}^{-1} & A_{k}^{-1} H \\
Q_{k} A_{k}^{-1} & A_{k}^{T}+Q A_{k}^{-1} H
\end{array}\right]}^{F}\left[\begin{array}{c}
x_{k+1} \\
p_{k+1}
\end{array}\right] .
$$

Note that the transition matrix A_{k} is invertible if the model is obtained by discretizing a continuous time model. You should note that (1.23) may be used in order to show that there is a linear relationship between $p k$ and x_{k}, i.e., $p_{k}=R_{k} x_{k}$ as well as to find an equation for R_{k}.
The prof of this is as follows. From (1.7) we find the boundary condition $p_{N}=S_{N} x_{N}$. This indicates that there is a linear relationship between x_{k} and p_{k}. Putting $k=N-1$ in (1.23) gives, with using the boundary conditions, two equations with three unknown, $p_{N-1}, x_{N-1} \operatorname{og} x_{N}$. Eliminating x_{N} we find the linear relationship

$$
\begin{align*}
p_{N-1} & =R_{N-1} x_{N-1} \tag{1.24}\\
R_{N-1} & =\left(F_{21}+F_{22} S_{N}\right)\left(F_{11}+F_{12} S_{N}\right)^{-1} . \tag{1.25}
\end{align*}
$$

Putting $k=N-2$ into (1.23) and doing the same, i.e., finding a linear relationship between p_{N-2} and x_{N-2}. Since that we have a series to do, we use the induction principle for the prof, i.e., we can prove that there is a linear relationship between p_{k} and x_{k}. We will later on generalize this to hold also when A_{k} is singular.
In the same way as in the continuous case, and which is sketched above, we may show that there is a linear relationship between the impulse vector, p_{k}, and the state vector, x_{k}. Hence, we may show and assume that

$$
\begin{equation*}
p_{k}=R_{k} x_{k} . \tag{1.26}
\end{equation*}
$$

This means that if we may find an equation for defining/computing R_{k} then we indeed have proved that there exist such a relationship as described above. This also indicates an alternative prof of the LQ optimal solution to the one given above. This prof is presented in the following
Putting (1.18) into (1.26) gives

$$
\begin{equation*}
R_{k} x_{k}=Q_{k} x_{k}+A_{k}^{T} p_{k+1} . \tag{1.27}
\end{equation*}
$$

Expressing (1.26) at time instant $k+1$ and putting this expression into (1.27) we find

$$
\begin{equation*}
R_{k} x_{k}=Q_{k} x_{k}+A_{k}^{T} R_{k+1} x_{k+1} . \tag{1.28}
\end{equation*}
$$

We will now find an expression for x_{k+1} and putting this into (1.28). Putting the relationship (1.26) into (1.16) gives

$$
\begin{equation*}
x_{k+1}=A x_{k}-B_{k} P_{k}^{-1} B_{k}^{T} R_{k+1} x_{k+1} . \tag{1.29}
\end{equation*}
$$

From this last equation we find an expression for for x_{k+1}

$$
\begin{equation*}
x_{k+1}=\left(I+B_{k} P_{k}^{-1} B_{k}^{T} R_{k+1}\right)^{-1} A_{k} x_{k} \tag{1.30}
\end{equation*}
$$

Note that (1.30) have to be an expression for the closed loop system. Putting equation (1.30) into (1.28) gives

$$
\begin{equation*}
R_{k} x_{k}=Q_{k} x_{k}+A_{k}^{T} R_{k+1}\left(I+B_{k} P_{k}^{-1} B_{k}^{T} R_{k+1}\right)^{-1} A_{k} x_{k} \tag{1.31}
\end{equation*}
$$

1.3. DISCRETE OPTIMAL CONTROL OF LINEAR DYNAMIC SYSTEMS5

This equation must hold for an arbitrarily state vector $x_{k} \neq 0$. This gives the following matrix equation for finding R_{k}.

$$
\begin{equation*}
R_{k}=Q_{k}+A_{k}^{T} R_{k+1}\left(I+B_{k} P_{k}^{-1} B_{k}^{T} R_{k+1}\right)^{-1} A_{k} \tag{1.32}
\end{equation*}
$$

This is one formulation of the famous Riccati equation named after Count Riccati which lived in the 1600 century. However, this formulation assumes that the control weighting matrix, P_{k}, is non-singular. We will later show that there exist a more general formulation of the discrete Riccati equation wich does not involve the inversion of P_{k}.
An alternative formulation in the case when R_{k+1} is non-singular is

$$
\begin{equation*}
R_{k}=Q_{k}+A_{k}^{T}\left(R_{k+1}^{-1}+B_{k} P_{k}^{-1} B_{k}^{T}\right)^{-1} A_{k} \tag{1.33}
\end{equation*}
$$

From (1.7) we find the boundary condition

$$
\begin{equation*}
p_{N}=S_{N} x_{N} \tag{1.34}
\end{equation*}
$$

Expressing the relationship (1.26) at $k=N$ we find that

$$
\begin{equation*}
p_{N}=R_{N} x_{N} \tag{1.35}
\end{equation*}
$$

Comparison of (1.34) and (1.35) gives the boundary condition

$$
\begin{equation*}
R_{N}=S_{N} \tag{1.36}
\end{equation*}
$$

which gives the boundary condition for the discrete time Riccati equation. This means that the solution R_{k} (at time k) may be found by iterating the Riccati equation backward in time, to the present time instant k, from the final time instant, $k=N$.
An expression for the optimal control can now be found by putting (1.26) into (1.15), i.e.,

$$
\begin{equation*}
u_{k}=-P^{-1} B^{T} R_{k+1} x_{k+1} \tag{1.37}
\end{equation*}
$$

Putting (1.30) into (1.37) gives

$$
\begin{align*}
u_{k} & =G_{k} x_{k} \tag{1.38}\\
G_{k} & =-P^{-1} B^{T} R_{k+1}\left(I+B P^{-1} B^{T} R_{k+1}\right)^{-1} A \tag{1.39}
\end{align*}
$$

As we see, the above solution assumes that the weighting matrix P_{k} is nonsingular. We will in the next section propose a better solution which does not involve the inversion of P_{k}.
Consider now the case in which the time horizon is larghe, i.e., $N \rightarrow \infty$, then we have that $R_{k+1}=R_{k}=R$ is a constant matrix. This gives us the Discrete time Algebraic Riccati Equation (DARE). Furthermore, we may show that when chosing the weighting matrices properly then the LQ optimal solution results in a stable closed loop system. In general we have that the LQ optimal control system is stable when $N \rightarrow \infty$, under the assumptions that (A, B) is stabilizable, (\sqrt{Q}, A) is detectable and P a positive definite matrix. As mentioned above, there may also in certain circumstances exist an LQ optimal solution also when P is singular.

1.3.1 Derivation of the optimal control: intuitive formulation

The solution to the discrete time LQ optimal control problem may be formulated in different ways and with different equations. In case when the transition matrix A_{k} is non-singular then we may find p_{k+1} from Equation (1.18), i.e.,

$$
\begin{equation*}
p_{k+1}=A^{-T}\left(p_{k}-Q_{k} x_{k}\right)=A^{-T}\left(R_{k}-Q_{k}\right) x_{k}, \tag{1.40}
\end{equation*}
$$

where we have assumed that $p_{k}=R_{k} x_{k}$. Putting this into the expression for the optimal control given by Equation (1.15), we find

$$
\begin{align*}
u_{k} & =G_{k} x_{k} \tag{1.41}\\
G_{k} & =-P_{k}^{-1} B_{k}^{T} A_{k}^{-T}\left(R_{k}-Q_{k}\right) . \tag{1.42}
\end{align*}
$$

This solution demands that both A_{k} and P_{k} are non-singular matrices. A_{k} is usually non-singular. This is in particular the case when A_{k} is found from discretizing a continuous time model. There may however exist cases in which A_{k} is singular. This is the case for systems with a static component and for systems with time delay modeled as extra "dummy" states in the system in order to take care of the time delay.

1.3.2 Derivation of the optimal control: a better formulation

We may show that there exist a formulation of the discrete LQ optimal solution which does not involve the inversion of the matrices A_{k} and P_{k}. We have from the condition for a minimum, equation (1.14), that

$$
\begin{equation*}
P_{k} u_{k}=-B_{k}^{T} R_{k+1} x_{k+1} \tag{1.43}
\end{equation*}
$$

where we have assumed $p_{k+1}=R_{k+1} x_{k+1}$. Putting the state space model into (1.43) gives

$$
\begin{equation*}
P_{k} u_{k}=-B_{k}^{T} R_{k+1}\left(A_{k} x_{k}+B_{k} u_{k}\right) . \tag{1.44}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right) u_{k}=-B_{k}^{T} R_{k+1} A_{k} x_{k} . \tag{1.45}
\end{equation*}
$$

This gives the following nice expression for the optimal control

$$
\begin{align*}
u_{k}^{*} & =G_{k} x_{k} \tag{1.46}\\
G_{k} & =-\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1} A_{k} . \tag{1.47}
\end{align*}
$$

R_{k+1} may be found from the Riccati equation (1.32) or (1.33). However, we will in the next section derive a 3rd formulation of the discrete time Riccati equation which is to be preferred compared to Equations (1.32) and (1.33).

1.3.3 Alternative formulations of the discrete time Riccati equation

The discrete time Riccati equation in the LQ optimal control solution may be formulated in different ways. In Section (1.3) we have derived two different formulations. Se Equations (1.32) and (1.33). We will in this section propose two different formulations which does not involve the inversion of the weighting matrix P_{k}. These formulations are may be the most used formulations.
The starting point is as shown earlier, i.e., by putting Equation (1.18) into (1.26), we have

$$
\begin{equation*}
R_{k} x_{k}=Q_{k} x_{k}+A_{k}^{T} R_{k+1} x_{k+1}, \tag{1.48}
\end{equation*}
$$

where we have used that at $p_{k+1}=R_{k+1} x_{k+1}$.
An expression for the closed loop system is obtained by putting the optimal control (1.46) and (1.47) into the discrete time state Equation $x_{k+1}=A_{k} x_{k}+$ $B_{k} u_{k}$. This gives

$$
\begin{equation*}
x_{k+1}=\left(A_{k}-B_{k}\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1} A_{k}\right) x_{k} . \tag{1.49}
\end{equation*}
$$

Putting (1.49) into (1.48) gives

$$
\begin{equation*}
R_{k} x_{k}=Q_{k} x_{k}+A_{k}^{T} R_{k+1}\left(A_{k}-B_{k}\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1} A_{k}\right) x_{k} \tag{1.50}
\end{equation*}
$$

This equation must hold for all states $x_{k} \neq 0$. Hence we have,

$$
\begin{equation*}
R_{k}=Q_{k}+A_{k}^{T}\left(R_{k+1}-R_{k+1} B_{k}\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1}\right) A_{k} \tag{1.51}
\end{equation*}
$$

This formulation of the discrete time Riccati equation is to be preferred. As we see, only the matrix $P_{k}+B_{k}^{T} R_{k+1} B_{k}$ have to be inverted. Note that the boundary condition is as before, i.e. $R_{N}=S_{N}$.
Finally, we will present a 4th formulation of the Riccati equation. Hence, we may show that

$$
\begin{gather*}
R_{k}=\left(A_{k}+B_{k} G_{k}\right)^{T} R_{k+1}\left(A_{k}+B_{k} G_{k}\right)+G_{k}^{T} P_{k} G_{k}+Q_{k} \tag{1.52}\\
G_{k}=-\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1} A_{k} \tag{1.53}
\end{gather*}
$$

This formulation of the discrete time Riccati equation is known in the litterature as the Josephs stable version of the Riccati equation. As we see, this Riccati equation consists only of symmetric terms. This formulation is to be preferred in numerical calculations.
We also se that for a given control gain matrix, G_{k}, then Equation (1.52) is a discrete time Lyapunov equation. Equations (1.52) and (1.53) can with advantage be used in order to iterate to find the stationary solution to the LQ optimal control problem, i.e. the problem with infinite horizon $N \rightarrow \infty$.
Note that the boundary conditions to the different formulations of the Riccati equation is the same, i.e., $R_{N}=S_{N}$ where S_{N} is the weighting matrix for the final state, x_{N}.

1.3.4 Numerical example

Example 1.1 (Singular transition matrix)

Given a system described by a linear discrete state space model with the following model matrices

$$
A=\left[\begin{array}{ll}
0 & 1 \tag{1.54}\\
0 & 0
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right], D=\left[\begin{array}{ll}
1 & -1
\end{array}\right],
$$

and with weighting matrices

$$
P=1, Q=D^{T} D=\left[\begin{array}{rr}
1 & -1 \tag{1.55}\\
-1 & 1
\end{array}\right], \quad S_{N}=Q .
$$

We chose the following initial value for the state vector, i.e.,

$$
x_{i}=\left[\begin{array}{l}
x_{1, i} \tag{1.56}\\
x_{2, i}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right],
$$

and simulate the optimal closed loop system over the time horizon $i \leq k \leq N$ where $i=0$ and $N=5$. This gives after $N=5$ iterations of the Riccati equation (1.53)

$$
\begin{gather*}
R_{0}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1.4993
\end{array}\right], R_{1}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1.497
\end{array}\right], R_{2}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1.488
\end{array}\right], \tag{1.57}\\
R_{3}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1.455
\end{array}\right], R_{4}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1.333
\end{array}\right], R_{5}=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1
\end{array}\right] \tag{1.58}
\end{gather*}
$$

and where $R_{5}=S_{5}$ is defined from the specified final boundary value condition. It can be shown, se Pappas og Laub (1980), that the solution of the stationary discrete Riccati equation, i.e. the solution when $N \rightarrow \infty$, is given by

$$
R=\left[\begin{array}{rc}
1 & -1 \tag{1.59}\\
-1 & \frac{3}{2}
\end{array}\right] .
$$

In general we have that $\lim _{N \rightarrow \infty} R_{0}=R$. We se that even for a "short" horizon as $N=5$ then R_{0} is a relatively good approximation to the stationary solution, for this example.
Furthermore, the optimal time variant feedback matrices are given by

$$
G_{k}=\left[\begin{array}{ll}
0 & \frac{\sqrt{2}}{1+2 r_{22, k+1}} \tag{1.60}
\end{array}\right] \forall k=0, \ldots, 4
$$

where $r_{22, k+1}$ is the lower right element in R_{k+1}. This means that the optimal control is given by a feedback

$$
\begin{equation*}
u_{k}=\frac{\sqrt{2}}{1+2 r_{22, k+1}} x_{2, k} \tag{1.61}
\end{equation*}
$$

where $x_{2, k}$ is the 2 nd state in the state vector (1.56). For this system it is optimal to only take feedback from one of the two states in the system. This is
unusual because it in general is optimal with a feedback from all states in the system.
We remark that the system (A, B) is controllable and that (D, A) is observable. One special remark is that the system have two poles (eigenvalues) in origo. This means that the open loop system has infinite fast dynamics. The optimal system minimizes the objective J_{i}. The objective will in general obtain a small value if the state x_{k} goes fast to zero. It is therefore not optimal to make the system slower then necessary.
Simulations of the optimal control $u_{k}=G_{k} x_{k}$ and x_{k} is shown in Figure 1.1. We end this example by mentioning that for systems with transport delay modeled as extra states, then the transition matrix will have eigenvalues in origo, and the optimal control will have a structure relatively equal to the above example.

Figure 1.1: The Figure illustrates simulations of u_{k} and x_{k} for example 1.1. The discrete initial time is $i=0$ and the final time instant is $N=5$.

1.3.5 Summing up

We will summing up the results in this section in the following theorem

Theorem 1.3.1 (Discrete time Linear Quadratic optimal regulator)

 Given the discrete time system$$
\begin{equation*}
x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \tag{1.62}
\end{equation*}
$$

where $k \geq i$ and the initial value of the state vector, x_{i}, is given.
Consider given a LQ criterion valid over the time horizon $i \leq k \leq N$, i.e.,

$$
\begin{equation*}
J_{i}=\frac{1}{2} x_{N}^{T} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} P_{k} u_{k}\right) \tag{1.63}
\end{equation*}
$$

where S_{N}, Q_{k} and P_{k} are symmetric weighting matrices.
The optimal control vector, u_{k}^{*}, which is minimizing the LQ criterion, J_{i}, is given by

$$
\begin{align*}
u_{k} & =G_{k} x_{k}, \tag{1.64}\\
G_{k} & =-\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1} A_{k} \tag{1.65}
\end{align*}
$$

where R_{k+1} is the positive solution to the discrete time Riccati equation

$$
\begin{equation*}
R_{k}=Q_{k}+A_{k}^{T}\left(R_{k+1}-R_{k+1} B_{k}\left(P_{k}+B_{k}^{T} R_{k+1} B_{k}\right)^{-1} B_{k}^{T} R_{k+1}\right) A_{k} \tag{1.66}
\end{equation*}
$$

with final value boundary condition

$$
\begin{equation*}
R_{N}=S_{N} \tag{1.67}
\end{equation*}
$$

Furthermore, the minimum value of the criterion, J_{i}, is given by

$$
\begin{equation*}
J_{i}=\frac{1}{2} x_{i}^{T} R_{i} x_{i} . \tag{1.68}
\end{equation*}
$$

and where R_{i} is found from the Riccati equation. \triangle
Merknad 1.1 In some references it is common to define the state feedback matrix as $K_{k}=-G_{k}$, and $u_{k}=-K_{k} x_{k}$ instead of $u_{k}=G_{k} x_{k}$ as in these lecture notes. This is in particular the case as e.g. in Lewis and Syrmos (1995). The MATLAB Control System Toolbox also uses the notation $K=-G$, se e.g. the dlqr function.

