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To the reader !



Preface

This report contains material held in a course in Model Predictive Control (MPC)
at former Telemark University College. The first ten chapters, in Part I, are written
for the course and the rest of the report is collected from earlier lecture notes and
published work of the author, Parts II and III.
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Chapter 1

Introduction

The material which is presented in this report is a collection of earlier lecture notes
and published work on Model Predictive Control (MPC) presented by the author.
The focus is on discrete time linear systems and predictive control based on state
space models. However, the theory which is presented is general in the sense that it
is able to handle MPC based on any linear dynamic model. The main MPC algo-
rithm and the notation which is presented is derived from the subspace identification
method DSR, Di Ruscio (1994), (1995). This algorithm is denoted Extended Model
based Predictive Control (EMPC). The name comes from the fact that the method
can be derived from the Extended State Space Model (ESSM) which is one of the
basic matrix equations for deriving the DSR method. An interesting link is that
the subspace matrices from the DSR method also can be used directly in the MPC
method. The EMPC method can off-course also be based on a general linear state
space model.

One of the advantages of the EMPC method is that important MPC methods such as
the Generalized Predictive Control (GPC) algorithm and Dynamic Matrix Control
(DMC) pull out as special cases. The GPC algorithm is based on an input-output
CARIMA model, which is an ARMAX model in terms of control deviation variables.
The DMC method is based on Finite Impulse Response (FIR) and step response
models. The theory presented is meant to be general enough in order to make the
reader able to understand MPC methods which is based on linear models, e.g., state
space models. Another variant is the MPC method presented by Rawlings.

The main advantage constraining the description to linear models is that it results
in a linear prediction model. The common control objective used in MPC is the
Linear Quadratic (LQ) objective (cost function). An LQ objective, a linear predic-
tion model and linear constraints gives rise to a so called Quadratic Programming
(QP) optimization problem. A QP problem can be solved within a finite number
of numerical operations. A QP problem is a convex optimization problem with a
unique minimum, if the problem is feasible. The QP problem makes the resulting
MPC algorithm robust for process control.

On the other side, if the process model is allowed to be non-linear then in general
also the prediction model will be non-linear. This leads to a non-linear optimiza-
tion method which usually is solved by a Sequential Quadratic Programming (SQP)
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method. A non-linear MPC is not guaranteed to converge within reasonable com-
puting time. Furthermore, a non-linear optimization problem often has problems
with local minima and convergence problems. Hence, a non-linear MPC method
may not be robust for on-line process control.



Chapter 2

Model predictive control

2.1 Introduction

Model Predictive Control (MPC) is a control strategy which is a special case of
the optimal control theory developed in the 1960 and lather. MPC consists of an
optimization problem at each time instants, k. The main point of this optimization
problem is to compute a new control input vector, uk, to be feed to the system,
and at the same time take process constraints into consideration (e.g. constraints
on process variables). An MPC algorithm consists of

• Cost function
A control objective, Jk, (or cost function) which is a scalar criterion measuring
e.g., the difference between future outputs, yk+1|L, and some specified (future)
reference, rk+1|L, and at the same time recognizing that the control, uk, is
costly. The price on control is therefore also usually measured in, Jk. Hence,
the objective is a measure of the process behaviour over the prediction horizon,
L. This objective is minimized with respect to the future control vectors,
uk+1|L, and only the first control vector, uk, is actually used for control. This
optimization process is solved again at the next time instant, i.e, at k := k+1.
This is sometimes called an receding horizon control problem.

• Constraints
One of the main motivation behind MPC is that constraints on process vari-
ables simply can be treated. Common constraints as input amplitude con-
straints and input rate of change constraints can be treated far more efficient
than in conventional control systems (PID-control). This usually leads to a
simple inequality constraint, Auk+1|L ≤ b, which is added to the optimization
problem.

• Prediction model
The main drawback with MPC is that a model for the process, i.e., a model
which describes the input to output behaviour of the process, is needed. Mech-
anistic models derived from conservation laws can be used. Usually, however
in practice simply data-driven linear models are used. A promising choice
which has got great attention is to use the models identified by the subspace
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identification methods, e.g., the state space model (A,B,D,E) or even the
subspace matrices, (ÃL, B̃L), from the DSR method can with advantage be
used for MPC. This may be referred to as model free MPC. The use of DSR
leads to a fast implementation of MPC. The model is primarily used to predict
the outputs, yk+1|L, (and the states) over the prediction horizon. The process
model is usually used to construct a PM. The purpose of the PM is to describe
the relationship between the future outputs and the future control inputs to
be computed. The PM is a part of the optimization problem and is needed for
this reason.

Another advantage of MPC is that cross coupling in multiple input and multiple
output (MIMO) systems are taken into consideration in an optimal way. MPC is a
simple method for controlling MIMO systems.

It is also important to note that the MPC method with advantage can be used for
operator support. In some cases we are only interested in obtaining suggestions for
the control action, and not to feed back the computed control, uk, to the process.
The MPC method can be used to (at each time instant) compute the future optimal
controls, uk|L. Hence, we have a methodology to compute control suggestions which
may be a valuable tool for the process operators. Note that a conventional control
system can not be used for this purpose.

2.2 The control objective

The common control objective used in connection with MPC is given by the scalar
function

Jk =
L∑
i=1

((yk+i − rk+i)
TQi(yk+i − rk+i) + uTk+i−1Piuk+i−1 + ∆uTk+i−1Ri∆uk+i−1),

(2.1)

where L is defined as the prediction horizon, Qi ∈ Rm×m, Pi ∈ Rr×r and Ri ∈ Rr×r
are symmetric and positive semi-definite weighting matrices specified by the user.
In some cases and for some MPC methods we simply chose Qi = qIm, Pi = pIr and
Ri = r0Ir for some positive parameters q, p and r0. The more general choice is to
specify Qi, Pi and Ri as diagonal weighting matrices. Often, P is chosen as zero
in order to obtain MPC with offset-free control, i.e., y = r in steady state. The
weighting matrices are almost always chosen as time invariant matrices, i.e., the
weighting matrices are constant over the prediction horizon L so that Q1 = Q2 =
. . . = QL, P1 = P2 = . . . = PL and R1 = R2 = . . . = RL.

The problem of choosing the weighting matrices are usually process dependent and
must usually be chosen by trial and error. However, if Q, P and R are chosen as
diagonal positive definite matrices and if the prediction horizon L is large (infinite)
then it can be proved some remarkable properties of the closed loop (controlled)
system. The closed loop system with the optimal control is guaranteed to be stable
even if the open loop system is unstable. Furthermore, for SISO systems we are
guaranteed a phase margin of 60◦ or more and an infinite gain margin (i.e. the gain
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in the loop can be increased by a factor 0.5 ≤ k ≤ ∞. For details we refer to a
course in advanced optimal control.

The control objective, Jk, is also often denoted a cost function. Note also that an-
other common symbol for it simply is Jk := Jk. The control objective can be written
on matrix form. The main point of doing this is to remove the summation sign from
the problem and the solution. This will simplify the discussion considerably and lead
to a Quadratic Programming (QP) problem. A matrix formulation of the objective
Jk will be used throughout this report. The matrix equivalent to (2.3) is given by

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + uTk|LPuk|L + ∆uTk|LR∆uk|L, (2.2)

where Q ∈ RLm×Lm, P ∈ RLr×Lr and R ∈ RLr×Lr are symmetric and positive
semi-definite block diagonal weighting matrices. The control problem is

u∗k|L = arg min
uk|L

Jk(uk|L) (2.3)

subject to a prediction model and process variable constraints if specified.

The control objective is motivated from the requirement to hold the process outputs
yk+1|L as close as possible to some specified references rk+1|L but at the same time
minimize the control (energy) uk|L, recognizing that the control is costly.

A promising choice is to put P = 0. The reason for this is that the MPC control
will give offset-free control (if the constraints are not active), and that the problem
is independent of target values and non-zero offset on the control inputs. Note that
P = 0 is the default choice in the GPC and DMC methods. This is also usually
used in the EMPC method. By simply choosing P = 0 a lot of practical problems
regarding non-zero mean process variables are avoided.

2.3 Prediction models for use in MPC

A strictly proper linear dynamic process model can always be written as a prediction
model (PM) which takes the standard form

yk+1|L = FLuk|L + pL, (2.4)

where L is the prediction horizon, FL ∈ RLm×Lr is a (constant) matrix derived from
the process model, pL ∈ RLm is a vector which in general is dependent of a number
of inputs and outputs older than time k as well as the model parameters. Note that
in some cases that FL and pL may be identified directly. The PM (2.4) can be used
directly in MPC algorithms which are computing the actual control input vectors,
uk|L.

Some algorithms for MPC are computing process deviation variables, i.e., computing
the vector of ∆uk|L of future control deviation variables. Then uk = ∆uk + uk−1 is
used as the actual control vector. For this case it is convenient with a PM on the
form

yk+1|L = F∆
L ∆uk|L + p∆

L . (2.5)
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The main point of writing the PM in a form as (2.4) or (2.5) is that the future
predictions is directly expressed as a function of the unknown future control vectors
which are to be computed by the MPC algorithm. We will in the following sections
illustrate how a PM can be build from different linear models.

Most MPC algorithms and applications are based on a linear dynamic model of the
process. A state space model yields a general description of a linear dynamic system.
However, many of the MPC applications are based on special case input and output
models such as Finite Impulse Response (FIR) and step response models, e.g. the
Matrix Algorithm Control (MAC) algorithm and Dynamic Matrix Control (DMC)
algorithm. These algorithms are not general because they realize upon models which
only can approximately describe some special case linear dynamic systems, e.g., sta-
ble systems and systems without integrators. Another method which has got great
attention is the Generalized Predictive Control (GPC) method, which is based upon
a Auto Regression Moving Average with eXogenous/extra inputs (ARMAX) model
on deviation form, i.e., a so called CARIMA model. One pont of this report is that
all these methods can simply be described within the same framework. This leads
to the Extended Model Predictive Control (EMPC) algorithm, Di Ruscio (1997).
See also the paper Di Ruscio and Foss (1998) and Chapter 10. The EMPC method
can be based on any linear model. The theory is derived from the theory of sub-
space identification and in particular the DSR algorithm, Di Ruscio (1995), (1996).
Another point of using the state space approach or the extended state space model
approach is that the state space model or the subspace matrices from DSR can be
used directly in the MPC algorithm. The MAC, DMC and GPC methods pulls out
as special cases of the EMPC algorithm.

2.3.1 Prediction models from state space models (EMPC1)

Any strictly proper deterministic linear dynamic system can be written as a state
space model

xk+1 = Axk +Buk, (2.6)

yk = Dxk. (2.7)

The only proper case when the output equation is of the form yk = Dxk + Euk is
treated in Chapter 13. Hence, it is important to now how a prediction model (PM)
for the use in MPC simply can be build from the state space model (2.6) and (2.7).
The PM is simply

yk+1|L = FLuk|L + pL, (2.8)

where

FL =
[
OLB Hd

L

]
, (2.9)

pL = OLAxk. (2.10)

Note that if the states is not measured, then, xk may be computed from the knowl-
edge of a number of past inputs and outputs over the past horizon, J . This is one
of the options in the EMPC algorithm. See below for details. The states can also
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be estimated in a state observer, e.g. using the Kalman filter (gain) estimated from
the DSR algorithm.

Equations (2.9) and (2.10) can be proved as follows. One of the basic matrix equa-
tions for strictly proper systems in the subspace identification theory is

yk|L = OLxk +Hd
Luk|L−1. (2.11)

Putting k := k + 1 in (2.11) gives

yk+1|L = OL(Axk +Buk) +Hd
Luk+1|L−1. (2.12)

This can be written in matrix form identical to (2.8) with FL and pL given in (2.9)
and (2.10)

Notice that the term pL in (2.10) is dependent upon the present state, xk, and the
resulting MPC algorithm will be of state feedback type. Hence, we also usually
need an observer for estimating the present state xk. A particular simple way of
computing an estimate of the present state is presented in the next section.

2.3.2 Computing the present state from known input-output data

The term pL in (2.10) is dependent upon the present state, xk. An especially simple
way of computing an estimate for the present state, xk, is as presented in Di Ruscio
(1997), i.e.,

xk = AJ−1O†Jyk−J+1|J + (CJ−1 −AJ−1O†JH
d
J)uk−J+1|J−1, (2.13)

where CJ−1 is the reversed extended controllability matrix

CJ−1 =
[
AJ−2B . . . AB B

]
. (2.14)

Furthermore, uk−J+1|J−1 and yk−J+1|J is defined from the known past inputs and
outputs, respectively.

yk−J+1|J =


yk−J+1

yk−J+2
...
yk−1

yk

 ∈ RJm, uk−J+1|J−1 =


uk−J+1

uk−J+2
...
uk−1

 ∈ R(J−1)r. (2.15)

Here, J is a user specified horizon into the past. We may simply chose the minimum
J to ensure existence of the solution (2.19), i.e. chose J so that rank(OJ) = n. We
can simply chose J = n− rank(D) + 1 when m < n and J = 1 when m ≥ n.

Proof 2.1 (Proof of Equation (2.19) (and (2.19)))
We have from the state space model that

xk = AJ−1xk−J+1 + CdJ−1uk−J+1|J−1. (2.16)

The state, xk−J+1, in the past may be computed from

yk|J = OJxk +Hd
Juk|J−1. (2.17)
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Putting k := k − J + 1 in (2.17) and solving for xk := xk−J+1 gives

xk−J+1 = O†J(yk−J+1|J −Hd
Juk−J+1|J−1). (2.18)

where OJ† = (OTJOJ)−1OTJ is the pseudo inverse of the extended observability matrix
OJ .

Substituting (2.16) gives Equation (2.19).

Finally, note that the above state estimate may be written as

x̂k = Kyyk−J+1|J +Kuuk−J+1|J−1, (2.19)

where the gain matrices Ky and Ku are given as

Ky = AJ−1O†J , (2.20)

Ku = CJ−1 −AJ−1O†JH
d
J . (2.21)

Any linear dynamic model has a state space equivalent. A simple method of building
a state space model from a known input and output model is to generate data (Y, U)
from the known input-output model and then identify the state space model by using
the DSR method. Real process data is however to be preferred. The PM is then
constructed as above.

Note that a FIR model with M terms can be expressed as a state space model of
order M . The system matrix A in the corresponding state space model can be build
in MATLAB by the command

>> A=diag(ones(M-1,1),1)

>> B=[h1;h2;...;hM]

>> D=eye(1,M)

The system matrix B consists of the impulse responses. See Example 2.1 and 2.2
for illustrations of building a state space model from FIR and step response models.
Furthermore one should note that more general ARMAX and CARIMA models also
have a state space equivalent. See Chapter 14 for some examples.

2.3.3 Prediction models from state space models (EMPC2)

A prediction model in terms of process deviation variables can be derived from (2.8)
by using the relationship uk|L = S∆uk|L + cuk−1. The matrices S and c consists of
ones and zeroes, see Section 10 for the definitions. Hence, we have

yk+1|L = F∆
L ∆uk|L + p∆

L , (2.22)

where

F∆
L = FLS, (2.23)

p∆
L = pL + FLcuk−1, (2.24)
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where pL is given by (2.10) and with advantage (2.19) if the states is not available.
For further details concerning the problem of building a PM from a states space
model (A,B,D) and/or the subspace matrices ÃL, B̃L we refer to Section 10. See
also Di Ruscio and Foss (1998).

The term p∆
L is not unique. We will in the following present an alternative formula-

tion which have some important advantages. The presentation is in the same spirit
as the alternative presented in Section 10.3.2. Taking the difference of (2.8) gives

yk+1|L = yk|L +OLA∆xk + FL∆uk|L. (2.25)

Using (2.25) recursively gives

yk+1|L = yk−J+1|L +OLA
J∑
i=1

∆xk−i+1 + FL

J∑
i=1

∆uk−i+1|L. (2.26)

2.3.4 Prediction models from FIR and step response models

Consider the state space model in (2.6) and (2.7). An expression for yk = Dxk can
be expressed as

yk = DAixk−i +DCiuk−i|i, (2.27)

where Ci is the reversed extended controllability matrix, i.e., C0 = 0, C1 = B,
C2 =

[
AB B

]
and so on. Assume now that the process is stable, i.e., A has all

eigenvalues inside the unit circle in the complex plane. In this case we have that
AM ≈ 0 when M = i ≥ 1 is large. Hence,

yk = DCMuk−M |M , (2.28)

AM ≈ 0. for some model horizon, M ,

where

CM =
[
AM−1B . . . AB B

]
. (2.29)

and

DCM =
[
HM . . . H2 H1

]
=
[
DAM−1B . . . DAB DB

]
, (2.30)

is a matrix of impulse response matrices. The input output model (2.28) is called a
FIR model and M is defined as the model horizon. Using (2.28) in order to express
yk+1 and subtracting yk gives

yk+1 = yk + CM∆uk+1−M |M . (2.31)

∆uk+1−M |M = uk+1−M |M − uk−M |M (2.32)

The input output model (2.31) is called a step response model.

The model horizon is typically reported to be in the range 20 ≤ M ≤ 70, Seborg
et al (1989). As illustrated above, the parameters in the FIR and the step response
model are related to the impulse response matrices of the state space model. The



10 Model predictive control

parameters in CM is often obtained directly by system identification. However,
there may be a huge number of parameters to be estimated and this problem may
be ill-conditioned compared to only identifying the model matrices (A,B,D).

A PM can be build from (2.28) and (2.31) in different ways:

1. Via the state space model matrices (A,B,D). See Section 2.3.1.

2. Via the subspace matrices (i.e., the extended state space model matrices)
(ÃL, B̃L). See Chapter 10 for details.

3. Direct derivation as illustrated in Examples 2.4 and 2.5.

See Examples 2.4, 2.5 and 2.6 for illustrations of building a PM from FIR and step
response models. The FIR and step response models can also be converted to a state
space model and then constructing the PM as in Section 2.3.1. See also Examples
2.1 and 2.2.

2.3.5 Prediction models from models with non zero mean values

We have so far and in Section 2.3.1 based our discussion of how to make a prediction
model from state space models of the form

xk+1 = Axk +Buk, (2.33)

yk = Dxk. (2.34)

However, in many practical cases the model is obtained by linearizing a physical
model as described in Appendix B, or even more important, the model is identified
from centered data or data where some constant values are removed. Hence, we may
have a model of the form

xk+1 = Axk +Bduk, (2.35)

dyk = Dxk, (2.36)

where

duk = uk − u0, (2.37)

dyk = yk − y0, (2.38)

and u0 ∈ Rr and y0 ∈ Rm are constant vectors.

A simple solution to the problem of making a prediction model is to first transform
the model in (2.35) and (2.36) to a model of the form (2.33) and (2.34). This is
presented in detail in Section 13. One (insignificant) drawback with this is that
the transformed model will have one additional state. This additional state is an
integrator (i.e., there is an eigenvalue equal to one in the A matrix in the transformed
model), which take care of the non-zero constant trends. Hence, all the theory which
is developed from state space models of the form (2.33) and (2.34) can be used
without modifications.
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However, the presented theory on MPC algorithms may be modified to take properly
consideration to possible nonzero vectors u0 and y0. Using (2.8) we have that

dyk+1|L = FLduk|L + pL, (2.39)

where

FL =
[
OLB Hd

L

]
, (2.40)

pL = OLAxk. (2.41)

Noticing that dyk+1|L and duk|L are deviation variables, we have that the PM of the
actual future outputs can be expressed by

yk+1|L = FLuk|L + p0
L, (2.42)

where

p0
L = pL +

 Im...
Im

 y0 − FL

 Ir...
Ir

u0, (2.43)

where pL is as before and given in (2.41). Note that the indicated matrices with
identity matrices Im and Ir are of dimensions RLm and RLr, respectively.

If not the state, xk, in (2.41) can be measured, then a state observer (e.g., Kalman
filter) kan be constructed from the state space model (2.35)-(2.38). The Kalman
filter identified by using the DSR method, Di Ruscio (1996), can with advantage be
used. However, the state estimate in (2.19) can be modified similarly as we modified
the PM above. We have

xk = AJ−1O†Jdyk−J+1|J + (CJ−1 −AJ−1O†JH
d
J)duk−J+1|J−1, (2.44)

where duk−J+1|J−1 and dyk−J+1|J is defined from the known past inputs and outputs,
and the known constant vectors u0 and y0, as follows

dyk−J+1|J = yk−J+1|J −

 y
0

...
y0

 ∈ RJm, (2.45)

duk−J+1|J−1 = uk−J+1|J−1 −

 u
0

...
u0

 ∈ R(J−1)r. (2.46)

The extended output and input vectors yk−J+1|J and uk−J+1|J−1, respectively, are
as defined in (2.15). Furthermore, J is a user specified horizon into the past. See
further comments in Section 2.3.1.

One should note that the methods which are computing control deviation variables,
∆uk = uk−uk−1, and based upon the PM formulation in Section 10, are insensitive
to non-zero mean values on uk (when P = 0 in the objective 2.3).
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2.3.6 Prediction model by solving a Diophantine equation

The original GPC algorithm is based on an input-output model of the form

A(z−1)yk = z−dB(z−1)uk−1 +
C(z−1)

∆
ek, (2.47)

where 0 ≤ d is a specified delay, ek are white noise and ∆ = 1 − z−1 is the dif-
ferentiating operator. This is a so called Controller Auto-Regressive Integrated
Moving-Average (CARIMA) model. Another frequently used name for it is an Auto-
Regressive Integrated Moving-Average with eXtra inputs (ARIMAX). CARIMA is
motivated from the fact that uk is a control variable. The main point of the differ-
entiator ∆ = 1− z−1 is to obtain an PM in terms of control deviation variables, i.e.
to obtain a PM of the form (2.22). Another advantage is that integral action in the
controller is obtained, i.e., resulting in zero steady state offset between yk and the
reference rk. The resulting controller is insensitive to non-zero mean control vari-
ables and constant disturbance values. Most important, it leads to an MPC which
are computing control deviation variables ∆uk|L.

In the following we will discuss the SISO case. The theory can be extended to MIMO
systems, as described lather in this section. However this is not so numerically
practical compared to the state space approach. For SISO systems we have that the
polynomials in (2.47) are given by

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . .+ anaz
−na, (2.48)

B(z−1) = b0 + b1z
−1 + b2z

−2 + . . .+ bnbz
−nb, (2.49)

C(z−1) = 1 + c1z
−1 + c2z

−2 + . . .+ cncz
−nc, (2.50)

where na, nb and nc are the order of the A(z−1), B(z−1) and C(z−1) polynomials,
respectively.

The prediction of the jth output yk+j ∀ 1 ≤ j ≤ L is given by

yk+j = Gj(z
−1)∆uk+j−d−1 + Fj(z

−1)yk. (2.51)

In the following we will discuss the SISO case where the noise polynomial is equal
to C(z−1) = 1. The theory can simply be extended to the colored noise case. The
polynomials Gj(z

−1) and Fj(z
−1) are obtained as described in the following. First

solve the Diophantine equation

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1), (2.52)

Ã(z−1) = ∆A(z−1), (2.53)

∆ = 1− z−1, (2.54)

where (Ã(z−1) is obtained by multiplying the two polynomials ∆ and Ã(z−1), i.e.,)

Ã(z−1) = ã0 + ã1z
−1 + ã2z

−2 + . . .+ ãna+1z
−(na+1), (2.55)

for the unknown coefficients in the polynomials Ej(z
−1) and Fj(z

−1). These poly-
nomials is of the form

Ej(z
−1) = ej0 + ej1z

−1 + ej2z
−2 + . . .+ ej,j−1z

−(j−1), (2.56)
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Note that we when C(z−1) = 1 have that ej0 = 1. Since Ã(z−1) = ∆A(z−1) is
of order na + 1, then the product of the polynomials Ej(z

−1)∆A(z−1) must be of
order j+na. Requiring that the two terms on the left hand side of the Diophantine
Equation (2.52) are of the same order, then we have that Fj(z

−1) must be of order
na, i.e.,

Fj(z
−1) = fj0 + fj1z

−1 + fj2z
−2 + . . .+ fj,naz

−na. (2.57)

The role of the Fj(z
−1) polynomial is very important since it decides how many old

outputs which are to be used in order to predict the future outputs. Hence, remark
that for a single output system a number of na+ 1 old outputs are used. Hence, the
future predictions will be a function of the known outputs in the vector yk−na|na+1.

Once, Ej(z
−1) is known, then we compute the coefficients in theGj(z

−1) polynomials
from the equations

Gj(z
−1) = Ej(z

−1)B(z−1) ∀ j = 1, . . . , L. (2.58)

Hence, the Gj polynomials are found by multiplying two known polynomials. Note
that the coefficients in the polynomials Ej(z

−1), Gj(z
−1) and Fj(z

−1) are different
for different numbers j. Hence, we have to solve j = L Diophantine equations, i.e.
for 1 ≤ j ≤ L, in order to obtain the PM. The resulting PM can be written in the
standard prediction model form

yk+1|L = FGPCL ∆uk|L + pGPCL . (2.59)

It is important to note that the matrices in the PM (2.59) is related to the PM
obtained in Section 2.3.1 as

FGPCL = F∆
L = FLS. (2.60)

where FL is related to the equivalent state space model matrices (A,B,D) as given
by (2.9). The term pGPCL can be obtained directly from the state space model as
described in Di Ruscio (1997), see also Chapter 10 and Proposition 3.4.

The coefficients in the polynomials Ej(z
−1) and Fj(z

−1) can be obtained recursively.
The simplicity of this process is the same for the MIMO and SISO cases. Hence,
the following procedure can also be used to define the PM for MIMO systems. First
define initial polynomials for the recursion directly as

E1(z−1) = Im×m, (2.61)

F1(z−1) = z(Im×m − Ã(z−1). (2.62)

Then for j = 1, . . . , L − 1, the coefficients/matrices, fj+1,i, in the remaining Fj
polynomials are computed as follws. For each j do

Rj = fj,0, (2.63)

fj+1,i = fj,i+1 −Rj ãi+1 ∀ i = 0, 1, . . . , na− 1 (2.64)

fj+1,i = −Rj ãi+1 i = na (2.65)

See Example 2.7 for a demonstration of this recursion scheme for obtaining the
polynomials. Furthermore, this recursion scheme is implemented in the MATLAB
function poly2gpcpm.m.
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2.3.7 On Finite Impulse Response (FIR) models

Consider a standard discrete time linear state space model as follows

xk+1 = Axk +Buk, (2.66)

yk = Dxk, (2.67)

and the discrete transfer function model equivalent

qxk = Axk +Buk, (2.68)

yk = Dxk, (2.69)

i.e., such that q is the shift operator such that qxk = xk+1 and q−1xk = xk−1. Hence,
we have the transfer function input-output polynomial model

yk = H(q)uk, (2.70)

where the transfer matrix can be expressed as

H(q) = D(qI −A)−1B

=
∞∑
i=1

DAi−1Bq−i = DBq−1 +DABq−2 +DA2Bq−3 + · · · (2.71)

This gives rise to a truncated input and output FIR model as follows

yk = h1uk−1 + h2uk−2 + h3uk−3 + · · ·+ hMuk−M

= DCMuk−M |M , (2.72)

where

hi = DAi−1B ∀ i = 1, 2, . . . ,M (2.73)

are the impulse responses of the system and M is the number of terms in the FIR
model. M is also defined as the model horizon.

Se also details about building a Prediction Model (PM) from FIR models in Section
2.3.4.

2.3.8 On step response models

Consider a more general discrete time linear state space model where we allow
influence of slowly varying disturbances, as follows

xk+1 = Axk +Buk + v, (2.74)

yk = Dxk + w, (2.75)

where v and w are slowly varying process and measurements disturbances, respec-
tively. The state space model Eqs. (2.74) and (2.75) are more realistic than the state
space model (2.66) and (2.67) because of the influence of the constant or slowly vary-
ing disturbances. Notice also that when linearizing non-linear models, then, models
of the form Eqs. (2.74) and (2.75) are the result.



2.3 Prediction models for use in MPC 15

From Eqs (2.74) and (2.75) we obtain the state space model in terms of difference
input variables, ∆uk = uk − uk−1, i.e.

∆xk+1 = A∆xk +B∆uk, (2.76)

yk = yk−1 +D∆xk. (2.77)

Using the same theory as in Eqs. (2.68)-(2.73) we find the truncated input and
output step response model

yk = yk−1 + h1∆uk−1 + h2∆uk−2 + h3∆uk−3 + · · ·+ hM∆uk−M ., (2.78)

where hi = DAi−1B ∀ i = 1, 2, . . . ,M are the impulse responses of the system and
M is the number of terms in the step response model.

Se also details about building a Prediction Model (PM) from step response models
in Section 2.3.4. Notice also that step response models of the type Eq. (2.78) is
attractive when one wants integral action in the resulting MPC algorithm.

2.3.9 Examples

Example 2.1 (From FIR to state space model)
A FIR model

yk = h1uk−1 + h2uk−2 + h3uk−3, (2.79)

can be simply written as a state space model x1
k+1

x2
k+1

x3
k+1

 =

 0 1 0
0 0 1
0 0 0

 x1
k

x2
k

x3
k

+

 h1

h2

h3

uk, (2.80)

yk =
[

1 0 0
]  x1

k

x2
k

x3
k

 . (2.81)

Note that the order of this state space model, which is M = 3, in general is different
from the order of the underlying system. The theory in Section 2.3.1 can then be
used to construct a prediction model.

Example 2.2 (From step response to state space model)
A step response model can be derived from the FIR model in (2.79), i.e.,

yk+1 = a0yk + h1∆uk + h2∆uk−1 + h3∆uk−2, (2.82)

with a0 = 1. This can simply be written as a state space model x1
k+1

x2
k+1

x3
k+1

 =

 0 1 0
0 0 1
0 0 0

 x1
k

x2
k

x3
k

+

 h1

h2

h3

uk, (2.83)
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yk =
[

1 0 0
]  x1

k

x2
k

x3
k

 . (2.84)

Note that the order of this state space model, which is M = 3, in general is different
from the order of the underlying system. The theory in Section 2.3.1 can then be
used to construct a prediction model.

The state space model Eqs. (2.83) and (2.84) can e.g. be found by simulating the
input output model Eq. (2.85) and use the subspace system identification method
DSR and transforming the model to observability canonical form by the ss2cf.m
function.

Example 2.3 (From step response to state space model)
A step response model can be derived from the FIR model in (2.79), i.e.,

yk+1 = a0yk + h1∆uk + h2∆uk−1 + h3∆uk−2, (2.85)

with a0 = 1. This can simply be written as a state space model x1
k+1

x2
k+1

x3
k+1

 =

 0 1 0
0 0 1
0 0 1

 x1
k

x2
k

x3
k

+

 h1

h1 + h2

h1 + h2 + h3

∆uk, (2.86)

yk =
[

1 0 0
]  x1

k

x2
k

x3
k

 . (2.87)

Example 2.4 (Prediction model from FIR model)
Assume that the process can be described by the following finite impulse response
(FIR) model

yk = h1uk−1 + h2uk−2 + h3uk−3. (2.88)

Consider a prediction horizon, L = 4. The future predictions is then

yk+1 = h1uk + h2uk−1 + h3uk−2, (2.89)

yk+2 = h1uk+1 + h2uk + h3uk−1, (2.90)

yk+3 = h1uk+2 + h2uk+1 + h3uk, (2.91)

yk+4 = h1uk+3 + h2uk+2 + h3uk+1. (2.92)

This can be written in matrix form as follows

yk+1|4︷ ︸︸ ︷
yk+1

yk+2

yk+3

yk+4

 =

F4︷ ︸︸ ︷
h1 0 0 0
h2 h1 0 0
h3 h2 h1 0
0 h3 h2 h1


uk|4︷ ︸︸ ︷
uk
uk+1

uk+2

uk+3

+

p4︷ ︸︸ ︷
h3 h2

0 h3

0 0
0 0

[ uk−2

uk−1

]
. (2.93)

Which can be expressed in standard (prediction model) form as

yk+1|4 = F4uk|4 + p4. (2.94)
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Example 2.5 (Step response prediction model)
Consider the FIR model in (2.4), i.e.,

yk+1|4 = F4uk|4 + p4. (2.95)

where F4, and p4 are as in (2.93). A step response model is a function of the control
deviation variables (control rate of change) ∆uk = uk − uk−1, ∆k+1 = uk+1 − uk
and so on. This means that a step response model is a function of the vector ∆k|L,
where the prediction horizon is L = 4 in this example. An important relationship
between uk|4 and ∆k|4 can be written in matrix form as follows

uk|4︷ ︸︸ ︷
uk+1

uk+2

uk+3

uk+4

 =

S︷ ︸︸ ︷
Ir 0 0 0
Ir Ir 0 0
Ir Ir Ir 0
Ir Ir Ir Ir


∆uk|4︷ ︸︸ ︷

∆uk
∆uk+1

∆uk+2

∆uk+3

+

c︷ ︸︸ ︷
Ir
Ir
Ir
Ir

uk−1, (2.96)

i.e.,

uk|4 = S∆uk|4 + cuk−1. (2.97)

Substituting (2.97) into (2.95) gives the PM based on a step response model.

yk+1|4 = F∆
4 ∆uk|4 + p∆

4 , (2.98)

where

F∆
4 = F4S =


h1 0 0 0
h1 + h2 h1 0 0
h1 + h2 + h3 h1 + h2 h1 0
h1 + h2 + h3 h1 + h2 + h3 h1 + h2 h1

 , (2.99)

p∆
4 = p4 + F4cuk−1 =


h3 h2

0 h3

0 0
0 0

[ uk−2

uk−1

]
+


h1

h1 + h2

h1 + h2 + h3

h1 + h2 + h3

uk−1

=


h3 h1 + h2

0 h1 + h2 + h3

0 h1 + h2 + h3

0 h1 + h2 + h3

[ uk−2

uk−1

]
. (2.100)

The PM (2.98) is in so called standard form for use in MPC. One should note that
the term p∆

4 is known at each time instant k, i.e., p∆
4 is a function of past and known

control inputs, uk−1 and uk−2.

Example 2.6 (Alternative step response PM)
Consider the finite impulse response (FIR) model in (2.88) for k := k + 1, i.e.

yk+1 = h1uk + h2uk−1 + h3uk−2. (2.101)
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Subtracting (2.101) from (2.88) gives the step response model

yk+1 = yk + h1∆uk + h2∆uk−1 + h3∆uk−2. (2.102)

We can write a PM in standard form by writing up the expressions for yk+2 and
yk+3 by using (2.102). This can be written in matrix form. Note that the term p∆

4

takes a slightly different form in this case.

p∆
4 =


Im
Im
Im
Im

 yk +


h3 h2

h3 h2 + h3

h3 h2 + h3

h3 h2 + h3

[∆uk−2

∆uk−1

]
. (2.103)

We can now show that (2.103) is identical to the expression in (2.100), by using
that yk is given by the FIR model (2.88). Note however that the last alternative,
Equation (2.103), may be preferred because the MPC controller will be off feedback
type. To prove equality put (2.103) equal to (2.100) and solve for the yk term, i.e.,
show that

Im
Im
Im
Im

 yk =


h3 h1 + h2

0 h1 + h2 + h3

0 h1 + h2 + h3

0 h1 + h2 + h3

[ uk−2

uk−1

]
−


h3 h2

h3 h2 + h3

h3 h2 + h3

h3 h2 + h3

[∆uk−2

∆uk−1

]
. (2.104)

Example 2.7 (PM by solving a Diophantine equation)
Consider the model

yk = −a1yk−1 + b0uk−1 + b1uk−2. (2.105)

where the coefficients are a1 = −0.8, b0 = 0.4 and b1 = 0.6. Hence the A(z−1) and
B(z−1) polynomials in the CARIMA/ARIMAX model (2.47) with delay d = 0, are
given by

A(z−1) = 1 + a1z
−1 = 1− 0.8z−1. (2.106)

B(z−1) = b0 + b1z
−1 = 0.4 + 0.6z−1. (2.107)

Hence, the A(z−1) polynomial is of order na = 1 and the B(z−1) polynomial is of
order nb = 1. The noise term in (2.47) is omitted. This will not influence upon the
resulting PM when C = 1, which is assumed in this example. A prediction horizon
L = 4 is specified. We now want to solve the Diophantine Equation (2.52) for the
unknown polynomials Fj(z

−1), Ej(z
−1) and Gj(z

−1) where j = 1, 2, 3, 4. This can
be done recursively starting with E1 = 1 and F1 = z(1 − Ã). We have included a
MATLAB script, demo gpcpm.m and demo gpcpm2.m, for a demonstration of
how the coefficients are computed. This gives

F1(z−1) = f10 + f11z
−1 = 1.8− 0.8z−1, (2.108)

F2(z−1) = f20 + f21z
−1 = 2.44− 1.44z−1, (2.109)

F3(z−1) = f30 + f31z
−1 = 2.952− 1.9520z−1, (2.110)

F4(z−1) = f40 + f41z
−1 = 3.3616− 2.3616z−1, (2.111)
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E1(z−1) = e10 = 1, (2.112)

E2(z−1) = e20 + e21z
−1 = 1 + 1.8z−1, (2.113)

E3(z−1) = e30 + e31z
−1 + e32z

−2 = 1 + 1.8z−1 + 2.44z−2, (2.114)

E4(z−1) = e40 + e41z
−1 + e42z

−2 + e43z
−3

= 1 + 1.8z−1 + 2.44z−2 + 2.952z−3, (2.115)

G1(z−1) = g10 + g11z
−1 = 0.4 + 0.6z−1, (2.116)

G2(z−1) = g20 + g21z
−1 + g22z

−2 = 0.4 + 1.32z−1 + 1.08z−2, (2.117)

G3(z−1) = g30 + g31z
−1 + g32z

−2 + g33z
−3

= 0.4 + 1.32z−1 + 2.056z−2 + 1.464z−3, (2.118)

G4(z−1) = g40 + g41z
−1 + g42z

−2 + g43z
−3 + g44z

−4

= 0.4 + 1.32z−1 + 2.056z−2 + 2.6448z−3 + 1.7712z−4. (2.119)

Only the Fj and Gj polynomials are used to form the PM. The Fj polynomials are
used in the vector p∆

4 . The Gj polynomials are used in both p∆
4 and F∆

L . The PM is
given by

yk+1|4 = F∆
4 ∆uk|4 + p∆

4 , (2.120)

where

yk+1|4 =


yk+1

yk+2

yk+3

yk+4

 ,∆uk|4 =


∆uk
∆uk+1

∆uk+2

∆uk+3

 , F∆
4 =


0.4 0 0 0
1.32 0.4 0 0
2.056 1.32 0.4 0
2.6448 2.056 1.32 0.4

(2.121)

and

p∆
4 =


0.6
1.08
1.464
1.7712

∆uk−1 +


1.8
2.44
2.952
3.3616

 yk +


−0.8
−1.44
−1.952
−2.3616

 yk−1. (2.122)

This can also be written as, i.e. by using that ∆uk−1 = uk−1 − uk−2

p∆
4 =


−0.8 1.8 −0.6 0.6
−1.44 2.44 −1.08 1.08
−1.952 2.952 −1.464 1.464
−2.3616 3.3616 −1.7712 1.7712



yk−1

yk
uk−2

uk−1

 . (2.123)

Example 2.8 (PM by using Proposition 3.4 in Chapter 10)
Consider the state space model matrices

A =

[
0 1
0 −a1

]
, B =

[
b0
b1 − a1b0

]
, D =

[
1 0
]
, (2.124)

where the coefficients are a1 = −0.8, b0 = 0.4 and b1 = 0.6. This is the state
space equivalent to the polynomial model (2.105). A PM is now constructed by first



20 Model predictive control

obtaining the ESSM matrices ÃL and B̃L with L = 4 and J = 2 as described in
Chapter 10. The PM is then constructed by using Proposition 3.4. The results are

yk+1|4 = F∆
4 ∆uk|4 + p∆

4 , (2.125)

where

yk+1|4 =


yk+1

yk+2

yk+3

yk+4

 ,∆uk|4 =


∆uk
∆uk+1

∆uk+2

∆uk+3

 , F∆
4 =


0.4 0 0 0
1.32 0.4 0 0
2.056 1.32 0.4 0
2.6448 2.056 1.32 0.4

(2.126)

and

p∆
4 = yk−3|4 +


0 1 1 1.8
0 0 1 2.44
0 0 0 2.952
0 0 0 2.3616

∆yk−3|4 +


0 0 0.6
0 0 1.08
0 0 1.464
0 0 1.7712

∆uk−3|3. (2.127)

The term p∆
4 is identical to those obtained by solving the Diophantine equation as in

the GPC method, i.e., as given in Example 2.8 and equations (2.122) and (2.123).
To see this we write Equation (2.127) as

p∆
4 = yk−3|4 +


1 1 1.8
0 1 2.44
0 0 2.952
0 0 2.3616


∆yk−2|3︷ ︸︸ ︷ yk−2 − yk−3

yk−1 − yk−2

yk − yk−1

+


0.6
1.08
1.464
1.7712

∆uk−1. (2.128)

which is identical to (2.122). Note that by choosing 2 < J ≤ 4 gives a different ex-
pression for the term p∆

4 , i.e., the parameters in (2.127) may be different. However,
the structure is the same. Note that the formulation of p∆

4 as in (2.127) is attractive
for steady state analysis, where we must have that p∆

4 = yk−3|4. This example is
implemented in the MATLAB script demo gpcpm2.m.

2.4 Computing the MPC control

We will in this section derive the unconstrained MPC control. This is with the
presented notation sometimes referred to as unconstrained EMPC control.

2.4.1 Computing actual control variables

In order to compute the MPC control for FIR models we can consider the Prediction
model (PM) in Example (2.4) with the following control objective

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + uTk|LPuk|L. (2.129)

Substituting the PM (2.94) into (2.129) gives

∂Jk
∂uk|L

= 2F TLQ(yk+1|L − rk+1|L) + 2Puk|L = 0. (2.130)
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This gives the future optimal controls

u∗k|L = (F TLQFL + P )−1F TLQ(rk+1|L − pL). (2.131)

Only the first control vector, uk, in the vector u∗k|L is used for control.

Note that the control objective (2.129) can be written in the convenient standard
form

Jk = uTk|LHuk|L + 2fTuk|L + J0, (2.132)

where

H = F TLQFL + P, (2.133)

f = F TLQ(pL − rk+1|L), (2.134)

J0 = (pL − rk+1|L)TQ(pL − rk+1|L). (2.135)

Note that the term pL is known, and for state space models given as in (2.10).
Hence, (2.130) and (2.131)) can simply be expressed as

∂Jk
∂uk|L

= 2Huk|L + 2f = 0, (2.136)

u∗k|L = −H−1f. (2.137)

This algorithm in connection with the state estimate (2.19) and the use of the
common constraints is sometimes referred to as the EMPC1 algorithm. Constraints
are discussed later in this report.

2.4.2 Computing control deviation variables

In order to e.g., compute the MPC control for step response models we can consider
the Prediction model (PM) in Example (2.5) or (2.6) with the following control
objective

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + uTk|LPuk|L + ∆uTk|LR∆uk|L.(2.138)

The problem is to minimize (2.138) with respect to ∆uk|L. Recall that the PM is
given as, and that uk|L and ∆uk|L are related as

yk+1|L = F∆
L ∆uk|L + p∆

L , (2.139)

uk|L = S∆uk|L + cuk−1. (2.140)

Substituting the PM (2.98) into (2.138) gives

∂Jk
∂uk|L

= 2F∆T
L Q(F∆T

L ∆uk+1|L + p∆
L − rk+1|L) + STP (S∆uk|L + cuk−1) + 2R∆uk|L = 0.

(2.141)

This gives the future optimal controls

∆u∗k|L = (F∆T
L QF∆

L +R+ STPS)−1[F∆T
L Q(rk+1|L − p∆

L ) + STPcuk−1].(2.142)
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Only the first control change, ∆uk, in the vector ∆u∗k|L is used for control. The
actual control to the process is taken as uk = ∆uk + uk−1.

Note that the control objective (2.138) can be written in the convenient standard
form

Jk = ∆uTk|LH∆uk|L + 2fT∆uk|L + J0, (2.143)

where

H = F∆T
L QF∆

L +R+ STPS, (2.144)

f = F∆T
L Q(p∆

L − rk+1|L) + STPcuk−1, (2.145)

J0 = (p∆
L − rk+1|L)TQ(p∆

L − rk+1|L) + uTk−1c
TPcuk−1. (2.146)

Note that the term p∆
L is known, and for state space models given as in (2.24).

Hence, (2.141) and (2.142)) can simply be expressed as

∂Jk
∂∆uk|L

= 2H∆uk|L + 2f = 0, (2.147)

∆u∗k|L = −H−1f. (2.148)

One motivation of computing control deviation variables ∆uk|L is to obtain offset-
free control in a simple manner, i.e., to obtain integral action such that y = r in
steady state. The control uk = ∆uk + uk−1 with ∆uk computed as in (2.142))
gives offset-free control if the control weighting matrix P = 0. Another important
advantage of computing ∆uk|L and choosing P = 0 is to avoid practical problems
with non-zero mean variables. This algorithm in connection with the state estimate
(2.19) and the use of the common constraints is sometimes referred to as the EMPC2

algorithm. Constraints are discussed later in this report.

2.5 Discussion

There exist a large number of MPC algorithms. However, as far as we now, all MPC
methods which are based on linear models and linear quadratic objectives fit into
the EMPC framework as special cases. We will give a discussion of some differences
and properties with MPC algorithms below.

• MPC methods may be different because different linear models are used to
compute the predictions of the future outputs. Some algorithms are using
FIR models. Other algorithms are using step response models, ARMAX mod-
els, CARIMA models and so on. The more general approach is to use state
space models, as in the EMPC method. Any linear dynamic model can be
transformed to a state space model.

• Most algorithms are using quadratic control objective functions, Jk. However,
different methods may be different because they are using different quadratic
functions with different weights.



2.5 Discussion 23

• All MPC methods are in one or another way dependent upon the present state,
xk. MPC methods are usually different because different state observers are
used. The default choice in the EMPC algorithm is the state estimate given
in (2.19). It is interesting to note that the prediction model used by the GPC
method is obtained by putting J equal to the minimum value. Some algorithms
are using very simple observers as in the DMC method which is based upon
step response models. See Example 2.6 and the PM (2.103). Other algorithms
are based upon a Kalman filter for estimating the state, e.g., the method by
Muske and Rawlings (1993). Note that these MPC algorithms are equivalent
to LQ/LQG control in the unconstrained case. A promising choice is to use
the Kalman filter identified by the DSR method.

• Some MPC methods are computing the actual control variables, uk, and other
are computing control deviation variables, ∆uk. A lot of practical problems
due to non-zero offset values on the variables may be avoided by computing
deviation variables, ∆uk. This is also a simple way of obtaining offset-free
control, i.e., so that y = r in steady state and where r is a specified reference.

• Some algorithms can not be used to control unstable systems or systems which
contains integrators. This is the case for the algorithms which are based on
FIR and step response models. The reason for this is because FIR models
cannot represent unstable systems. An algorithm which is based on a state
space model can be used to control unstable systems. The EMPC algorithm
works similarly on stable as well as on unstable systems. However, it may be
important to tune the prediction horizon and the weighting matrices properly.

• Like it or not. We have that the MPC controller in the unconstrained case
are identical to the classical LQ and LQG controllers. The only difference is
in the way the controller ”gain” are computed. Like MPC, the LQ and LQG
controllers are perfect to control multivariable systems with cross-couplings.

• There are however some differences between MPC and LQ/LQG controllers.
There is one difference between the MPC method and the LQ/LQG method in
the way the computations are done. Furthermore, in the unconstrained case,
the LQ/LQG method is more efficient when the prediction horizon is large,
e.g., infinite. An infinite horizon MPC problem may however be formulated
as a finite horizon problem, by using a special weighting matrix for the fi-
nal deviation yk+1+L − rk+1+L. However, this weighting matrix is a solution
to an infinite horizon LQ problem. Infinite prediction horizon problems are
important in order to control unstable processes.

• The main advantage and the motivation of using an MPC controller is the
ability to cope with constraints on the process variables in a simple and efficient
way. Linear models, linear constraints an a linear quadratic objective results
in a QP-problem, which can be efficiently solved. See Section 3 for details.

• Another application of the MPC algorithm is to use it for operator support.
The MPC algorithms can be used to only compute and to propose the future
process controls. The operators can then use the control, u∗k, which is proposed
by the MPC algorithm, as valuable information for operating the process. This
is not possible by conventional controllers, e.g., like the PID-controller.
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• The DSR algorithm in Di Ruscio (1996), (1997f) and older work, is available
for building both the prediction model and the state observer to be used in
MPC algorithms. The DSR algorithm are in use with some commercial MPC
controllers. The use of the DSR method for MPC will improve effectiveness
considerably. First of all due to the time which is spend on model building
may be reduced considerably.

• Furthermore, the DSR theory and notation is valuable in its own right in order
to formulate the solution to a relatively general MPC problem.

• Furthermore, the subspace matrices ÃL and B̃L identified by DSR can be
used directly to construct a PM as presented in Section 10. Hence, the model
(A,B,D) is not necessarily needed. However, we recommend to use the model
(A,B,D).

• The unconstrained MPC technique results in general in a control, uk, which
consists of a feedback from the present state vector, xk, and feed-forward from
the specified future references, rk+1|L. This is exactly the same properties
which results from the Linear Quadratic (LQ) tracking regulator. It can be
shown that they indeed are equivalent in the unconstrained case. The feed-
forward properties of the control means that the actual control can start to
move before actual changes in the reference find place.
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Chapter 3

Unconstrained and constrained
optimization

3.1 Unconstrained optimization

3.1.1 Basic unconstrained MPC solution

The prediction models which are used in connection with linear MPC can be written
in a so called standard form. Consider this standard prediction model formulation,
i.e.,

y = Fu+ p. (3.1)

Similarly, the control objective which is used in linear MPC can be written in matrix
form. Consider here the following control objective

J = (y − r)TQ(y − r) + uTPu. (3.2)

The derivative of J with respect to u is given by

∂J

∂u
= 2F TQ(Fu+ p− r) + 2Pu

= 2(F TQF + P )u+ 2F TQ(p− r). (3.3)

Solving ∂J
∂u = 0 gives the solution

u∗ = −(F TQF + P )−1F TQ(p− r). (3.4)

The weighting matrices Q and P must be chosen to ensure a positive definite Hessian
matrix. The Hessian is given from the second derivative of the control objective, J ,
with respect to u, i.e.,

H =
∂2J

∂uT∂u
=
∂2J

∂u2
= 2(F TQF + P ) > 0, (3.5)

in order to ensure a unique minimum. Note that the second derivative (3.5) is
defined as the Hessian matrix, which is symmetric. The Hessian matrix should be a
positive definite matrix in order for (3.4) to be a minimum.
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3.1.2 Line search and conjugate gradient methods

Consider the general unconstrained optimization problem

x∗ = arg min
x∈Rn

f(x). (3.6)

This is the same problem one deals with in system identification and in particular
the prediction error methods. Textbooks on the topic often describing a Newton
method for searching for the minimum, in order to give valuable insight into the
problem. The Newton’s method for solving the general non-linear unconstrained
optimization problem (3.6) is discussed in Section 14, and is not reviewed in detail
here.

We will in this section concentrate on a method which only is dependent on func-
tional evaluations f = f(x). A very basic iterative process for solving (3.6) which
includes many methods as special cases are

xi+1 = xi − αH−1
i gi, (3.7)

where gi = ∂f(x)
∂x |xi ∈ Rn is the gradient and α is a line search parameter chosen

to minimize f(xi+1) with respect to α. If Hk = ∂2f
∂xT ∂u

|xi is the Hessian then we
obtain Newton’s method, which have 2nd order convergence properties near the
minimum. If also α = 1 then we have the Newton-Raphson’s method. The problem
of computing the Hessian and the inverse at each iteration is time consuming and
may be ineffective when only functional evaluations f = f(x) is available in order
to obtain numerical approximations to the Hessian. A simple choice is to put Hi =
I. This is equivalent to the steepest descent method, which (only) have 1st order
convergence near a minimum. Hence, it would be of interests to obtain a method
whit approximately the same convergence properties as Newton’s method but which
at the same time does not depend upon the inverse of the Hessian. Consider the
iterative process

xi+1 = xi + αdi, (3.8)

where di is the search direction. Hence, for the steepest descent method we have
di = −gi and for Newtons method we have di = −H−1

i gi.

A very promising method for choosing the search direction,di, is the Conjugate Gra-
dient Method (CGM). This method is discussed in detail Section 15 for quadratic
problems and linear least squares problems. The CGM can be used for non-quadratic
NP problems. The key is to use a line search strategy for αk instead of the ”an-
alytical” expression which is used for quadratic and least squares problems. The
quadratic case is discussed in detail in Section 15. See also Luenberger (1984) Ch.
8.6.

3.2 Constrained optimization

Details regarding optimization of general non-linear functions subject to general
possibly non-linear inequality and equality constraints are not the scope of this
report. However, some definitions are useful in connection with linear MPC which
leads to QP problems. For this reason, these definitions have to be pointed out.
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3.2.1 Basic definitions

Consider the optimization (Nonlinear Programming (NP)) problem

minx J(x),
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Ω,

(3.9)

where J(x) is a scalar objective, g(x) ≤ 0 ∈ Rp is the inequality constraint and
h(x) = 0 ∈ Rm is the equality constraint, and in general x ∈ Rn. The constraints
g(x) ≤ 0 and h(x) = 0 are referred to as functional constraints while the con-
straint x ∈ Ω is a set constraint. The set constraint is used to restrict the solution,
x, to be in the interior of Ω, which is a part of Rn. In practice, usually this is equiv-
alent to specifying lower and upper bounds on x, i.e.,

xLOW ≤ x ≤ xUP . (3.10)

Lower and upper bounds as in (3.10) can be treated as linear inequality constraints
and written in the standard form, Ax ≤ b.

Definition 3.1 (Feasible (mulig) solution)
A point/vector x ∈ Ω which satisfies all the functional constraints g(x) ≤ 0 and
h(x) = 0 is said to be a feasible solution.

Definition 3.2 (Active and inactive constraints)
An inequality constraint gi(x) ≤ 0 is said to be active at a feasibile point x if gi(x) =
0, and inactive at x if gi(x) ≤ 0.

Note that in studying the optimization problem (3.9) and the properties of a (local)
minimum point x we only have to take attention to the active constraints. This is
important in connection with inequality functional constraints.

There exist several reliable software algorithms for solving the constrained NP prob-
lem (3.9). We will here especially mention the nlpq FORTRAN subroutine by
Schittkowski (1984) which is found to work on a wide range of problems. This is
a so called Sequential Quadratic Programming (SQP) algorithm. At each iteration
(or some of the iterations), the function, f(x), is approximated by a quadratic func-
tion and the constraints, h(x) and g(x), are approximated with linearized functions.
Hence, a Quadratic Programming (QP) problem is solved at each step. This is re-
ferred to as recursive quadratic programming or to as an SQP method. QP problems
is not only importaint for solving NP problems, but most practical MPC methods
are using a QP method. The QP solver (subroutine ql0001) in nlpq is found very
promising compared to the MATLAB function quadprog. Hence, the QP method
needs a closer discussion. This is the topic of the next chapter.

3.2.2 Lagrange problem and first order necessary conditions

We start this section with a definition.
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Definition 3.3 (regular point) Let x be a feasibile solution, i.e., a point such
that all the constraints is satisfied, i.e.,

h(x) = 0 and g(x) ≤ 0. (3.11)

Furthermore let J be the set of active conditions in g(x) ≤ 0, i.e., J is the set
of indices j such that gj(x) = 0. Then x is said to be a regular point of the

constraints (3.11) if all the gradients ∂hi(x)
∂x ∀ i = 1, . . . ,m and

∂gj(x)
∂x ∀ j ∈ J are

linearly independent.

This means that a regular point, x, is a point such that all the gradients of the active
constraints are linearly independent. We does not concentrate on inactive inequality
constraints.

Corresponding to the NP problem (3.9) we have the so called lagrange function

L(x) = J(x) + λTh(x) + µT g(x), (3.12)

where λ ∈ Rp, and µ ∈ Rm are denoted Lagrange vectors. First order necessary
conditions (Kuhn-Tucker conditions) for a minimum is given in the following lemma.

Lemma 3.1 (Kuhn-Tucker conditions for optimality) Assume that x is a (lo-
cal) minimum point for the NP problem (3.9), and that x is a regular point for
the constraints. Then there exists vectors λ ∈ Rm, and µ ≥ 0 ∈ Rp such that

∂L(x)

∂x
=
∂J(x)

∂x
+ (

∂hT (x)

∂x
)λ+ (

∂gT (x)

∂x
)µ

=
∂J(x)

∂x
+ (

∂h(x)

∂x
)λ+ (

∂g(x)

∂x
)µ = 0, (3.13)

∂L(x)

∂λ
= h(x) = 0, (3.14)

µ
∂L(x)

∂µ
= µT g(x) = 0. (3.15)

Since µ ≥ 0 only active constraints, gi = 0 for some indices i, will influence on the
conditions. Remark that the Lagrange multipliers, µi, ∀ i = 1, . . . , p in µ should
be constructed/computed such that µi = 0 if gi(x) ≤ 0 (inactive constraint) and
µi > 0 if gi(x) = 0 (active constraint). In other words, (3.13) holds if µi = 0 when
gi(x) 6= 0.

Example 3.1 (Kuhn-Tucker conditions for QP problem)
Consider the QP problem, i.e., minimize

J(x) = xTHx+ 2fTx, (3.16)

with respect to x, and subject to the equality and inequality constraints

h(x) = A1x− b1 = 0 and g(x) = A2x− b2 ≤ 0. (3.17)

The Lagrange function is

L(x) = xTHx+ 2fTx+ λT (A1x− b1) + µT (A2x− b2). (3.18)
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The 1st order (Kuhn-Tucker) conditions for a minimum is

∂L(x)

∂x
= 2Hx+ 2f +AT1 λ+AT2 µ = 0, (3.19)

∂L(x)

∂λ
= A1x− b1 = 0, (3.20)

µT
∂L(x)

∂µ
= µT (A2x− b2) = 0. (3.21)

Here µ is (as usual) constructed to only affect constraints in g(x) = A2x − b2 ≤ 0
which are active.

3.3 Quadratic programming

Quadratic Programming (QP) problems usually assumes that the objective to be
minimized is written in a standard form (for QP). The control objective (3.2) with
the PM (3.1) can be written in this standard form as follows

J = uTHu+ 2fTu+ J0, (3.22)

where

H = F TQF + P, (3.23)

f = F TQ(p− r), (3.24)

J0 = (p− r)TQ(p− r). (3.25)

One advantage of (3.22) is that it is very simple to derive the gradient (3.3) and the
solution (3.4). We have

∂J

∂u
= 2Hu+ 2f, (3.26)

and the solution

u∗ = −H−1f. (3.27)

Note that the constant term, J0, in (3.25) is not needed in the solution.

One of the main advantages and motivation behind MPC is to treat process con-
straints in a simple and efficient way. The common constraints as control amplitude
constraints, control rate of change constraints and process output constraints can
all be represented with a single linear inequality, i.e.,

Au ≤ b, (3.28)

where A and b are matrices derived from the process constraints. The problem
of minimizing a quadratic objective (3.22) with respect to u subject to inequality
constraints as in (3.28) is a QP problem.

The QP problem can be solved in MATLAB by using the quadprog.m function in
the optimization toolbox. The syntax is as follows

>> u=quadprog(H,f,A,b);
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3.3.1 Equality constraints

We will in this section study the QP problem with equality constraints in general.
Given the objective

J = uTHu+ 2fTu, (3.29)

where H ∈ Rn×n, f ∈ Rn and u ∈ Rn. Consider the QP problem

minu J(u),
subject to Au = b,

(3.30)

where A ∈ Rm×n and b ∈ Rm. This problem can be formulated as an equivalent
optimization problem without constraints by the method of Lagrange multipliers.
Consider the Lagrange function

L(u) = uTHu+ 2fTu+ λT (Au− b). (3.31)

The problem (3.29) is now equivalent to minimize (3.31) with respect to u and
λ. The vector λ is a vector with Lagrange multipliers. The first order necessary
conditions for this problem is given by putting the gradients of the problem equal
to zero, i.e.,

∂J

∂u
= 2Hu+ 2f +ATλ = 0, (3.32)

∂J

∂λ
= Au− b = 0. (3.33)

Note that this can be written as a system of linear equations in the unknown vectors
u and λ̄ = 1

2λ. We have [
H AT

A 0m×m

] [
u
λ̄

]
=

[
−f
b

]
. (3.34)

It can be proved, Luenberger (1984), that the matrix

M =

[
H AT

A 0m×m

]
, (3.35)

is non-singular if A ∈ Rm×n has rank m and H ∈ Rn×n is positive definite. Hence,
(3.34) has a unique solution in this case. An efficient factorization method (such as
LU decomposition which utilize the structure of M) is recommended to solve the set
of linear equations. Another promising technique is the Conjugate Gradient Method
(CGM). Note that the system of linear equations (3.34) simply can be solved by the
CGM (PLS1) algorithm in Chapter 15. However, for theorectical considerations
note that (3.34) can be solved analytically. We have,

λ̄ = −(AH−1AT )−1(AH−1f + b), (3.36)

u = −H−1(f +AT λ̄). (3.37)

This can be proved by first solving (3.32) for u, which gives (3.37). Second substitute
u given by (3.37) into (3.33) and solve this equation for λ̄. the resulting equation
for the Lagrange multipliers is then given in (3.36).

Note that the number of equality constraints, m, must be less or equal to the number
of parameters, n, in u. Hence, we restrict the discussion to equality constraints where
m ≤ n. If m > n then we can work with the normal equations, i.e., ATAu ≤ AT b
instead of Au ≤ b.
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3.3.2 Inequality constraints

Most linear MPC methods leads to a QP (or LP) problem with inequality con-
straints. The QP problem with inequality constraints Au ≤ b is solved iteratively.
However, one should note that the number of iterations are finite and that the solu-
tion is guaranteed to converge if the QP problem is well formulated and a solution
is feasible.

Consider the QP problem with inequality constraints

minu J(u),
subject to Au ≤ b, (3.38)

where A ∈ Rm×n and b ∈ Rm. Note that we in this case can allow the number of
inequality constraints, m, to be greater than the number of parameters, n, in x.

The QP problem (3.38) is usually always solved by an active set method. The
procedure is described in the following. Define

A =


aT1
aT2
...
aTm

 , b =


b1
b2
...
bm

 . (3.39)

Hence, we have m inequalities of the form

aTi u ≤ bi ∀ i = 1, . . . ,m. (3.40)

The inequality (3.40) is treated as active and the corresponding QP problem with an
equality constraint is solved by e.g., the Lagrange method. Consider the Lagrange
function

L(u, λi) = uTHu+ 2fTu+ λTi (aTi u− bi). (3.41)

Notice that λi is a scalar. The 1st order conditions for a minimum is

∂L(u, λi)

∂u
= 2Hu+ 2f + aiλi = 0, (3.42)

∂L(u, λi)

∂λi
= aTi u− bi = 0, (3.43)

Solving (3.42) for u gives u = −H−1(f + ai
1
2λi). Substituting this into (3.43) and

solving this for the Lagrange multiplier, λi, gives

λ̄i = −a
T
i H
−1f + bi

aTi H
−1ai

, (3.44)

where λ̄i = 1
2λi. Assume that the Lagrange multiplier of this problem is computed

to be negative, i.e., λi < 0. It can then be shown that the inequality must be inactive
and aTi u ≤ b can be dropped from the set of m inequalities. We are therefore putting
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λi = 0 for this inactive constraints. If the Lagrange multiplier is found to be positive,
λi ≥ 0, then the inequality is active. This procedure leads to the vector

λ∗ =


λ1
...
λi
...
λm

 , (3.45)

which corresponds to the Lagrange problem

L(u) = uTHu+ 2fTu+ λT (Au− b). (3.46)

The point is now that the vector, λ, of Lagrange multipliers in (3.46) is known.
Hence, positive Lagrange multipliers (elements) in λ∗ corresponds to active inequal-
ity constraints and Lagrange multipliers which are zero corresponds to inactive in-
equality constraints. We have in (3.46) treated all the inequality constraints as
active, but, note that λ∗ = λ is known at this stage, and that inequalities which are
inactive (and treated as active) does not influence upon the problem because the
corresponding Lagrange multiplier is zero. Hence, the solution is given by

u∗ = −H−1(f +AT
1

2
λ∗) = −H−1(f +AT λ̄∗) (3.47)

where the Lagrange multipliers in λ̄∗ = 1
2λ
∗ is computed by an active set procedure

as described above. Hence, each element λ̄i in the vector λ̄∗ ∈ Rn is found by solving
a QP problem with one equality constraint (aTi u = bi). The reason for which the
Lagrange multipliers of the inequalities must be positive, i.e., λ̄∗ = 1

2λ
∗ ≥ 0, follows

from the Kuhn-Tucker optimality conditions in Lemma 3.1. The above active set
procedure is illustrated in the MATLAB function qpsol1.m.

A more reliable routine is the FORTRAN ql0001 subroutine which is a part of the
nlpq sowtware by Schittkowski (19984). A C-language function, qpsol, is build on
this and is found very promising in connection with MPC.

3.3.3 Examples

Example 3.2 (Scalar QP problem)
Consider the objective

J =
1

2
(u− 1)2 =

1

2
u2 − u+

1

2
, (3.48)

and the inequality constraint

u ≤ 3

4
. (3.49)

This problem is a standard QP problem with J0 = 1
2 , H = 1

2 , f = −1
2 , A = 1 and

b = 3
4 . The minimum of the unconstrained problem is clearly u = 1. The minimum

of J with respect to u subject to the constraint is therefore simply u∗ = 3
4 .
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As an illustration, let us now solve the problem with the active set procedure. Treating
the inequality as an equality condition we obtain the Lagrange function

L(u, λ) =
1

2
u2 − u+ λ(u− 3

4
). (3.50)

The 1st order necessary conditions for a minimum are

∂L(u, λ)

∂u
= u− 1 + λ = 0, (3.51)

∂L(u, λ)

∂λ
= u− 3

4
= 0. (3.52)

Solving (3.52) gives u = 3
4 . Substituting this into (3.51) gives λ = 1− u = 1

4 . Since
the Lagrange multiplier is positive (λ ≥ 0), we conclude that the minimum in fact is
u∗ = 3

4 . 2
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Chapter 4

Reducing the number of
unknown future controls

4.1 Prediction and control horizon

let us modify the MPC objective as

Jk =
L∑
i=1

((yk+i − rk+i)
TQi(yk+i − rk+i) + uTk+i−1Piuk+i−1)

+

Lu∑
i=1

∆uTk+i−1Ri∆uk+i−1, (4.1)

where we define Lu as the control horizon. Usually we have 1 ≤ Lu ≤ L and most
often it make sense to choose Lu = L.

Notice that we must have

∆uk+i−1 = 0 ∀ Nu < i ≤ L,
uk+i−1 = uk+1−1 ∀ Nu < i ≤ L, (4.2)

for eq. (4.1) to be consistent.

The extreme and simple case in which Nu = 1 is discussed in the following

4.2 Constant future controls

Consider the case in which all the future unknown controls, uk+i−1 ∀ i = 1, . . . L,
over the prediction horizon L are constant and equal to uk. In this case the MPC
optimization problem is simplified considerably. This means that

uk|L =


uk+1

uk+2
...

uk+L

 =


uk
uk

...
uk

 ∈ RLr (4.3)
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Hence the optimization problem solved at each time instants is to minimize the
function

Jk = Jk(uk|L) = Jk(uk) (4.4)

with respect to the present control, uk, only, or if deviation variables are preferred
we are minimizing

Jk = Jk(∆uk|L) = Jk(∆uk) (4.5)

with respect to the control deviation variable ∆uk = uk − uk−1.

In the standard MPC problem we are solving the problem

u∗k|L = arg min Jk(uk|L) (4.6)

while we in the reduced MPC problem we simply solve directly for the control to be
used, i.e.,

u∗k = arg min Jk(uk) (4.7)

One should note that the complexity of the computation problem is reduced con-
siderably, especially when the prediction horizon L is large. In the standard MPC
problem we have a number of Lr unknown control variables but in the reduced MPC
problem we have only r control inputs.

4.2.1 Reduced MPC problem in terms of uk

We have the MPC objective

Jk =
L∑
i=1

((yk+i − rk+i)
TQi(yk+i − rk+i) + uTk Piuk) (4.8)

= (yk+1|L − rk+1L)TQ(yk+1|L − rk+1L) + LuTk Puk. (4.9)

where Q is a block diagonal matrix with matrices Q1, Q2, etc. and QL on the
diagonal, and we have assumed for simplicity that P = P1 = Pi ∀ i = 1, . . . , L.

The prediction model (PM) may be written as

yk+1|L = pL + FLuk|L = pL + F sLuk (4.10)

where pL is a function of the present state, xk, i.e.,

pL = OLAxk (4.11)

and F sL matrix in terms of sums of impulse responses DAi−1, i.e.,

F sL =


DB
DB +DAB
DB +DAB +DA2B
...∑L

i=1DA
i−1B

 ∈ RLm×r (4.12)
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The criterion (4.9) with the PM (4.9) may be written as

Jk = Jk(uk) = uTkHuk + 2fTk uk + J0 (4.13)

where

H = (F sL)TQF sL + LP, (4.14)

fk = (F sL)TQ(pL − rk+1|L). (4.15)

Hence, the minimizing (optimal) reduced MPC control is

u∗k = −H−1fk = −H−1(F sL)TQ(OLAxk − rk+1|L) (4.16)

This means that the optimal MPC control is of the form

u∗k = f(xk, rk+1|L, A,B,D,Q, P ) (4.17)

This means that we have feed-back from the state vector, xk, feed-forward from
the future references in rk+1|L. The MPC control is also model based since it is a
function of the model matrices A,B,D (ore the impulse response matrices DAi−1B).
Finally, the optimal MPC control is a function of the weighting matrices Q and P .
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Chapter 5

Introductory examples

Example 5.1 (EMPC1: A simple example)
Consider the SISO 1st order process given by

yk+1 = ayk + buk, (5.1)

and the control problem

min
uk

J1 = (yk+1 − rk+1)TQ(yk+1 − rk+1) + uTk Puk. (5.2)

The process model can in this case be used directly as prediction model. The optimal
control input is

uk = − qb

p+ qb2
(ayk − rk+1). (5.3)

The closed loop system is described by

yk+1 = aclyk +
qb2

p+ qb2
rk+1, (5.4)

where the closed loop pole is given by

acl = a(1− qb2

p+ qb2
) = a

1

1 + q
pb

2
. (5.5)

In steady state we have

y =
1

1 + p
q

1−a
b2

r. (5.6)

Hence we have zero steady state offset only in certain circumstances

y = r when


a = 1 (integrator)
b→∞ (infinite gain)
p = 0 (free control)
q →∞
r = 0

(5.7)
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Note that the ratio q
p can be ”tuned” by specifying the closed loop pole acl. From

(5.5) we have

q

p
b2 =

a

acl
− 1. (5.8)

2

Example 5.2 (EMPC2: A simple example)
Consider the SISO 1st order process given by

yk+1 = ayk + buk + v, (5.9)

where v is an unknown constant disturbance, and the control problem

min
uk

J2 = (yk+1 − rk+1)TQ(yk+1 − rk+1) + ∆uTk P∆uk

= q(yk+1 − rk+1)2 + p∆u2
k. (5.10)

where ∆uk = uk − uk−1. A prediction model in terms of process input change
variables is given by

yk+1 = p1(k) + b∆uk, (5.11)

p1(k) = yk + a∆yk, (5.12)

where ∆yk = yk − yk−1. Note that the PM is independent of the unknown constant
disturbance, v, in the state equation. The optimal control input change is given by

∆u∗k = − qb

p+ qb2
(yk + a∆yk − rk+1). (5.13)

In this case we have zero steady state offset. An argumentation is as follows. As-
sume that the closed loop system is stable and that both the reference and possibly
disturbances are stationary variables. Then, the change variables ∆uk and ∆yk are
zero in steady state. Then we also have from the above that y = r. It is assumed
that qb

p+qb2
6= 0.

The closed loop system is described by

∆yk+1 = a(1− qb2

p+ qb2
)∆yk −

qb2

p+ qb2
yk +

qb2

p+ qb2
rk+1, (5.14)

which can be written as the following difference equation

yk+1 = c1yk + c2yk−1 + c3rk+1, (5.15)

c1 = 1 + a(1− qb2

p+ qb2
)− qb2

p+ qb2
= (1 + a)

1

1 + q
pb

2
, (5.16)

c2 = −a(1− qb2

p+ qb2
) = −a 1

1 + q
pb

2
, (5.17)

c3 =
qb2

p+ qb2
, (5.18)

or as the state space model[
yk
yk+1

]
=

[
0 1
c2 c1

] [
yk−1

yk

]
+

[
0
c3

]
rk+1. (5.19)

A stability analysis of the closed loop system is given in Example 5.3. 2
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Example 5.3 (Stability analysis)
Consider the control in Example 5.2. The closed loop system is stable if the roots of
the characteristic polynomial∣∣∣∣ zI − [ 0 1

c2 c1

] ∣∣∣∣ = z2 − c1z − c2 = 0, (5.20)

are located inside the unit circle in the complex plane. The bi-linear transformation

z =
1 + s

1− s
, (5.21)

will map the interior of the unit circle into the left complex plane. The stability
analysis is now equivalent to check whether the polynomial

(1 + c1 − c2)s2 + 2(1 + c2)s+ 1− c1 − c2 = 0, (5.22)

or equivalently

(2 + 2a(1− c3)− c3)s2 + 2(1− a(1− c3))s+ c3 = 0, (5.23)

has all roots in the left hand side of the complex plane. It can be shown, e.g. by
Routh’s stability criterion, that the system is stable if the polynomial coefficients are

positive. The coefficient c3 = qb2

p+qb2
is always positive when q > 0 and p ≥ 0. Hence,

we have to ensure that the two other coefficients to be positive.

a0 = 2 + 2a(1− c3)− c3 =
qb2 + 2(1 + a)p

qb2 + p
> 0. (5.24)

Hence, a0 > 0 when a ≥ 0, which is the case for real physical systems. Furthermore,
we must ensure that

a1 = 2(1− a(1− c3)) =
2qb2 + 2(1− a)p

qb2 + p
= 2− 2a

p

qb2 + p
> 0. (5.25)

After some algebraic manipulation we find that the closed loop system is stable if

a− 1

a
<

qb2

p+ qb2
<

2(1 + a)

2a+ 1
. (5.26)

Note that the lower bound is found from (5.25) and that it is only active when the
system is unstable (i.e. when a > 1). Furthermore we have from (5.25) that the
system is stable if

a− 1

b2
<
q

p
. (5.27)

Finally we present the eigenvalues of the closed loop system

λ =
a+ 1±

√
a2 − 2a+ 1− 4ab2 qp

2(1 + b2 qp)
. (5.28)

2
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Example 5.4 (Unconstrained MPC leads to P-control)
Given a system described by

yk+1 = yk + uk. (5.29)

Such a model frequently arise in angular positioning control systems where yk is the
angle of a positioning system. Consider the cost function (control objective)

Jk =

2∑
i=1

((yk+i − rk+i)
2 + u2

k+i−1). (5.30)

This cost function represents a compromise between a desire to have yk close to the
reference rk but at the same time a desire to have uk close to zero, i.e. recognizing
that the control uk is costly.

This problem is equivalent to an unconstrained optimization problem in the unknown
controls uk and uk+1. We can express (5.30) as

Jk = (yk + uk − rk+1)2 + (yk + uk + uk+1 − rk+2)2 + u2
k + u2

k+1. (5.31)

The first order necessary conditions for a minimum is

∂Jk
∂uk

= 2(yk + uk − rk+1) + 2(yk + uk + uk+1 − rk+2) + 2uk = 0. (5.32)

∂Jk
∂uk+1

= 2(yk + uk + uk+1 − rk+2) + 2uk+1 = 0. (5.33)

Condition (5.33) gives

uk+1 =
1

2
(rk+2 − (yk + uk)). (5.34)

Substituting (5.34) into condition (5.32) and solving for uk gives

u∗k = −3

5
yk +

2

5
rk+1 +

1

5
rk+2. (5.35)

Substituting (5.35) into (5.34) gives

u∗k+1 = −1

5
yk −

1

5
rk+1 +

2

5
rk+2. (5.36)

Hence the optimal (MPC) control, u∗k, consist of a constant feedback from the output
yk and feed-forward from the specified future reference signals. 2

Example 5.5 (Unconstrained MPC leads to P-control)
Consider the same problem as in Example 5.4. We will here derive the solution by
using the EMPC (matrix) theory. Given

yk+1 = yk + uk. (5.37)
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The cost function (control objective) (5.30) can be written in matrix form, i.e.,

Jk =

2∑
i=1

((yk+i − rk+i)
2 + u2

k+i−1)

= (yk+1|2 − rk+1|2)TQ(yk+1|2 − rk+1|2) + uTk|2Puk|2,

= uTk|2Huk|2 + 2fTuk|2 + J0 (5.38)

where

H = F T2 QF2 + P, (5.39)

f = F T2 Q(p2 − rk+1|2), (5.40)

p2 = O2Axk. (5.41)

where the weighting matrices are specified as Q = I2 and P = I2. I2 is the 2 × 2
identity matrix. The PM is of the form yk+1|2 = F2uk|2 + p2 where

F2 =

[
1 0
1 1

]
, p2 =

[
1
1

]
yk. (5.42)

Note that xk = yk in this example. The EMPC control is obtained from

u∗k|2 = −H−1f = −(F T2 QF2 + P )−1F T2 Q(p2 − rk+1|2)

= −1

5

[
2 1
−1 2

] [
yk − rk+1

yk − rk+2

]
. (5.43)

This gives

u∗k = −2

5
(yk − rk+1)− 1

5
(yk − rk+2) = −3

5
yk +

2

5
rk+1 +

1

5
rk+2. (5.44)

u∗k+1 =
1

5
(yk − rk+1)− 2

5
(yk − rk+2) = −1

5
yk −

1

5
rk+1 +

2

5
rk+2 (5.45)

Hence, the result is the same as in Example (5.4). Note that the computed control
u∗k+2 is not used for control purposes. However, the future controls may be used
in order to support the process operators. Note that the control u∗k gives off-set
free control, i.e., y = r in steady state because the process (5.37) consists of an
integrator. Show this by analyzing the closed loop system, yk+1 = yk + u∗k. This
example is implemented in the MATLAB script main ex45.m. See also Figure 5.1
for simulation results.

2

Example 5.6 (Constrained EMPC control)
Consider the same problem as in Example 5.4. The system is described by the state
space model ”matrices”, A = 1, B = 1 and D = 1. In order to compute the EMPC
(actual) control variables we need the matrices FL, Q, P and OL. With prediction
horizon, L = 2, we have

F2 =

[
DB 0
DAB DB

]
=

[
1 0
1 1

]
, O2 =

[
D
DA

]
=

[
1
1

]
, Q = P =

[
1 0
0 1

]
. (5.46)
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Figure 5.1: Simulation of the MPC system in Example 5.5. This figure was generated
with the MATLAB file main ex45.m.

The basic EMPC control are then using the matrices H = F T2 QF2+P , f = F T2 Q(p2−
rk+1|2 where p2 = O2Axk as well as an inequality describing constaints. This is
specified in the following. We will here add an inequality constraint (lower and
upper bound) on the control, i.e.,

0 ≤ uk ≤ 0.2. (5.47)

Hence, we can write (5.47) as the standard form inequality constraint

Auk|2 ≤ b, (5.48)

where

A =

[
1 0
−1 0

]
, b =

[
0.2

0

]
. (5.49)

This is a QP problem. The example is implemented in the MATLAB script main ex46.m.
See Figure 5.2 for simulation results. As we see from the figure there exist a feasible
control satisfying the constraints. Compare with the uncinstrained MPC control in
Example 5.5 and Figure 5.2.

2

Example 5.7 (EMPC control of unstable process)
Some methods for MPC can not be used on unstable processes, usually due to limi-
tations in the process model used. We will therefore illustrate MPC of an unstable
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Figure 5.2: Simulation of the EMPC system in Example 5.6. This figure was gener-
ated with the MATLAB file main ex46.m.

process. Consider an inverted pendulum on a cart. The equation of motion (model)
of the process is [

q̇1

q̇2

]
=

[
q2

a21 sin(q1) + b21 cos(q1)u

]
, (5.50)

where q1 [rad] is the angle from the vertical line, q2 = q̇1 [rad
s ] is the angular velocity

and u is the velocity of the cart assumed here to be a control variable. The model
parameters are a21 = 14.493 and b21 = −1.4774. The coefficients are related to
physical parameters as b21 = − mlG

Jt+ml2G
and a21 = −gb21, where m = 0.244 is the

mass of the pendulum, lG = 0.6369 is the length from the cart to the center of gravity
of the pendulum, Jt = 0.0062 is the moment of inertia about the center of gravity
and g = 9.81. Linearizing (5.50) around q1 = 0 and q2 = 0 gives the linearized
continuous time model [

q̇1

q̇2

]
=

[
0 1
a21 0

] [
q1

q2

]
+

[
0
b21

]
u. (5.51)

A discrete time model (A,B) is obtained by using the zero order hold method with
sampling interval ∆t = 1

40 = 0.025 [sec]. The control problem is to stabilize the
system, i.e., to control both states, x1 = q1 and x2 = q2, to zero for non-zero
initial values on the angle q1(t = 0) and the angular velocity q2(t = 0). Hence, the
reference signals for the EMPC control is simply rk+1|L = 0. The output equation
for this system is yk = Dxk with

D =

[
1 0
0 1

]
. (5.52)
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An LQ objective

Jk =

L∑
i=1

((yk+i − rk+i)
TQi(yk+i − rk+i) + uTk+i−1Piuk+i−1), (5.53)

with the weighting matrices

Qi =

[
5 0
0 5

]
, Pi = 1, (5.54)

are used in the EMPC method. Unconstrained MPC is identical to LQ and/or LQG
control. An infinite horizon LQ and/or LQG controller will stabilize any linear
process. Hence, it make sense to chose a large prediction horizon in the EMPC
algorithm in order to ensure stability. Trial and error shows that 20 ≤ L results in
stabilizing EMPC control. Choosing a prediction horizon, L = 100, gives the EMPC
unconstrained control

uEMPC
k =

[
18.8745 5.3254

] [ q1

q2

]
k

. (5.55)

In order to compare, we present the simple infinite horizon LQ controller which is

u
LQ
k =

[
18.8747 5.3254

] [ q1

q2

]
k

. (5.56)

As we see, the EMPC and the LQ controllers are (almost) identical. The EMPC
controller will converge to the LQ controller when L increases towards infinity. There
is a slow convergence for this example because the system is open loop unstable,
and because the sampling interval is relatively small (∆t = 0.025). The smaller
the sampling interval is, the larger must the prediction horizon, L, (in number of
samples) be chosen. If the states, xk, is not measured, then, an an state observer for
estimating xk can be used instead. The result is then an LQG controller. A demo
of this pendulum example is given in the MATLAB file main empc pendel.m.
See Figure 5.3 for simulation results. The initial value for the angle between the
pendulum and the upright position was q1(t = 0) = 0.2618 [rad], which is equivalent
to q1(t = 0) = 15◦. The initial value for the angular velocity is, q2(t = 0) = 0. As
we see, the EMPC/LQ controller stabilizes the pendulum within a few seconds. We
have used the linear and unconstrained EMPC algorithm to control the nonlinear
pendulum model (5.50).

Dear reader ! Try to stabilize the pendulum with a PD-controller.

2
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Figure 5.3: Simulation of the EMPC pendulum control problem in Example 5.7.
This figure was generated with the MATLAB file main empc pendel.m.

Example 5.8 (Stable EMPC2)
Consider the process

xk+1 = Axk +Buk + v, (5.57)

yk = Dxk + y0, (5.58)

where v and y0 are constant and unknown disturbances. Consider the control objec-
tive

Jk = ∆xTk+1S∆xk+1 + (yk+1 − rk+1)TQ(yk+1 − rk+1) + ∆uTk P∆uk, (5.59)

where S is a weighting for the final state deviation, ∆xk+1 = xk+1 − xk. The idea
with this is to obtain an MPC/LQ controller with guaranteed stability for all choices
Q > 0 and P > 0 if S is chosen properly. In order to ensure stability we chose
S = R where R is the solution to the discrete time algebraic Riccati equation. In
order to minimize (5.59) we need an PM for yk+1 and an expression for ∆xk+1 in
terms of the unknown ∆uk. We have

p1 = yk +A∆xk = yk +AD−1∆yk, (5.60)

yk+1 = p1 +DB∆uk, (5.61)

∆xk+1 = A∆xk +B∆uk = AD−1∆yk +B∆uk, (5.62)

where D is non-singular in order to illustrate how ∆xk can be computed. Assume that
D is non-singular, then, without loss of generality we can work with a transformed
state space model in which D = I. Note, this can be generalized to observable
systems. Remark that the PM (5.61) and (5.62) are independent of the constant
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disturbances v and y0. This is one advantage of working with deviation control
variables. Substituting into (5.59) gives

Jk = (A∆xk +B∆uk)
TS(A∆xk +B∆uk) + ∆uTk P∆uk

+(p1 +DB∆uk − rk+1)TQ(p1 +DB∆uk − rk+1) = ∆uTkH∆uk + 2fTk ∆uk,(5.63)

where

H = BTSB + (DB)TQDB + P, (5.64)

fk = BTSA∆xk + (DB)TQ(p1 − rk+1). (5.65)

This can be proved by expanding (5.63) or from the first order necessary condition
for a minimum, i.e.,

∂Jk
∂∆uk

= 2BTS(A∆xk +B∆uk) + 2(DB)TQ(p1 +DB∆uk − rk+1) + 2P∆uk

= 2(BTSB + (DB)TQDB + P )∆uk + 2(BTSA∆xk + (DB)TQ(p1 − rk+1)) = 0.

Solving with respect to ∆uk gives

∆u∗k = −H−1fk = −(BTSB + (DB)TQDB + P )−1(BTSA∆xk + (DB)TQ(p1 − rk+1)).

Consider now a scalar system in which A = a, B = b, D = d, Q = q, P = p and
S = s. This gives

∆u∗k = −sab∆xk + qdb(p1 − rk+1)

sb2 + q(db)2 + p
= −sabd

−1∆yk + qdb(p1 − rk+1)

sb2 + q(db)2 + p
. (5.66)

It is important to note that the control uk = ∆u∗k +uk−1 is independent of v and y0.
This means that the control also is independent of constant terms xs, us, ys, vs in a
model

xk+1 − xs = A(xk − xs) +B(uk − us) + Cvs, (5.67)

yk = D(xk − xs) + ys, (5.68)

because (5.67) and (5.68) can be written in a form similar to (5.57) and (5.58) with
constant disturbances

v = xs − (Axs +Bus) + Cvs, (5.69)

y0 = ys −Dxs. (5.70)

2

Example 5.9 (Stability analysis EMPC2)
Consider the process in Example 5.8 and a scalar system where d = 1. The control,
Equation (5.66), is

∆u∗k = −sab∆xk + qb(yk + a∆xk − rk+1)

(s+ q)b2 + p
. (5.71)
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The closed loop system, recognizing that ∆xk+1 = a∆xk + b∆uk, is

∆xk+1 = a(1− (s+ q)b2

(s+ q)b2 + p
)∆xk −

qb2

(s+ q)b2 + p
xk − c3y

0 + c3rk+1, (5.72)

where

c3 =
qb2

(s+ q)b2 + p
. (5.73)

This can be written as a difference equation

xk+1 = c1xk + c2xk−1 − c3y
0 + c3rk+1, (5.74)

where

c1 = 1 + a(1− s+ q

q
c3)− c3, (5.75)

c2 = −a(1− s+ q

q
c3). (5.76)

Hence, the closed loop system is described by[
xk+1

xk+2

]
=

[
0 1
c2 c1

] [
xk
xk+1

]
+

[
0 0
c3 −c3

] [
rk+2

y0

]
, (5.77)

yk =
[

1 0
] [ xk
xk+1

]
+
[

0 1
] [ rk+2

y0

]
. (5.78)

In order to analyze the stability of the closed loop system we can put all external
signals equal to zero, i.e., rk+1 = 0 and y0 = 0. We can now analyze the stability
similarly as in Example 5.3. Using z = 1+w

1−w in the characteristic polynomial z2 −
c1z − c2 = 0 gives the polynomial

(1 + c1 − c2)w2 + 2(1 + c2)w + c3 = 0. (5.79)

The polynomial coefficients must be positive in order for the closed loop system to
be stable. We must ensure that

a0 = 1 + c1 − c2 = 2 + 2a(1− s+ q

q
c3)− c3 =

(2s+ q)b2 + 2(1 + a)p

(s+ q)b2 + p
> 0,(5.80)

a1 = 2(1 + c1) = 2− 2a(1− s+ q

q
c3) =

2(s+ q)b2 + 2(1− a)p

(s+ q)b2 + p
> 0, (5.81)

since c3 > 0. Hence, a0 is always positive when a ≥ 0. Requiring a1 > 0 gives the
simple expression

a− 1

b2
<
s+ q

p
. (5.82)

This expression is valid for physical systems in which a ≥ 0. Letting s = 0 gives the
same result as in Example 5.3.

2
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Chapter 6

Extension of the control
objective

6.1 Linear model predictive control

We will in this section simply discuss an extension of the MPC theory presented so
far. The main point is to extend the control objective with so called target variables.
Instead of weighting the controls uk|L in the objective we often want to weight the
difference uk|L− u0 where u0 is a vector of specified target variables for the control.

Given a linear process model

xk+1 = Axk +Buk + Cvk, (6.1)

yk = Dxk + Fvk, (6.2)

zk = Hxk +Mvk, (6.3)

where zk is a vector of property variables.

A relatively general objective function for MPC is the following LQ index.

Jk =
L∑
i=1

L(uk+i−1), (6.4)

where

L(uk+i−1) = (yk+i − rk+i)
TQk+i(yk+i − rk+i) + ∆uTk+i−1Rk+i−1∆uk+i−1

+uTk+i−1Pk+i−1uk+i−1 + (uk+i−1 − u0
k+i−1)TP 2

k+i−1(uk+i−1 − u0
k+i−1)

+(zk+i − z0
k+i)

TQzk+i(zk+i − z0
k+i) + (xk+i − x0

k+i)
TQxk+i(xk+i − x0

k+i).

(6.5)

This can for simplicity of notation be written in matrix form. Note that we are using
the vector and matrix notation which are common in subspace system identification.

Jk = L(uk|L), (6.6)
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where

L(uk|L) = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LR∆uk|L

+uTk|LPuk|L + (uk|L − u0)TP2(uk|L − u0)

+(zk+1|L − z0)TQz(zk+1|L − z0) + (xk+1|L − x0)TQx(xk+1|L − x0). (6.7)

The time dependence of the weighting matrices and the target vectors are omitted
for simplicity of notation. The performance index can be written in terms of the
unknown control deviation variables as follows

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L + J0(k), (6.8)

where H ∈ RLr×Lr is a constant matrix, fk ∈ RLr is a time varying vector but
independent of the unknown control deviation variables, J0(k) ∈ R is time varying
but independent of the optimization problem. Note that it will be assumed that H
is non-singular. Furthermore, we have

H = F TLQFL +R+ STPS + STP2S + F Tz QzFz + F Tx QxFx, (6.9)

fk = F TLQ(pL − rk+1|L) + STPcuk−1

+STP2(cuk−1 − u0) + F Tz Qz(pz − z0) + F Tx Qx(px − x0), (6.10)

where FL, Fz and Fx are lower triangular toepliz matrices of the form FL =
FL(A,B,D), Fz = FL(A,B,H), Fx = FL(A,B, In×n).

Furthermore, pL, pz and px represents the autonomeous system responses for y, z
and x, respectively.

pL = OL(D,A)Axk + FL(A,B,D)cuk−1, (6.11)

pz = OL(H,A)Axk + FL(A,B,H)cuk−1, (6.12)

px = OL(I, A)Axk + FL(A,B, I)cuk−1. (6.13)

If xk is not measured, then, xk can be taken from a traditional state estimator
(e.g. Kalman filter) or computed from the model and a sequence of old inputs and
outputs. If only the measured output variables are used for identification of xk we
have (for the EMPC algorithm)

x̂k = AJ−1O†Jyk−J+1|J + (CJ−1 −AJ−1O†JH
d
J)uk−J+1|J−1, (6.14)

where OJ = OJ(D,A), CJ = CJ(A,B,D), HdL = HdL(A,B,D). J is the identification
horizon, i.e. the number of past outputs used to compute xk.
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Constraints for Model
Predictive Control

7.1 Constraints of the type Auk|L ≤ b

Common types of constraints are

1. System input amplitude constraints.

2. System input rate constraints.

3. System output constraints.

These constraints can be written as the following linear inequality

Auk|L ≤ b, (7.1)

where the matrix A and the vector b are discussed below.

7.1.1 System Input Amplitude Constraints

It is common with amplitude constraints on the input signal to almost any practical
control system. Such constraints can be formulated as

umin ≤ uk|L ≤ umax. (7.2)

These linear constraints can be formulated more convenient (standard form con-
straints for QP problems) as[

I
−I

]
uk|L ≤

[
umax

−umin

]
. (7.3)

7.1.2 System Input Rate Constraints

∆umin ≤ ∆uk|L ≤ ∆umax. (7.4)
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Note that ∆uk|L = uk|L − uk−1|L. This relationship is not sufficient to formulate a
matrix inequality describing the constraints, because the term uk−1|L on the right
hand side, consists of dependent variables when L > 1. This is however solved by
introducing the relationship

uk|L = S∆uk|L + cuk−1, (7.5)

which gives

∆uk|L = S−1uk|L − S−1cuk−1. (7.6)

Substituting (7.6) into the linear constraints (7.5) can then be formulated as the
following matrix inequality[

S−1

−S−1

]
uk|L ≤

[
∆umax + S−1cuk−1

−∆umin − S−1cuk−1

]
. (7.7)

7.1.3 System Output Amplitude Constraints

System output constraints are defined as follows

ymin ≤ yk+1|L ≤ ymax. (7.8)

Combination with the prediction model in terms of control change variables

yk+1|L = pL(k) + FL∆uk|L, (7.9)

or simply

yk+1|L = pL(k) + FLuk|L, (7.10)

gives [
FL
−FL

]
uk|L ≤

[
ymax − pL(k)
−ymin + pL(k)

]
. (7.11)

7.1.4 Input Amplitude, Input Change and Output Constraints

The three types of constraints in (7.3), (7.7) and (7.11) can be combined and de-
scribed by the following linear inequality

A︷ ︸︸ ︷

I
−I
I
−I
FL
−FL

uk|L ≤

b︷ ︸︸ ︷

umax

−umin

∆umax + S−1cuk−1

−∆umin − S−1cuk−1

ymax − pL(k)
−ymin + pL(k)

 . (7.12)

One should note that state constraints can be included similarly.
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7.2 Solution by Quadratic Programming

Given the control objective criterion

J2 = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LP∆uk|L (7.13)

and the prediction model

yk+1|L = pL(k) + FL∆uk|L (7.14)

Substituting the prediction model into J2 gives

J2 = ∆uTk|LH∆uk|L + 2fT2 ∆uk|L + J2,0 (7.15)

where

H = P + F TLQFL (7.16)

f2 = F TLQ(pL(k)− rk+1|L) (7.17)

J2,0 = (pL(k)− rk+1|L)TQ(pL(k)− rk+1|L) (7.18)

This objective functional is expressed in terms of input change variables. The re-
lationship between ∆uk|L and uk|L can be used in order to express J2 in terms of
actual input variables.

Substituting the vector of control change variables

∆uk|L = uk|L − uk−1|L (7.19)

into the control objective criterion J2 gives

J2 = uTk|LHuk|L + 2fTuk|L + J0 (7.20)

where

H = P + F TLQFL (7.21)

f = F TLQ(pL(k)− rk+1|L)−Huk−1|L (7.22)

J0 = (pL(k)− rk+1|L)TQ(pL(k)− rk+1|L) + uTk−1|LHuk−1|L

− 2F TLQ(pL(k)− rk+1|L)uk−1|L (7.23)

or equivalently

H = P + F TLQFL (7.24)

f = f2 −Huk−1|L (7.25)

J0 = J2,0 + uTk−1|LHuk−1|L − 2fT2 uk−1|L (7.26)

We have the following QP problem

min
uk|L

(uTk|LHuk|L + 2fTuk|L) (7.27)

subject to:
Auk|L ≤ b

(7.28)
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which e.g. can be solved in MATLAB by the Optimization toolbox function QP, i.e.

uk|L = qp(H, f,A, b) (7.29)

In order to compute uk|L from the QP problem uk−1|L must be known. Initially
uk−1|L must be specified in order to start the control strategy. This means that the
QP problem must be initialized with unknown future control input signals. The
simplest solution is to initially putting uk−1|L = [uTk−1 · · ·uTk−1]T . However, this can
be a drawback with this strategy.

The above QP problem can be reformulated in order to overcome this drawback.
The relationship between ∆uk|L and uk|L can be written as

∆uk|L = S2uk|L − c2uk−1 (7.30)

S2 and c2 ar matrices with ones and zeroes. Substituting into the objective functional
Equation (7.15) gives

J2 = uTk|LHuk|L + 2fTuk|L + J0 (7.31)

where

H = ST2 HS2 (7.32)

f = f2 − ST2 Hc2uk−1 (7.33)

J0 = J2,0 + (c2uk−1)THc2uk−1 − 2fT2 c2uk−1 (7.34)

At time instant k the vector f and the scalar J0 are determined in terms of known
process variables.



Chapter 8

More on constraints and Model
Predictive Control

8.1 The Control Problem

Consider a linear quadratic (LQ) objective functional

J = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LR∆uk|L + uTk|LR2uk|L (8.1)

We will study the problem of minimizing J with respect to the future control inputs,
subject to input and output constraints.

This problem can be formulated as follows:

min
∆uk|L

J (8.2)

subject to:

umin
k|L ≤ uk|L ≤ umax

k|L (input amplitude constraints)

∆umin
k|L ≤ ∆uk|L ≤ ∆umax

k|L (input change constraints)

ymin
k+1|L ≤ yk+1|L ≤ ymax

k+1|L (output constraints)

(8.3)

8.2 Prediction Model

The prediction model is assumed to be of the form

yk+1|L = pL(k) + FL∆uk|L (8.4)

where pL(k) is defined in terms of known past inputs and outputs. FL is a constant
lower triangular matrix.

8.3 Constraints

The constraints (8.3) can be written as an equivalent linear inequality:

A∆uk|L ≤ b (8.5)
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where

A =



S
−S
I
−I
FL
−FL

 , b =



umax
k|L − cuk−1

−umin
k|L + cuk−1

∆umax
k|L

−∆umin
k|L

ymax
k+1|L − pL(k)

−ymin
k+1|L + pL(k)


(8.6)

This will be proved in the next subsections.

8.3.1 Relationship between ∆uk|L and uk|L

It is convenient to find the relationship between ∆uk|L and uk|L in order to formulate
the constraints (8.3) in terms of future deviation variables ∆uk|L.

We have

uk|L = S∆uk|L + cuk−1 (8.7)

where

S =


I 0 0 · · · 0
I I 0 · · · 0
I I I · · · 0
...

...
...

. . . 0
I I I · · · I

 , c =


I
I
I
...
I

 (8.8)

The following alternative relation is also useful:

∆uk|L = S2uk|L − c2uk−1 (8.9)

where

S2 =


I 0 0 · · · 0
−I I 0 · · · 0

0 −I I · · · 0
...

...
...

. . . 0
0 0 0 · · · I

 , c2 =


I
0
0
...
0

 (8.10)

Note that S2 = S−1 and c2 = S−1c.

Note also that:

uk−1|L = (I − S2)uk|L + c2uk−1. (8.11)

8.3.2 Input amplitude constraints

The constraints

umin
k|L ≤ uk|L ≤ u

max
k|L (8.12)

is equivalent to

S∆uk|L ≤ umax
k|L − cuk−1

−S∆uk|L ≤ −umin
k|L + cuk−1

(8.13)
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8.3.3 Input change constraints

The constraints

∆umin
k|L ≤ uk|L ≤ ∆umax

k|L (8.14)

is equivalent to

∆uk|L ≤ ∆umax
k|L

−∆uk|L ≤ −∆umin
k|L

(8.15)

8.3.4 Output constraints

The constraints

ymin
k+1|L ≤ yk+1|L ≤ ymax

k+1|L (8.16)

By using the prediction model, Equation (8.4), we have the equivalent constraints:

FL∆uk|L ≤ ymax
k+1|L − pL(k)

−FL∆uk|L ≤ −ymin
k+1|L + pL(k)

(8.17)

8.4 Solution by Quadratic Programming

The LQ objective functional Equation (8.1) can be written as:

J = ∆uTk|LH∆uk|L + 2fT∆uk|L + J0 (8.18)

where

H = R+ F TLQFL + STR2S (8.19)

f = F TLQ(pL(k)− rk+1|L) + STR2cuk−1 (8.20)

J0 = (pL(k)− rk+1|L)TQ(pL(k)− rk+1|L) + uTk−1c
TR2cuk−1 (8.21)

H is a constant matrix which is referred to as the Hessian matrix.. It is assumed
that H is positive definit (i.e. H > 0). f is a vector which is independent of the
unknown present and future inputs. f is defined by the model, a sequence of known
past inputs and outputs (inkluding yk). Similarly J0 is a known scalar.

The problem can be solved by the following QP problem

min
∆uL|L

(∆uTk|LH∆uk|L + 2fT∆uk|L) (8.22)

subject to:
A∆uk|L ≤ b

(8.23)

The QP problem can e.g. be solved in MATLAB by the Optimization toolbox
function QP, i.e.

∆uk|L = qp(H, f,A, b) (8.24)
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Chapter 9

How to handle time delay

9.1 Modeling of time delay

We will in this section discuss systems with possibly time delay. Assume that the
system without time delay is given by a proper state space model as follows

xk+1 = Axk +Buk, (9.1)

y−k = Dxk + Euk, (9.2)

and that the output of the system, yk, is identical to, y−k , but delayed a delay τ
samples. The time delay may then be exact expressed as

yk+τ = y−k . (9.3)

Discrete time systems with time delay may be modeled by including a number of
fictive dummy states for describing the time delay. Some alternative methods are
described in the following.

9.1.1 Transport delay and controllability canonical form

Formulation 1: State space model for time delay

We will include a positive integer number τ fictive dummy state vectors of dimension
m in order for describing the time delay, i.e.,

x1
k+1 = Dxk + Euk
x2
k+1 = x1

k
...

xτk+1 = xτ−1
k

 (9.4)

The output of the process is then given by

yk = xτk (9.5)

We se by comparing the defined equations (9.4) and (9.5) is an identical description
as the original state space model given by (9.1), (9.2 and (9.3). Note that we in
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(9.4) have defined a number τm fictive dummy state variables for describing the
time delay.

Augmenting the model (9.1) and (9.2) with the state space model for the delay gives
a complete model for the system with delay.

x̃k+1︷ ︸︸ ︷
x
x1

x2

...
xτ


k+1

=

Ã︷ ︸︸ ︷
A 0 0 · · · 0 0
D 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0



x̃k︷ ︸︸ ︷
x
x1

x2

...
xτ


k

+

B̃︷ ︸︸ ︷
B
E
0
...
0

uk (9.6)

yk =

D̃︷ ︸︸ ︷[
0 0 0 · · · 0 I

]
x̃k︷ ︸︸ ︷

x
x1

x2

...
xτ−1

xτ


k

(9.7)

hence we have

x̃k+1 = Ãx̃k + B̃uk (9.8)

yk = D̃x̃k (9.9)

where the state vector x̃k ∈ Rn+τm contains n states for the process (9.1) without
delay and a number τm states for describing the time delay (9.3).

With the basis in this state space model, Equations (9.8) and (9.9), we may use all
our theory for analyse and design of linear dynamic control systems.

Formulation 2: State space model for time delay

The formulation of the time delay in Equations (9.6) and (9.7) is not very com-
pacter. We will in this section present a different more compact formulation. In
some circumstances the model from y−k to yk will be of interest in itself. We start
by isolating this model. Consider the following state space model where yk− ∈ Rm
s delayed an integer number τ time instants.

xτk+1︷ ︸︸ ︷
x1

x2

x3

...
xτ


k+1

=

Aτ︷ ︸︸ ︷
0 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0



xτk︷ ︸︸ ︷
x1

x2

x3

...
xτ


k

+

Bτ︷ ︸︸ ︷
I
0
0
...
0

 y−k (9.10)
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yk =

Dτ︷ ︸︸ ︷[
0 0 0 · · · 0 I

]
xτk︷ ︸︸ ︷

x
x1

x2

...
xτ−1

xτ


k

(9.11)

which may be written as

xτk+1 = Aτxτk +Bτy−k (9.12)

yk = Dτxτk (9.13)

where xτk ∈ Rτm. the initial state for the delay state is put to xτ0 = 0. Note here
that the state space model (9.10) and (9.11) is on so called controllability canonical
form.

Combining (9.12) and (9.13) with the state space model equations (9.1) and (9.2),
gives an compact model for the entire system, i.e., the system without delay from
uk to y−k , and for the delay from y−k to the output yk.

x̃k︷ ︸︸ ︷[
x
xτ

]
k+1

=

Ã︷ ︸︸ ︷[
A 0
BτD Aτ

] x̃k︷ ︸︸ ︷[
x
xτ

]
k

+

B̃︷ ︸︸ ︷[
B
BτE

]
uk (9.14)

yk =

D̃︷ ︸︸ ︷[
0 Dτ

] x̃k︷ ︸︸ ︷[
x
xτ

]
k

(9.15)

Note that the state space model given by Equations (9.14) and (9.15), is identical
with the state space model in (9.6) and (9.7).

9.1.2 Time delay and observability canonical form

A simple method for modeling the time delay may be obtained by directly taking
Equation (9.3) as the starting point. Combining yk+τ = y−k with a number τ − 1
fictive dummy states, yk+1 = yk+1, · · ·, yk+τ−1 = yk+τ−1 we may write down the
following state space model

xτk+1︷ ︸︸ ︷
yk+1

yk+2

yk+3
...
yk+τ

 =

Aτ︷ ︸︸ ︷
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 I
0 0 0 · · · 0 0



xτk︷ ︸︸ ︷
yk
yk+1

yk+2
...
yk+τ−1

+

Bτ︷ ︸︸ ︷
0
0
...
0
I

 y−k (9.16)



66 How to handle time delay

yk =

Dτ︷ ︸︸ ︷[
I 0 0 · · · 0

]
xτk︷ ︸︸ ︷

yk
yk+1

yk+2
...
yk+τ−1

 (9.17)

where xτk ∈ Rτm.

The initial state for the time delay is put to xτ0 = 0. Note that the state space model
(9.16) and (9.17) is on observability canonical form.

9.2 Implementation of time delay

The state space model for the delay contains a huge number of zeroes and ones when
the time delay is large, ie when the delay state space model dimension mτ is large.

In the continuous time we have that a delay is described exact by yk+τ = y−k . It
can be shown that instead of simulating the state space model for the delay we can
obtain the same by using a matrix (array or shift register) of size nτ ×m where we
use nτ = τ as an integer number of delay samples.

The above state space model for the delay contains nτ = τ state equations which
may be expressed as

x1
k = y−k−1

x2
k = x1

k−1
...

xτ−1
k = xτ−2

k−1

yk = xτ−1
k−1

(9.18)

where we have used yk = xτk. This may be implemented efficiently by using a matrix
(or vector x. The following algorithm (or variants of it) may be used:

Algorithm 9.2.1 (Implementing time delay of a signal)
Given a vector y−k ∈ Rm. A time delay of the elements in the vector y−k of nτ time
instants (samples) may simply be implemented by using a matrix x of size nτ ×m.

At each sample, k, (each call of the algorithm) do the following:

1. Put y−k in the first row (at the top) of the matrix x.

2. Interchange each row (elements) in matrix one position down in the matrix.

3. The delayed output yk is taken from the bottom element (last row) in the matrix
x.
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yk = x(τ, 1 : m)T

for i = τ : −1 : 2
x(i, 1 : m) = x(i− 1, 1 : m)

end
x(1, 1 : m) = (y−k )T

Note that this algorithm should be evaluated at each time instant k.
4

9.3 Examples

Example 9.1 Delay τ = 2 samplews
Given a system where the undelayed output y−k is delayed τ = 2 samples. The model
for the undelayed part from input uk to output y−k is given by

xk+1 = Axk +Buk, (9.19)

yk = Dxk. (9.20)

For the delay we define τ = 2 dummy states

x1
k+1 = y−k , (9.21)

x2
k+1 = x1

k, (9.22)

yk = x2
k. (9.23)
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Part II

Predictive Control material





Chapter 10

DYCOPS5 paper: On model
based predictive control

An input and output model is used for the development of a model based predictive
control framework for linear model structures. Different MPC algorithms which
are based on linear state space models or linear polynomial models fit into this
framework. A new identification horizon is introduced in order to represent the
past.

10.1 Introduction

A method and framework for linear Model Predictive Control (MPC) is presented.
The method is based on a linear state space model or a linear polynomial model.
There are two time horizons in the method: one horizon L for prediction of future
outputs (prediction horizon) and a second horizon J into the past (identification
horizon). The new horizon J defines one sequence of past outputs and one sequence
of past inputs, which may be used to estimate the model or only the present state
of the process. This eliminates the need for an observer. This method is refereed to
as Extended state space Model Predictive Control (EMPC). A second idea of this
method is to obtain a framework to incorporate different linear MPC algorithms.

The EMPC method can be shown to give identical results as the Generalized Pre-
dictive Control (GPC) algorithm (see Ordys and Clarke (1994) and the references
therein) provided the minimal identification horizon J is chosen. A larger identifica-
tion horizon is found from experiments to have a positive effect upon noise filtering.
Note that the EMPC method may be defined in terms of some
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matrices to be defined lather. This can simplify the computations compared to the
traditional formulation of the GPC which is based on the solution of a polynomial
matrix Diophantine equation. The EMPC algorithm is a simple alternative approach
which avoids explicit state reconstruction. The EMPC algorithm does not require
solutions of Diophantine equations (as in GPC) or non linear matrix Riccati equa-
tions (as in Linear Quadratic (LQ) optimal control). The EMPC method is based
on results from a Subspace IDentification (SID) method for linear systems presented
in, e.g. Di Ruscio (1997a). Other SID methods are presented in Van Overschee and
De Moor (1996). An SID method can with advantage be used as a modeling tool
for MPC.

The contributions herein are: The inclusion of a new identification horizon for MPC.
The derivation of a new input and output relationship between the past and the
future data which e.g. generalizes Proposition 3.1 in Albertos and Ortega (1989).
The framework for the derivation of prediction models from any linear model. The
main results in this paper are organized as follows. A matrix equation is presented
in Section 10.2. Two prediction models are proposed in Sections 10.3.1 and 10.3.2.
The prediction model is analyzed in Section 10.3.3. The MPC strategy is discussed
in Section 10.4.

10.2 Preliminaries

10.2.1 System description

Consider a process described by a linear, discrete time invariant state space model
(SSM)

xk+1 = Axk +Buk + Cvk, (10.1)

yk = Dxk + Euk + Fvk, (10.2)

where k is discrete time, xk ∈ Rn is the state, uk ∈ Rr is the control input, vk ∈ Rl is
an external input and yk ∈ Rm is the output. (A,B,C,D,E, F ) are of appropriate
dimensions. In continuous time systems E is usually zero. This is not the case in
discrete time due to sampling. However, for the sake of simplicity in notation, only
strictly proper systems with E = 0 are discussed. The only proper case in which
E 6= 0 is straightforward because we will treat the case with external inputs vk and
F 6= 0. There is structurally no difference between inputs uk or external inputs vk
in the SSM, (10.1) and (10.2). It is assumed that (D,A) is observable and (A,B) is
controllable.

An alternative is to use a polynomial model (e.g. ARMAX, CARIMA, FIR, step
response models etc.), which in discrete time can be written as

yk+1 = Ayk−na+1|na + Buk−nb+1|nb + Cvk−nc+1|nc ,

(10.3)

where we have used the definition

yi|j
def
=
[
yTi yTi+1 · · · yTi+j−1

]T ∈ Rim, (10.4)
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which is refereed to as an extended (output) vector. A ∈ Rm×nam, B ∈ Rm×nbr
and C ∈ Rm×ncl are constant matrices. Note that all linear polynomial models,
represented by the difference model (10.3), can be transferred to (10.1) and (10.2).
Only deterministic systems are considered in this paper.

10.2.2 Definitions

Given the SSM, (10.1) and (10.2). The extended observability matrix Oi for the
pair (D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (10.5)

where i denotes the number of block rows.

The reversed extended controllability matrix Cdi for the pair (A,B) is defined as

Cdi
def
=
[
Ai−1B Ai−2 · · · B

]
∈ Rn×ir, (10.6)

where i denotes the number of block columns.
A matrix Csi for the pair (A,C) is defined similar, i.e., with C substituted for B in
(10.6).

The lower block triangular Toeplitz matrixHdi ∈ Rim×(i−1)r for the triple (D,A,B)

Hdi
def
=


0 0 · · · 0
DB 0 · · · 0
DAB DB · · · 0
...

...
. . .

...
DAi−2B DAi−3B · · · DB

 . (10.7)

A lower block triangular Toeplitz matrixHsi ∈ Rim×il for the quadruple (D,A,C, F )
is defined similarly. See e.g., Di Ruscio (1997a).

Define ∆uk = uk − uk−1. Using (10.4) we have

uk|L = S∆uk|L + cuk−1 (10.8)

where S ∈ RLr×Lr and c ∈ RLr×r are given by

S =


Ir 0r · · · 0r
Ir Ir · · · 0r
...

...
. . .

...
Ir Ir · · · Ir

 , c =


Ir
Ir
...
Ir

 , (10.9)

where Ir is the r × r identity matrix and 0r is the r × r matrix of zeroes.

10.2.3 Extended state space model

Proposition 2.1 A linear model ((10.1) and (10.2), or (10.3)) can be described with
an equivalent extended state space model (ESSM)

yk+1|L = ÃLyk|L + B̃Luk|L + C̃Lvk|L+1. (10.10)
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L is defined as the prediction horizon such that L ≥ Lmin where Lmin, sufficient for
the ESSM to exist, is in case of (10.1) and (10.2) defined by

Lmin
def
=

{
n− rank(D) + 1 when rank(D) < n
1 when rank(D) ≥ n .

The extended output or state vector yk|L, the extended input vectors uk|L and vk|L+1,
follows from the definition in (10.4). The matrices in (10.10) are in case of an SSM
((10.1) and (10.2)) given as

ÃL
def
= OLA(OTLOL)−1OTL , (10.11)

B̃L
def
=
[
OLB HdL

]
− ÃL

[
HdL 0Lm×r

]
, (10.12)

C̃L
def
=
[
OLC HsL

]
− ÃL

[
HsL 0Lm×l

]
, (10.13)

where ÃL ∈ RLm×Lm, B̃L ∈ RLm×Lr and C̃L ∈ RLm×(L+1)l.
The polynomial model (10.3), can be formulated directly as (10.10) for L ≥ max(na, nb, nc)
by the use of (10.14)-(10.17).

Proof. See Di Ruscio (1997a). 2

The importance of the ESSM for model predictive control is that it facilitates a
simple and general method for building a prediction model from a linear process
model. Note, it is in general not sufficient to choose Lmin as the ceiling function

d nme. The ESSM transition matrix ÃL has the same n eigenvalues as the matrix A
and Lm − n eigenvalues equal to zero. This follows from similarity transformation
on (10.11).

In the SID algorithm, Di Ruscio (1997a), it is shown that the ESSM can be identified
from a sliding window of known data. However, when the inputs used for identi-
fication are poor from a persistent excitation point of view, it is better to identify
only the minimal order ESSM. Note also that Lmin coincides with the demand for
persistent excitation, i.e., the inputs must at least be persistently exciting of order
Lmin in order to identify the SSM from known input and output data.

Consider an ESSM of order J defined as follows

yk+1|J = ÃJyk|J + B̃Juk|J + C̃Jvk|J+1. (10.14)

Then, an ESSM of order L is constructed as

ÃL =

[
0(L−J)m×m I(L−J)m×(L−1)m

0Jm×(L−J)m ÃJ

]
, (10.15)

B̃L =

[
0(L−J)m×Lr
0Jm×(L−J)r B̃J

]
, (10.16)

C̃L =

[
0(L−J)m×(L+1)l

0Jm×(L−J)l C̃J

]
, (10.17)

where Lmin ≤ J < L. J is defined as the identification horizon. This last formulation
of the ESSM matrices is attractive from an identification point of view. It will also
have some advantages with respect to noise retention compared to using the matrices
defined by (10.11) to (10.13) directly (i.e. putting J = L) in the MPC method which
will be presented in Sections 10.3 and 10.4.
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10.3 Prediction models

10.3.1 Prediction model in terms of process variables

Define the following Prediction Model (PM)

yk+1|L = pL(k) + FLuk|L. (10.18)

Proposition 3.1 Consider the SSM, (10.1) and (10.2). The term pL(k) is given by

pL(k) = OLAJO†Jyk−J+1|J

+βsLvk−J+1|J+L + PLuk−J+1|J−1, (10.19)

where O†J = (OTJOJ)−1OTJ is the Moore-Penrose pseudo-inverse of OJ , (10.5). The
term pL(k) is completely known, i.e., it depends upon the process model, known past
and present process output variables, known past process control input variables and
past, present and future external input variables (assumed to be known). pL(k) can
be interpreted as the autonomous process response, i.e. putting future inputs equal
to zero in (10.18).

Given the quintuple matrices (A,B,C,D, F ). The matrices in (10.18) and (10.19)
can be computed as follows. We have one matrix PL which is related to past control
inputs and one matrix FL which is related to present and future control inputs.

FL =
[
OLB HdL

]
∈ RLm×Lr,

PL = OLACdJ−1 −OLAJO
†
JHdJ ∈ RLm×(J−1)r.

(10.20)

The matrix βsL ∈ RLm×J+L in (10.19) is given by

βsL =
[
OL(CsJ −AJO

†
JHsJ) HsL

]
. (10.21)

If desired, we can write βsL =
[
P sL F

s
L

]
where the sub-matrix P sL ∈ RLm×(J−1)l is

related to past external inputs and the sub-matrix F sL ∈ RLm×(L+1)l is related to
current and future external inputs.

F sL =
[
OLC −OLAJO†JEsJ HsL

]
P sL = OLACsJ−1 −OLAJO

†
JHsJ(:, 1 : (J − 1)l)

(10.22)

and where EsJ is the last J-th block column of matrix HsJ . Note that EsJ = 0 when
F = 0 in (10.2).

Proof. See Section 10.3.3. 2

Proposition 3.2 Consider the ESSM, (10.10), (10.14)- (10.17). The term pL(k) is
given by

pL(k) = ÃLLyk−L+1|L

+βsLvk−L+1|2L + PLuk−L+1|L−1. (10.23)

Given the ESSM double matrices (ÃL, B̃L). A procedure for defining the prediction
model matrices FL and PL from the ESSM matrices is given as follows. Define the
impulse response matrices

Hi
def
= Ãi−1

L B̃L ∈ RLm×Lr. (10.24)
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The prediction of future outputs can be expressed in terms of sub-matrices of the
impulse response matrices (10.24). Define a (one block column) Hankel matrix from
the impulse response matrices Hi in (10.24) for i = 1, . . . , L as follows

H1

H2
...
HL

 =


H11 H12 · · · H1L

H21 H22 · · · H2L
...

...
. . .

...
HL1 HL2 · · · HLL

 , (10.25)

where the sub-matrices Hij ∈ RLm×r. Matrix FL is computed from the upper right
part of (10.25), including the main block diagonal, of the Hankel matrix. The first
block column (sub-matrix) in FL is equal to the sum of the sub-matrices on the
main block diagonal of the Hankel matrix. The second block column (sub-matrix)
is equal to the sum of the sub-matrices on the block diagonal above the main block
diagonal, and so on. That is, the i-th block column in matrix FL is given by

F1,i =
L−i+1∑
j=1

Hj,j+i−1 ∀ i = 1, · · · , L. (10.26)

The block columns in PL are given from the lower left part of the Hankel matrix
(10.25). The first block column is given by the lower left sub-matrix in (10.25), i.e.,
HL1. The i-th block column is given by

P1,i =
i∑

j=1

Hj+L−i,j ∀ i = 1, · · · , L− 1. (10.27)

Given the ESSM matrices (ÃL, C̃L). The matrix βsL in (10.23) is computed as follows.
Define

Λi
def
= Ãi−1

L C̃L ∈ RLm×(L+1)l, (10.28)

and the following (one block column) Hankel matrix by using Λi (10.28) for i =
1, . . . , L, 

Λ1

Λ2
...

ΛL

 =


Λ11 Λ12 · · · Λ1L Λ1,L+1

Λ21 Λ22 · · · Λ2L Λ2,L+1
...

...
. . .

...
...

ΛL1 ΛL2 · · · ΛLL ΛL,L+1

 . (10.29)

Then we have

βsL =
[
P sL F

s
L

]
, (10.30)

F sL =
[
F s1,1 · · · F s1,i · · · F s1,L F s1,L+1

]
, (10.31)

P sL =
[
P s1,1 · · · P s1,i · · · P s1,L−1

]
, (10.32)

where the i-th block columns in F sL and P sL are given by

F s1,i =
L−i+1∑
j=1

Λj,j+i−1 ∀ i = 1, · · · , L+ 1, (10.33)

P s1,i =
i∑

j=1

Λj+L−i,j ∀ i = 1, · · · , L− 1. (10.34)
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Proof (outline). In order to express the right hand side of (10.10) in terms of future
control inputs we write (10.10) as an L-step ahead predictor.

yk+1|L = ÃLLyk−L+1|L

+
∑L

i=1 Λivk−i+1|L+1 +
∑L

i=1Hiuk−i+1|L, (10.35)

where we have used (10.24) and (10.28). The first term on the right hand side of
(10.35) depends on known past and present output data (yk−L+1, · · · , yk). The sec-
ond term depends on known past, present and future external inputs (vk−L+1, · · · , vk, · · · , vk+L),
e.g. measured noise variables, reference variables etc. The third term depends on
past, present and future control input variables, i.e. (uk−L+1, · · · , uk, · · · , uk+L−1).
The right hand side of (10.35) can be separated into two terms, one term which is
completely described by the model and the known process variables and one term
which depends on the, at this stage, unknown future control input variables, Hence,
the PM follows. 2

We have illustrated a method for extracting the impulse response matrices DAiB
for the system from the ESSM matrices ÃL, B̃L. Hence, this side result can be used
to compute a minimal SSM realization for e.g. a polynomial model.

10.3.2 Prediction model in terms of process deviation variables

Define the following prediction model

yk+1|L = p∆
L (k) + F∆

L ∆uk|L, (10.36)

where F∆
L is lower triangular. p∆

L (k) can be interpreted as the autonomous process
response, i.e. putting future input deviation variables equal to zero in (10.36).

Proposition 3.3 Given the SSM (10.1) and (10.2), then, p∆
L (k) = pL(k) +FLcuk−1

and F∆
L = FLS.

Proof. Substitute (10.8) into (10.18). 2

Proposition 3.4 Consider the ESSM, (10.10), (10.14)- (10.17). Define

p∆
L (k) = yk−L+1|L + (

∑L
i=1 Ã

i
L)∆yk−L+1|L

+βsL∆vk−L+1|2L + PL∆uk−L+1|L−1. (10.37)

Given the ESSM matrices (ÃL, B̃L). Define

Hi
def
=

i∑
j=1

Ãj−1
L B̃L ∈ RLm×Lr. (10.38)

The procedure for computing F∆
L and PL is the same as that presented in Proposition

3.2, (10.25)-(10.27), but with Hi in (10.25) as defined in (10.38). Hence, the i-th
block column in F∆

L is given by (10.26).

Given the ESSM matrices (ÃL, C̃L). Define

Λi
def
=

i∑
j=1

Ãj−1
L C̃L ∈ RLm×(L+1)l. (10.39)
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The matrix βsL in (10.37) is computed from (10.29)-(10.34) but with Λi as defined
in (10.39).

Proof (outline). The ESSM (10.10) can be written in terms of control changes as
follows

yk+1|L = yk−L+1|L + (
∑L

i=1 Ã
i
L)∆yk−L+1|L

+
∑L

i=1 Λi∆vk−i+1|L+1 +
∑L

i=1Hi∆uk−i+1|L, (10.40)

where we have used (10.39) and (10.38). The PM (10.36) and the algorithm follows.
2

The PM (10.36) is attractive in order to give offset free MPC. The PM used by GPC
can be derived from Proposition 3.4 with J = Lmin and ESSM matrices (10.15),
(10.16) and (10.17).

10.3.3 Analyzing the predictor

Consider in the following the SSM in (10.1) and (10.2). There is no explicit expres-
sion for the present state estimate x̂k in the predictor (10.18), (10.19) and (10.20).
As an alternative the predictions can be computed by the SSM provided an esti-
mate of the present state is available. In the following we will show that these two
prediction strategies are equal provided that the current state equals a least squares
estimate. This also illustrates the proof of the PM in (10.18), (10.19) and (10.20).

For simplification purposes we omit the external input v in the following derivations.
Further, we only consider the case in 10.3.1. Including the external input v and
deviation variables, respectively, can be done in a straightforward manner.

Proposition 3.5 The predictions yk+1|L using (10.1) and (10.2) equal the predic-
tions using (10.18), (10.19) and (10.20) if the current state estimate is computed
by

x̂k = arg min
xk

V, (10.41)

where

V =
1

2
‖ yk−J+1|J − ŷk−J+1|J ‖2F , (10.42)

and where J ≥ Lmin and ŷk−J+1|J denotes the past and current model output data.

Proof. The proof is divided into 3 parts.

Part 1: Deriving an equivalence condition
We first derive an expression for the predictor yk+1|L. From (10.1) we have the
M -step ahead predictor

xk+M = AMxk + CdMuk|M . (10.43)

Using (10.2), (10.5), (10.20) and (10.43) for M = 1, . . . , L we have

yk+1|L = OLAxk + FLuk|L. (10.44)
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By (10.44) and (10.18) the predictions yk+1|L are equal if and only if OLAxk =
pL(k). Inserting for pL, (10.19) and (10.20), we obtain the following condition for
equivalence of the two predictors.

OLAxk = OLAJO†Jyk−J+1|J

+(OLACdJ−1 −OLAJO
†
JHdJ)uk−J+1|J−1. (10.45)

Part 2: Computing the least squares estimate
By (10.1), (10.2), (10.5) and (10.7), we obtain

yk−J+1|J = OJxk−J+1 +HdJuk−J+1|J−1. (10.46)

Putting yk−J+1|J = ŷk−J+1|J defines the least squares problem and objective (10.42).
The least squares estimate of xk−J+1 is given by

x̂k−J+1 = O†J(yk−J+1|J −HdJuk−J+1|J−1). (10.47)

The estimate x̂k−J+1 can be transferred to the current estimate x̂k by the SSM.
First, similar to (10.43) we have

x̂k = AJ−1x̂k−J+1 + CdJ−1uk−J+1|J−1.

Using (10.47) gives

x̂k = AJ−1O†Jyk−J+1|J

+ (CdJ−1 −AJ−1O†JH
d
J)uk−J+1|J−1. (10.48)

The least squares estimate is clearly a minimum since d2V
dx2
k−J+1

= OTJOJ is a positive

matrix.

Part 3: Using the least squares estimate for x̂k, i.e. (10.48), guarantees that (10.45)
hold. 2

10.4 Basic MPC algorithm

10.4.1 The control objective

A discrete time LQ objective can be written in matrix form as follows

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+∆uTk|LR∆uk|L + uTk|LPuk|L, (10.49)

where rk+1|L is a vector of future references, yk+1|L is a vector of future outputs,
∆uk|L is a vector of future input changes, and uk|L is a vector of future inputs. Q,
R and P are (usually) block diagonal, time varying, weighting matrices.
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10.4.2 Computing optimal control variables

Consider the problem of minimizing the objective (10.49) with respect to the future
control variables uk|L, subject to a linear model and linear output/state and input
constraints. The objective Jk may be written in terms of uk|L. The future outputs
yk+1|L can be eliminated from the objective by using the PM (10.18). The deviation
variables ∆uk|L may be eliminated from Jk by using

∆uk|L = S−1uk|L − S−1cuk−1, (10.50)

where S and c are given in (10.9. Substituting (10.50) and the PM (10.18) into the
objective (10.49) gives a QP problem with solution

u∗k|L = arg minZ2uk|L≤b2k
Jk, (10.51)

where Z2 = ZS−1, b2k = bk +ZS−1cuk−1, Z and bk as in (10.53). For unconstrained
control a closed form solution exists. A control horizon Nu can be included by the
use of selection matrix in the PM and a modified Jk. The optimal control u∗k|Nu is

obtained similarly as (10.51) but with a truncated matrix FL.

10.4.3 Computing optimal control deviation variables

Consider the problem of minimizing (10.49) with respect to the future control devi-
ation variables ∆uk|L, subject to a linear model and linear constraints. The future
outputs yk+1|L may be eliminated from Jk by using the PM (10.36). uk|L may be
eliminated from (10.49) by using (10.8). The minimizing solution to the linear MPC
problem is

∆u∗k|L = arg minZ∆uk|L≤bk Jk, (10.52)

where the matrices Z and bk may be defined as

Z =



S
−S
ILr
−ILr
F∆
L

−F∆
L

 , bk =



umax
k|L − cuk−1

−umin
k|L + cuk−1

∆umax
k|L

−∆umin
k|L

ymax
k+1|L − p∆

L (k)

−ymin
k+1|L + p∆

L (k)

 . (10.53)

For unconstrained optimal control we have

∆u∗k|L = −(R+ F∆T
L QF∆

L + STPS)−1

[F∆T
L Q(p∆

L (k)− rk+1|L) + STPcuk−1], (10.54)

where usually F∆
L = FLS. Assume P = 0. The optimal control ∆u∗k gives offset

free control in steady state. This can be argued as follows: assume that the closed
loop system is stable. In steady state we have from (10.37) that p∆

L (k) = y and
∆uk|L = 0. From the expression for the optimal control change ∆u∗k|L = 0 we must

have that y = r, i.e. zero steady state offset. It is assumed that (R+F TLQFL)−1F TLQ
is of full column rank, and that rk and vk are bounded as k →∞. If rk and vk are
not bounded, they should be modeled and the model included in the process model.
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10.5 Conclusions

A framework for computing MPC controllers is presented. The algorithm in this pa-
per (EMPC), the GPC algorithm and the predictive dynamic matrix control (DMC)
algorithm, etc., fit into this framework. Different linear MPC algorithms are based
on different linear process models. However, these algorithms are using a predic-
tion model (PM) with the same structure. The only difference in the PM used by
the different algorithms is the autonomous response term pL(k) in (10.18) or p∆

L in
(10.36).

An algorithm for computing a PM from different linear models is presented. The
EMPC algorithm can be derived directly from the SSM or from any linear model
via the ESSM matrices ÃL, B̃L and C̃L. These matrices can be constructed directly
from an linear SSM or an input and output polynomial model. Hence, the ESSM
can be viewed as a unifying model for linear model based predictive control.

A new identification horizon is introduced in the MPC concept. The input and out-
put relationship between the past and the future (10.18)-(10.21) which is introduced
for MPC in this paper is an improvement with respect to existing literature.
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Chapter 11

Extended state space model
based predictive control

Abstract

An extended state space (ESS) model, familiar in subspace identification theory, is
used for the development of a model based predictive control algorithm for linear
model structures. In the ESS model, the state vector consists of system outputs,
which eliminates the need for a state estimator. A framework for model based
predictive control is presented. Both general linear state space model structures
and finite impulse response models fit into this framework.

11.1 Introduction

Two extended state space model predictive control (EMPC) algorithms are proposed
in Sections 11.3 and 11.4. The first one, EMPC1, is presented in Sections 11.3.1 and
11.4.1. The second one, EMPC2, is presented in Sections 11.3.2 and 11.4.2.

There are basically two time horizons involved in the EMPC algorithms: one horizon
for prediction of future outputs (prediction horizon) and a second horizon into the
past (identification horizon). The horizon into the past defines one sequence of past
outputs and one sequence of past inputs. The sequences of known past inputs and
outputs are used to reconstruct (identify) the present state of the process. This
eliminates the need for an observer (e.g. Kalman filter). Due to observability there
is a minimal identification horizon which is necessary to reconstruct (observe) the
present state of the plant.

The EMPC2 algorithm has some similarities with the Generalized Predictive Con-
trol (GPC) algorithm presented in Clarke, Mohtadi and Tuffs (1987). See also
Albertos and Ortega (1987). The GPC is derived from an input-output transfer
matrix representation of the plant. A recursion of Diophantine equations is carried
out. Similarities between GPC and LQ/LQG control are discussed in e.g. Bitmead,
Gevers and Wertz (1990).
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The EMPC algorithms are based on a state space model of the plant. The EMPC2

algorithm can be shown to give identical results as the GPC algorithm when the
minimal identification horizon is used. A larger identification horizon is found from
experiments to have effect upon noise filtering. Note that the EMPC algorithms are
exactly defined in terms of the ESS model matrices, something which can simplify
the computations compared to the traditional formulation of the GPC which is based
on the solution of a polynomial matrix Diophantine equation. The EMPC algorithm
is a simple alternative approach which avoid explicit state reconstruction.

The EMPC algorithms do not require iterations and recursions of Diophantine equa-
tions (as in GPC) or non linear matrix Riccati equations (as in traditional linear
quadratic optimal control).

The EMPC method is based on results from a subspace identification method pre-
sented in Di Ruscio (1994), (1995) and (1997). Other subspace methods are pre-
sented in Larimore (1983), (1990), Verhagen (1994), Van Overschee and De Moor
(1994), (1995) and Van Overschee (1995). See also Viberg (1995) for a survy.

One example that highlights the differences and similarities between thje EMPC and
GPC algorithms is presented. We have also investigated how the EMPC algorithms
can be used for operator support. Known closed loop input and output time series
from a real world industrial process are given. These time series are given as inputs
to the EMPC algorithm and the control-inputs are predicted. The idea is that the
predicted control-inputs are usful, not only for control but also for operator support.

11.2 Preliminaries

11.2.1 State space model

Consider a process which can be described by the following linear, discrete time
invariant state space model (SSM)

xk+1 = Axk +Buk + Cvk (11.1)

yk = Dxk + Euk + Fvk (11.2)

where k is discrete time, xk ∈ Rn is the state vector, uk ∈ Rr is the control input
vector, vk ∈ Rl is an external input vector and yk ∈ Rm is the output vector. The
constant matrices in the SSM are of appropriate dimensions. A is the state transition
matrix, B is the control input matrix, C is the external input matrix, D is the output
matrix, E is the direct control input to output matrix, and F is the direct external
input to output matrix.

Define the integer parameter g as

g
def
=

{
1 when E 6= 0m×r (proper system)
0 when E = 0m×r (strictly proper system)

In continuous time systems the matrix E is usually zero. This is not the case in
discrete time systems due to sampling. The following assumptions are made:

• The pair (D,A) is observable.
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• The pair (A,B) is controllable.

11.2.2 Definitions

Associated with the SSM, Equations (11.1) and (11.2), we make the following defi-
nitions:

• The extended observability matrix (Oi) for the pair (D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n (11.3)

where subscript i denotes the number of block rows.

• The reversed extended controllability matrix (Cdi ) for the pair (A,B) is defined
as

Cdi
def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir (11.4)

where subscript i denotes the number of block columns.

A matrix Csi for the pair (A,C) is defined similar to Equation (11.4), i.e., with
C substituted for B in the above definition.

• The lower block triangular Toeplitz matrix (Hdi ) ∈ Rim×(i−1)r for the triple
(D,A,B)

Hdi
def
=


0 0 · · · 0
DB 0 · · · 0
DAB DB · · · 0
...

...
. . .

...
DAi−2B DAi−3B · · · DB

 ∈ Rim×(i−1)r (11.5)

where subscript i denotes the number of block rows and the number of block
columns is i− 1.

A lower block triangular Toeplitz matrix Hsi ∈ Rim×il for the quadruple
(D,A,C, F ) is defined as

Hsi
def
=


F 0 · · · 0 0
DC F · · · 0 0
DAC DC · · · 0 0
...

...
. . .

...
...

DAi−2C DAi−3C · · · DC F

 ∈ Rim×il (11.6)
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11.2.3 Extended state space model

An extended state space model (ESSM) will be defined in this section. The impor-
tance of the ESSM for model predictive control is that it facilitates a simple and
general method for building a prediction model.

Theorem 11.2.1 The SSM, Equations (11.1) and (11.2), can be described with an
equivalent extended state space model (ESSM)

yk+1|L = ÃLyk|L + B̃Luk|L + C̃Lvk|L+1 (11.7)

where L is the number of block rows in the extended state vector yk+1|L. L is defined
as the prediction horizon chosen such that L ≥ Lmin where the minimal number
Lmin, sufficient for the ESSM to exist, is defined by

Lmin
def
=

{
n− rank(D) + 1 when rank(D) < n
1 when rank(D) ≥ n (11.8)

The extended output or state vector is defined as,

yk|L
def
=
[
yTk yTk+1 · · · yTk+L−1

]T
(11.9)

The extended input vectors are defined similarly, i.e.,

uk|L
def
=


uk
uk+1
...
uk+L−1

 vk|L+1
def
=


vk
vk+1
...
vk+L−1

vk+L

 (11.10)

The matrices in the ESSM are given as

ÃL
def
= OLA(OTLOL)−1OTL ∈ RLm×Lm (11.11)

B̃L
def
=
[
OLB HdL

]
− ÃL

[
HdL 0Lm×r

]
∈ RLm×Lr (11.12)

C̃L
def
=
[
OLC HsL

]
− ÃL

[
HsL 0Lm×l

]
∈ RLm×(L+1)l (11.13)

where ÃL ∈ RLm×Lm, B̃L ∈ RLm×Lr and C̃L ∈ RLm×(L+1)l.
4

Proof: See Di Ruscio (1994,1996). Equation (11.12) is presented for g = 0 for the
sake of simplicity. The reason is definition (11.5) which should be defined similarly
to Equation (11.6) when g = 1.

The ESSM has some properties:

1. Minimal ESSM order. Lmin, defined in Equation (11.8), defines the minimal
prediction horizon. However the minimal L is the ceiling function d nme.
Proof: Same as for proving observability, in this case (OTLmin

OLmin)−1 is non-
singular and the existence of the ESSM can be proved.
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2. Uniqueness. Define M as a non-singular matrix which transforms the state
vector x to a new coordinate system. Given two system realizations, (A,B,C,D, F )
and (M−1AM ,M−1B,M−1C,DM,F ). The two realizations give the same
ESSM matrices for all L ≥ Lmin.
Proof: The ESSM matrices are invariant under state (coordinate) transfor-
mations in the SSM.

3. Eigenvalues. The ESSM transition matrix ÃL has the same n eigenvalues as
the SSM transition matrix A and Lm− n eigenvalues equal to zero.
Proof: From similarity, Equation 11.11.

In the subspace identification algorithm, Di Ruscio (1995,1996), it is shown that the
ESSM can be identified directly from a sliding window of known data. However,
when the inputs used for identification are poor from a persistent excitation point of
view, it is better to identify only the minimal order ESSM as explained in Di Ruscio
(1996). Note also that Lmin coincides with the demand for persistent excitation of
the inputs, i.e., the inputs must at least be persistently exciting of order Lmin in
order to recover the SSM from known input and output data.

Assume that an ESSM of order J is given and defined as follows

yk+1|J = ÃJyk|J + B̃Juk|J+g + C̃Jvk|J+1 (11.14)

If the prediction horizon L is chosen greater than J it is simple to construct the
following ESSM from (11.14).

ÃL =

[
0(L−J)m×m I(L−J)m×(L−1)m

0Jm×(L−J)m ÃJ

]
(11.15)

B̃L =

[
0(L−J)m×(L+g)r

0Jm×(L−J)r B̃J

]
(11.16)

C̃L =

[
0(L−J)m×(L+1)l

0Jm×(L−J)l C̃J

]
(11.17)

where Lmin ≤ J < L. J is defined as the identification horizon. This last formulation
of the ESSM matrices is attractive from an identification point of view. It will also
have some advantages with respect to noise retention compared to using the matrices
defined by Equations (11.11) to (11.13) directly (i.e. putting J = L) in the model
predictive control algorithms which will be presented in Sections 11.3 and 11.4. Note
also that a polynomial model, e.g., an ARMAX model, can be formulated directly
as an ESSM.

11.2.4 A usefull identity

The following identity will be usefull througout the paper

yk−L+1|L =

 yk...
yk

− T∆yk−L+1|L ∈ RLm (11.18)
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where

∆yk−L+1|L = yk−L+1|L − yk−L|L (11.19)

and the matrix T has zeroes on and below the main diagonal and otherwise ones,
i.e.,

T =


0 1 1 · · · 1
0 0 1 · · · 1
...

...
. . .

. . .
...

0 0 1
0 0 · · · · · · 0

 ∈ RLm×Lm. (11.20)

11.3 Basic model based predictive control algorithm

11.3.1 Computing optimal control variables

Prediction model for the future outputs

yk+1|L = pL(k) + FLuk|L+g (11.21)

Scalar control objective criterion

J1 = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+uTk|L+gRuk|L+g (11.22)

where rk+1|L is a stacked vector of (L) future references. Q and R are (usually)
block diagonal weighting matrices.

This is an optimization problem in case of constraints on the control variables. In
the case of unconstrained control a closed form solution exists. The (present and
future) optimal controls which minimize the control objective are given by

uk|L+g = −(R+ FL
TQFL)−1FL

TQ(pL(k)− rk+1|L) (11.23)

Note that usually only the first control signal vector uk (in the optimal control
vector uk|L+g) is computed and used for control, i.e., receding horizon control. It is
also possible to include a control horizon by including a selection matrix. A similar
expression for the optimal control is obtained but with a truncated matrix FL.

The problem is to find a prediction model of the form specified by Equation 11.21).
One of our points is that the term pL(k) representing the past can be computed
directly from known past inputs and outputs. This will be shown in Section 11.4.1.

11.3.2 Computing optimal control deviation variables

Prediction model for the future outputs

yk+1|L = pL(k) + FL∆uk|L+g (11.24)
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Control objective criterion

J2 = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+∆uTk|L+gR∆uk|L+g (11.25)

The unconstrained (present and future) optimal control changes which minimize the
control objective are given by

∆uk|L+g = −(R+ FL
TQFL)−1FL

TQ(pL(k)− rk+1|L) (11.26)

Note that the optimal control deviation (∆uk) gives offset free control in steady
state. This can be argued as follows: assume that the closed loop system is stable.
In steady state we have pL(k) = y and ∆uk|L = 0. From the expression for the
optimal control change (∆uk|L = 0) we must have that y = r̃, i.e. zero steady state

offset. (The matrix (R + F TLQFL)−1F TLQ should be of full row rank, rk and vk are
assumed to be bounded as k →∞.)

11.4 Extended state space modeling for predictive con-
trol

Two prediction models are proposed. Both models are dependent upon a known
extended state space vector. Hence, there is no need for a state estimator. The first
model, presented in Section (11.4.1), is in addition dependent on actual control input
variables. This model has the same form as (11.21). The second model, presented
in Section (11.4.2), is in addition dependent on control input deviation variables.
This model has the same form as (11.24).

For the simplicity of notation we will assume that g = 0 in this section, i.e. a strictly
proper system. The only proper case in which g = 1 will be evident because we will
treat the case with external inputs vk, see the SSM Equations (11.1) and (11.2).
There is notationally no difference between inputs uk or external inputs vk.

11.4.1 Prediction model in terms of process variables

In order to express the right hand side of Equation (11.7) in terms of future inputs
(control variables) we write

yk+1|L = ÃLyk−L+1|L +
L∑
i=1

Λivk−i+1|L+1 +
L∑
i=1

Hiuk−i+1|L (11.27)

where

Λi
def
= Ãi−1

L C̃L and Hi
def
= Ãi−1

L B̃L (11.28)

The first term on the right hand side of Equation (11.27) depends on known past
and present output data vectors (yk−L+1, · · · , yk). The second term depends on
known past, present and future external input variables (vk−L+1, · · · , vk, · · · , vk+L),
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e.g. measured noise variables, reference variables etc. The third term depends on
past, present and future control input variables, i.e. (uk−L+1, · · · , uk, · · · , uk+L−1).

We can separate the right hand side of Equation (11.27) into two terms, one term
which is completely described by the model and the known process variables and one
term which depends on the, at this stage, unknown future control input variables,
i.e., we can define the following prediction model

yk+1|L = pL(k) + FLuk|L (11.29)

where the known vector pL(k) is given by

pL(k) = ÃLLyk−L+1|L + βsLvk−L+1|2L + PLuk−L+1|L−1 (11.30)

The term pL(k) is completely known, e.g., it depends upon the process model, known
past and present process output variables, known past process control input variables
and past, present and future external input variables (assumed to be known). pL(k)
can be interpreted as the autonomous process response, i.e. putting future inputs
equal to zero in (11.30).

Given the quintuple matrices (A,B,C,D, F ). The prediction model matrices can
be computed as follows. We have one matrix which is proportional to past control
inputs (PL) and one matrix which is proportional to present and future control
inputs (FL).

FL =
[
OLB HdL

]
∈ RLm×Lr

PL = OLACdL−1 − ÃLHdL ∈ RLm×(L−1)r (11.31)

The prediction model matrix βsL can be divided into two sub-matrices, one sub-
matrix which is related to past external inputs (P sL) and one related to present and
future external inputs (F sL).

βsL =
[
P sL F

s
L

]
∈ RLm×2Ll

F sL =
[
OLC − ÃLEsL HsL

]
∈ RLm×(L+1)l

P sL = OLACsL−1 − ÃLHsL(:, 1 : (L− 1)l) ∈ RLm×(L−1)l

where EsL is the last L-th block column of matrix HsL.

Given the ESSM double matrices (ÃL, B̃L). A procedure for defining the prediction
model matrices FL and PL from the ESSM matrices is given in the following. The
matrix βsL is computed by a similar procedure. The prediction of future outputs
can be expressed in terms of sub-matrices of the impulse response matrices for the
extended state space model, Equation (11.28). First, define

Hi =
[
Hi1 Hi2 · · · Hii

]
∀ i = 1, · · · , L (11.32)

Then, make a (one block column) Hankel matrix from the impulse response matrices
for the ESSM. 

H1

H2
...
HL

 =


H11 H12 · · · H1L

H21 H22 · · · H2L
...

...
. . .

...
HL1 HL2 · · · HLL

 (11.33)
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Matrix FL is computed from the upper right part, including the main block diagonal,
of the Hankel matrix. The first block column (sub-matrix) in FL is equal to the sum
of the sub-matrices on the main block diagonal of the Hankel matrix. The second
block column (sub-matrix) is equal to the sum of the sub-matrices on the block
diagonal above the main block diagonal, and so on. That is, the i-th block column
in matrix FL is given by

F1,i =
L−i+1∑
j=1

Hj,j+i−1 ∀ i = 1, · · · , L (11.34)

The block columns in PL are given from the lower left part of the Hankel matrix.
The first block column is given by the lower left sub-matrix in the Hankel matrix,
i.e., HL1. The i-th block column is given by

P1,i =
i∑

j=1

Hj+L−i,j ∀ i = 1, · · · , L− 1 (11.35)

We have illustrated a method for extracting the characteristic matrices of the system,
e.g., impulse response matrices, from the ESSM matrices. The ESSM matrices can
be identified directly from known input and output data vectors by a subspace
identification method for combined deterministic and stochastic systems, see Di
Ruscio (1995).

The prediction model, given by Equations (11.29) and (11.30), depends upon the
known extended state space vector and actual process input variables. This predic-
tion model used for model predictive control (MPC) is referred to as the extended
state space model predictive control algorithm number one, i.e., (EMPC1).

The process variables which are necessary for defining the prediction model can be
pointed out as follows. The prediction model in Section (11.4.1) depends upon both
past controls and present and past outputs. The L unknown future output vectors
yk+1|L can be expressed in terms of the L unknown present and future control vectors
uk|L, the L known past and present output vectors yk−L+1|L and the L − 1 known
past control vectors uk−L+1|L−1.

11.4.2 Prediction model in terms of process deviation variables

The extended state space model can be written in terms of control changes as follows

yk+1|L = yk|L + ÃL∆yk|L + B̃L∆uk|L + C̃L∆vk|L

∆yk+1|L = ÃL∆yk|L + B̃L∆uk|L + C̃L∆vk|L (11.36)

which can be written

yk+1|L = yk−L+1|L + (
∑L

i=1 Ã
i
L)∆yk−L+1|L

+
∑L

i=1 Λi∆vk−i+1|L+1 +
∑L

i=1Hi∆uk−i+1|L (11.37)

where

Λi
def
=
∑i

j=1 Ã
j−1
L C̃L ∈ RLm×(L+1)l

Hi
def
=
∑i

j=1 Ã
j−1
L B̃L ∈ RLm×Lr

(11.38)
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We have the following prediction model

yk+1|L = pL(k) + FL∆uk|L (11.39)

where

pL(k) = yk−L+1|L + (
∑L

i=1 Ã
i
L)∆yk−L+1|L

+βsL∆vk−L+1|2L + PL∆uk−L+1|L−1 (11.40)

pL(k) can be interpreted as the autonomous process response, i.e. putting future
input deviation variables equal to zero.

In the following a procedure for computing the matrix βsL is given. The procedure
for computing FL and PL is the same as that presented in Section 11.4.1. Define
the (one block column) Hankel matrix

Λ1

Λ2
...

ΛL

 =


Λ11 Λ12 · · · Λ1L Λ1,L+1

Λ21 Λ22 · · · Λ2L Λ2,L+1
...

...
. . .

...
...

ΛL1 ΛL2 · · · ΛLL ΛL,L+1

 (11.41)

then we have

βsL =
[
P sL F

s
L

]
(11.42)

F sL =
[
F s1,1 · · · F s1,i · · · F s1,L F s1,L+1

]
(11.43)

P sL =
[
P s1,1 · · · P s1,i · · · P s1,L−1

]
(11.44)

where the i-th block columns in F sL and P sL are given by

F s1,i =

L−i+1∑
j=1

Λj,j+i−1 ∀ i = 1, · · · , L+ 1 (11.45)

P s1,i =
i∑

j=1

Λj+L−i,j ∀ i = 1, · · · , L− 1 (11.46)

The first term on the right hand side of pL(k), Equation (11.40), is equal to the
extended state space vector yk−L+1|L and the other terms are functions of deviation
variables. This observation is useful for analyzing the steady state behavior of the
final controlled system, i.e., we can prove zero steady state off-set in the final EMPC2

algorithm, provided the disturbances and set-points are bounded as time approaches
infinity. If the disturbances are not bounded, they should be modeled and the model
included in the SSM.

11.4.3 Prediction model in terms of the present state vector

The predictions generated from a general linear state space model can be written as

yk+1|L = OLAxk +
[
OLC HsL

]
vk|L+1

+
[
OLB HdL

]
uk|L (11.47)
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which fits into the standard prediction model form when xk is known or computed
by a state estimator. This is referred to as state space model predictive control
(SSMPC).

Note that the state vector xk can be expressed in terms of past and present process
outputs and past process inputs. We have then

xk = AL−1xk−L+1 + CsL−1vk−L+1|L−1 + CdL−1uk−L+1|L−1 (11.48)

The state vector in the past, xk−L+1, can be computed from

yk−L+1|L = OLxk−L+1 +HsLvk−L+1|L +HdLuk−L+1|L−1 (11.49)

when observability is assumed. This gives the same result as in Section 11.4.1, and
illustrates the proof of the prediction model matrices given in (11.31) and (11.32).

11.5 Comparison and connection with existing algorithms

11.5.1 Generalized predictive control

The EMPC2 algorithm presented in Sections 11.4.2 and 11.3.2 has a strong con-
nection to the generalized predictive control algorithm proposed by Clarke et al.
(1987). The past identification horizon J was included in in the EMPC strategy
in order to estimate the present state. If J is chosen equal to the minimal horizon
Lmin then the EMPC strategy becomes similar to the GPC strategy. By choosing
Lmin < J ≤ L we have more degrees in freedom for tuning the final controller.

11.5.2 Finite impulse response modeling for predictive control

The prediction models discussed in this section have their origin from the following
formulation of the SSM, Equations (11.1) and (11.2).

yk+1 = DALxk−M+1 +DCsMvk−M+1|M

+DCdMuk−M+1|M (11.50)

For the sake of simplicity, assume in the following next two sections that the external
inputs are zero.

Modeling in terms of process variables

Assume that the transition matrix A has all eigenvalues strictly inside the unit circle
in the complex plane. In this case it makes sense to assume that AM ≈ 0 for some
scalar M ≥ 1. Hence, neglecting the first term in Equation (11.50) gives

yk+1 ≈ DCdMuk−M+1|M (11.51)

where M is defined as the model horizon. The prediction model is then given by

yk+1|L ≈ PLuk−M+1|M−1 + FLuk|L (11.52)



94 Extended state space model based predictive control

where

FL =
[
OLB HdL

]
(11.53)

PL =


DAM−1B DAM−2B · · · DAB
0 DAM−1B · · · DA2B
...

...
. . .

...
0 0 · · · DAM−1B


where FL ∈ RLm×Lr and PL ∈ RLm×(M−1)r.

Modeling in terms of process deviation variables

Neglecting the first term on the right hand side of Equation (11.50) and taking the
difference between yk+1 and yk gives the finite impulse response model in terms of
process control deviation variables

yk+1 ≈ yk +DCdM∆uk−M+1|M (11.54)

where M is defined as the model horizon. The L step ahead predictor is given by

yk+L ≈ yk +DCdM
L∑
i=1

∆uk+i−M |M (11.55)

It is in this case straightforward to put the predictions into standard form

yk+1|L ≈ pL(k) + FL∆uk|L (11.56)

where

pL(k) =
[
yTk · · · yTk

]T
+ PL∆uk−M+1|M−1 (11.57)

The matrices FL and PL can be computed from a strategy similar to the one in
Section 11.4.2. This type of prediction model is used in the DMC strategy.

11.6 Constraints, stability and time delay

Constraints are included in the EMPC strategy in the traditional way, e.g. by solving
a QP problem. This is an appealing and practical strategy because the number of
flops is bounded (this may not be the case for non-linear MPC when using SQP).

Stability of the receding horizon strategy is not adressed in this section. However,
by using classical stability results from the infinite horizon linear quadratic optimal
control theory, it is expected that closed loop stability is ensured by chosing the
prediction horizon large. Stability of MPC is adressed in e.g., Clarke and Scattolini
(1991) and Mosca and Zhang (1992).

In the case of time delay an SSM for the delay can be augmented into the process
model and the resulting SSM used directly in the EMPC strategy.
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11.7 Conclusions

The EMPC algorithm depends on the ESSM matrices ÃL and B̃L. These matrices
can be computed directly from the model, either a state space model or a polynomial
model. Both the state space model and the extended state space model can be
identified directly from a sliding window of past input and output data vectors,
e.g., by the subspace algorithm for combined Deterministic and Stochastic system
Realization and identification (DSR), Di Ruscio (1995).

The size of the prediction horizon L must be greater than or equal to the minimal
observability index Lmin in order to construct the ESSM. It is also a lower bound
for the prediction horizon in order to ensure stability of the unconstrained EMPC
algorithms. Lmin is equal to the necessary number of block rows in the observability
matrix OL in order to ensure that OTLOL is non-singular.

A framework for computing model based predictive control is presented. The EMPC
algorithms, the generalized predictive control (GPC) algorithm and the predictive
dynamic matrix control (DMC) algorithm fit into this framework. Different predic-
tion models give different methods for model based predictive control.

The DMC algorithm depends on past inputs and the present output. The EMPC
algorithms depend on both past inputs and past and present outputs.
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11.8 Numerical examples

11.8.1 Example 1

Given a SSM. The first step in the GPC algorithm is to transform the SSM to a
polynomial model. There are no reasons for doing this when the EMPC algorithms
are applied. However, if (one does, or) a Polynomial Model (PM) is given, we have
the following solution

Given the polynomial model, Camacho and Bordons (1995), p. 27:

yk = a1yk−1 + b0uk−1 + b1uk−2 (11.58)

Model parameters a1 = 0.8, b0 = 0.4 and b1 = 0.6.

A prediction horizon of L = 3 is chosen. The transformation from the PM to the
ESSM is simple, first make

yk+1 = yk+1 (11.59)

yk+2 = yk+2 (11.60)

yk+3 = a0yk+2 + b0uk+2 + b1uk+1 (11.61)

which gives the ESSM

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 =

Ã3︷ ︸︸ ︷ 0 1 0
0 0 1
0 0 a1


yk|3︷ ︸︸ ︷ ykyk+1

yk+2



+

B̃3︷ ︸︸ ︷ 0 0 0
0 0 0
0 b1 b0


uk|3︷ ︸︸ ︷ ukuk+1

uk+2


Using the algorithm in Section 11.4.2 we get the following prediction model

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 = p3(k)

+

F3︷ ︸︸ ︷ 0.4 0 0
1.32 0.4 0
2.056 1.32 0.4


∆uk|3︷ ︸︸ ︷ uk − uk−1

uk+1 − uk
uk+2 − uk+1

 (11.62)

The vector p3 which is dependent upon the prediction model and known past and
present process variables is given by

p3(k) =

yk−2|3︷ ︸︸ ︷ yk−2

yk−1

yk

+

Ã3+Ã2
3+Ã3

3︷ ︸︸ ︷ 0 1 1.8
0 0 2.44
0 0 1.952


∆yk−2|3︷ ︸︸ ︷ yk−2 − yk−3

yk−1 − yk−2

yk − yk−1


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+

P3︷ ︸︸ ︷ 0 0.6
0 1.08
0 1.464


∆uk−2|2︷ ︸︸ ︷[

uk−2 − uk−3

uk−1 − uk−2

]
(11.63)

This prediction model is identical to the prediction model obtained when applying
the GPC algorithm, see Camacho and Bordon (1995), pp. 28. A critical step in the
GPC algorithm is the solution of a Diophantine equation. The EMPC algorithm
proposes an alternative and direct derivation of the prediction model, either from a
SSM or a polynomial model.

11.8.2 Example 2

The polynomial model, Equation (11.58), has the following SSM equivalent

A =

[
0 1
0 a1

]
B =

[
b0
b1 + a1b0

]
D =

[
1 0
]

E = 0
(11.64)

Model parameters a1 = 0.8, b0 = 0.4 and b1 = 0.6.

If the ESSM matrices given by Equations (11.15) and (11.16) with L = 3 and J = 2
are used to formulate the prediction model in Section 11.4.2, then we get identical
results as with the GPC algorithm.

Equations (11.11) and (11.12) with L = 3 give the following ESSM

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 =

Ã3︷ ︸︸ ︷ 0 0.6098 0.4878
0 0.4878 0.3902
0 0.3902 0.3122


yk|3︷ ︸︸ ︷ ykyk+1

yk+2



+

B̃3︷ ︸︸ ︷−0.2927 −0.1951 0
0.3659 0.2439 0
0.2927 0.7951 0.4


uk|3︷ ︸︸ ︷ ukuk+1

uk+2


Using the algorithm in Section 11.4.2 we get the following prediction model

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 = p3(k)

+

F3︷ ︸︸ ︷ 0.4 0 0
1.32 0.4 0
2.056 1.32 0.4


∆uk|3︷ ︸︸ ︷ uk − uk−1

uk+1 − uk
uk+2 − uk+1

 (11.65)

The vector p3 which is dependent upon the prediction model and known past and
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present process variables is given by

p3(k) =

yk−2|3︷ ︸︸ ︷ yk−2

yk−1

yk



+

Ã3+Ã2
3+Ã3

3︷ ︸︸ ︷ 0 1.4878 1.1902
0 1.1902 0.9522
0 0.9522 0.7618


∆yk−2|3︷ ︸︸ ︷ yk−2 − yk−3

yk−1 − yk−2

yk − yk−1



+

P3︷ ︸︸ ︷ 0.3659 0.8439
0.8927 1.6751
0.7141 1.9401


∆uk−2|2︷ ︸︸ ︷[

uk−2 − uk−3

uk−1 − uk−2

]
(11.66)

p3(k) is defined from known past variables. Putting (11.65) into (11.26) gives the
optimal unconstrained control deviations ∆uk|3.
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11.8.3 Example 3

This example shows how a finite impulse response model fits into the theory pre-
sented in this paper. This also illustrate the fact that the DMC strategy is a special
case of the theory which are presented in the paper.

Considder the following truncated impulse response model

yk+1 =
M∑
i=1

hiuk−i+1 = h1uk + h2uk−1 + h3uk−2 (11.67)

with M = 3, h1 = 0.4, h2 = 0.92 and h3 = 0.416.

The prediction horizon is specified to be L = 5. Using (11.67) with L − 1 artifical
states yk+1 = yk+1 . . ., yk+4 = yk+4 we have the following ESSM model

yk+1|5︷ ︸︸ ︷
yk+1

yk+2

yk+3

yk+4

yk+5

 =

Ã5︷ ︸︸ ︷
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



yk|5︷ ︸︸ ︷
yk
yk+1

yk+2

yk+3

yk+4

+

B̃5︷ ︸︸ ︷
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 h1 h2 h3



uk|5︷ ︸︸ ︷
uk
uk+1

uk+2

uk+3

uk+4

 (11.68)

Using the algorithm presented in Section 11.4.2 with L = 5 and Ã5 and B̃5 as
specified above, then we get the following prediction model

yk+1|5 = p5(k) +

F5︷ ︸︸ ︷
0.4 0 0 0 0
1.32 0.4 0 0 0
1.736 1.32 0.4 0 0
1.736 1.736 1.32 0.4 0
1.736 1.736 1.736 1.32 0.4



∆uk|5︷ ︸︸ ︷
∆uk

∆uk+1

∆uk+2

∆uk+3

∆uk+4

 (11.69)

where the vector p5(k) is given by

p5(k) =


yk
yk
yk
yk
yk

+

P5︷ ︸︸ ︷
0.416 0.920
0.416 1.336
0.416 1.336
0.416 1.336
0.416 1.336


∆uk−M+1|M−1︷ ︸︸ ︷[

∆uk−2

∆uk−1

]
(11.70)

Finaly, it should be noted that if a control horizon C ≤ L, say C = 2, is specified,
then the above prediction model reduces to

yk+1|5 = p5(k) +

F5︷ ︸︸ ︷
0.4 0
1.32 0.4
1.736 1.32
1.736 1.736
1.736 1.736


∆uk|2︷ ︸︸ ︷[
∆uk

∆uk+1

]
(11.71)
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However, note that the prediction horizon L must be choosen such that L ≥ M .
The control horizon is then bounded by 1 ≥ C ≤ L. Note also that Cutler (1982)
suggest setting L = M + C for the DMC strategy. Note also that the truncated
impulse response model horizon M usually must be choosen large, typically in the
range of 20 to 70.
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Chapter 12

MODEL PREDICTIVE
CONTROL AND
IDENTIFICATION: A Linear
State Space Model Approach

12.1 Introduction

A recursive subspace algorithm (RDSR) for the identification of state space model
matrices are presented in [2]. The state space model matrices which are identified by
the RDSR algorithm can be used for model based predictive control. A state space
Model based Predictive Control (MPC) algorithm which is based on the DSR sub-
space identification algorithm is presented in [1]. However, due to space limitations
in this paper, only unconstrained predictive control is considered.

In this work we will show that input and output constraints can be incorporated
into the state space model based control algorithm.

The properties of the MPC algorithm as well as comparisons with other MPC al-
gorithms are presented in the paper, [1]. A short review of the predictive control
algorithm which is extended to handle constraints, is presented in this paper.

The MPC algorithm will be demonstrated on a three input, two output MIMO
process. The process is a Thermo Mechanical Pulping (TMP) refiner.

12.2 Model Predictive Control

12.2.1 State space process model

Consider a process which can be described by the following linear, discrete time
invariant state space model (SSM)

xk+1 = Axk +Buk + Cvk (12.1)



104
MODEL PREDICTIVE CONTROL AND IDENTIFICATION: A

Linear State Space Model Approach

yk = Dxk + Euk + Fvk (12.2)

where the integer k ≥ 0 is discrete time, xk ∈ Rn is the state vector, uk ∈ Rr is
the control input vector, vk ∈ Rl is an external input vector and yk ∈ Rm is the
output vector. The constant matrices in the SSM are of appropriate dimensions. A
is the state transition matrix, B is the control input matrix, C is the external input
matrix, D is the output matrix, E is the direct control input to output (feed-through)
matrix, and F is the direct external input to output matrix.

In continuous time systems the matrix E is usually zero. This is not the case in
discrete time systems due to sampling.

The following assumptions are made: The pair (D,A) is observable. The pair (A,B)
is controllable. When deling with the MPC algorithm we will assume that the vector
of external input signals is known.

12.2.2 The control objective:

A standard discrete time Linear Quadratic (LQ) objective functional is used. The
LQ objective can for convenience be written in compact matrix form as follows:

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LR∆uk|L + uTk|LPuk|L, (12.3)

where rk+1|L is a vector of future references, yk+1|L is a vector of future outputs,
∆uk|L is a vector of future input changes, and uk|L is a vector of future inputs.

rk+1|L =
[
rTk+1 r

T
k+2 · · · rTk+L

]T ∈ RLm, (12.4)

yk+1|L =
[
yTk+1 y

T
k+2 · · · yTk+L

]T ∈ RLm, (12.5)

∆uk|L =
[

∆uTk ∆uTk+1 · · · ∆uTk+L−1

]T ∈ RLr, (12.6)

uk|L =
[
uTk uTk+1 · · · uTk+L−1

]T ∈ RLr. (12.7)

The weighting matrices are defined as follows:

Q =


Qk 0 · · · 0
0 Qk+1 · · · 0
...

...
. . .

...
0 0 · · · Qk+L−1

 ∈ RLm×Lm, (12.8)

R =


Rk 0 · · · 0
0 Rk+1 · · · 0
...

...
. . .

...
0 0 · · · Rk+L−1

 ∈ RLr×Lr, (12.9)

P =


Pk 0 · · · 0
0 Pk+1 · · · 0
...

...
. . .

...
0 0 · · · Pk+L−1

 ∈ RLr×Lr . (12.10)
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Note that both the actual control input vector uk|L and the control input change
vector ∆uk|L can be weighted in the control objective. Note also that the objective-
weighting matrices Q, P and R can in general be time varying.

We will study the problem of minimizing Jk with respect to the future control input
change vector (∆uk|L), subject to linear constraints on the input change, the input
amplitude and the output.

Problem 12.1 (MPC problem)

min
∆uk|L

Jk (12.11)

with respect to linear constraints on uk, ∆uk and yk.

To solve this problem we

• need a prediction model for (prediction of) yk+1|L:

yk+1|L = pL(k) + FL∆uk|L (12.12)

• need a relationship between uk|L and ∆uk|L:

uk|L = S∆uk|L + cuk−1 (12.13)

where

S =


Ir 0r 0r · · · 0r
Ir Ir 0r · · · 0r
Ir Ir Ir · · · 0r
...

...
...

. . . 0r
Ir Ir Ir · · · Ir

 ∈ RLr×Lr, c =


Ir
Ir
Ir
...
Ir

 ∈ RLr×r (12.14)

where Ir is the r × r identity matrix and 0r is the r × r matrix of zeroes.

• need a linear inequality of the form

A∆uk|L ≤ bk (12.15)

describing the linear constraints.

When ∆uk|L is computed we can

• apply uk = uk−1 +∆uk as the control input to the process (Note that only the
first change in ∆uk|L is used, i.e., a receding horizon strategy).

• or use uk = uk−1 + ∆uk for operating support.
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12.2.3 Prediction Model:

The MPC algorithm is based on the observation that the general linear state space
model, Equations (12.1) and (12.2), can be transformed into a model which is con-
venient for prediction and predictive control. This prediction model is independent
of the state vector xk. Hence, there is no need for a state observer.

There are two horizons involved in the MPC algorithm.

Horizons in the MPC algorithm

{
Identification horizon: J
Prediction horizon: L

An identification horizon J into the past is defined in order to construct an estimate
of the state vector. Known past input and output vectors defined over the identifi-
cation horizon is used to eliminate the state vector from the state space model. The
resulting model (prediction model) can be written as

yk+1|L = pL(k) + FL∆uk|L (12.16)

where L is the prediction horizon, yk+1|L is a vector of future output predictions,
∆uk|L is a vector of future input change vectors.

yk+1|L =
[
yTk+1 y

T
k+2 · · · yTk+L

]T ∈ RLm (12.17)

∆uk|L =
[

∆uTk ∆uTk+1 · · · ∆uTk+L−1

]T ∈ RLr (12.18)

Note that ∆uk = uk − uk−1. FL is a constant lower triangular matrix which is a
function of the known state space model matrices. pL(k) represents the information
of the past which is used to predict the future. pL(k) is a known vector. This vector
is a function of a number J known past input and output vectors, and the state
space model matrices. A simple algorithm for constructing FL and pL(k) from the
known state space model matrices and the past inputs and outputs are proposed.

• A simple algorithm to compute pL(k) from the SSM matrices (A,B,C,D,E, F )
and known past inputs and outputs is presented in [1].

12.2.4 Constraints:

The following constraints are considered,

umin
k|L ≤ uk|L ≤ umax

k|L (input amplitude constraints)

∆umin
k|L ≤ ∆uk|L ≤ ∆umax

k|L (input change constraints)

ymin
k+1|L ≤ yk+1|L ≤ ymax

k+1|L (output constraints)

(12.19)

The constraints (12.19) can be written as an equivalent linear inequality:

A∆uk|L ≤ bk. (12.20)

where A is a constant matrix and bk is a vector which is defined in terms of the
specified constraints. See Appendix D for details.
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12.2.5 Solution by Quadratic Programming:

The control problem is to minimize the control objective given by Equation (12.3)
subject to the constraints given by the linear inequality, Equation (12.20). Substi-
tuting the prediction model, Equation (12.16), into the control objective, Equation
(12.3), we have the following alternative formulation of the control objective

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L + J 0
k (12.21)

which is on a form suitable for computing the future control input change vectors
∆uk|L. See Appendix D1 and E for details.

The control problem can now be formulated as follows:

min
∆uk|L

Jk (12.22)

subject to constraints:

A∆uk|L ≤ bk. (12.23)

where Jk is given by (12.21), A and bk is defined in the appendix.

This can be solved as a Quadratic Programming (QP) problem. The QP problem
can be solved in MATLAB by the Optimization toolbox function qp. We have

∆uk|L = qp(H, fk,A, bk) (12.24)

Remark 12.1 The MPC algorithm is based on a general linear state space model.
However, there is no need for a state observer (e.g. Kalman filter).

An estimate of the state vector is constructed from a number of past inputs and
outputs. This state estimate is used to eliminate the state vector from the model.

Remark 12.2 The predictive control algorithm can be shown to give offset free
control in the unconstrained case, when P in the control objective (12.3).

Remark 12.3 Usually a receding horizon strategy is used, i.e. only the first control
change ∆uk = uk − uk−1 in ∆uk|L is used (and computed). The control at time
instant k is then uk = ∆uk +uk−1 where uk−1 is known from the previous iteration.

Remark 12.4 The MPC algorithm can be formulated so that the actual future
control input variables uk|L are directly computed, instead of computing the control
change variables ∆uk|L as shown in this work.

Remark 12.5 Unconstrained control is given by

∆uk|L = −H−1fk (12.25)

Equivalently

∆uk|L = −(R+ F TLQFL + STPS)−1[F TLQ(pL(k)− rk+1|L) + STPcuk−1](12.26)

See the appendix for details.
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12.3 MPC of a thermo mechanical pulping plant

The process considered in this section is a Thermo Mechanical Pulping (TMP) plant
at Union Co, Skien, Norway. A key part in this process is a Sunds Defibrator double
(rotating) disk RGP 68 refiner.

Identification and model predictive control of a TMP refiner are addressed. The
process variables considered for identification and control is the refiner specific energy
and the refiner consistency.

In TMP plants both the specific energy and the consistency are usually subject to
setpoint control. It is common to use two single PI control loops. The process input
used to control the specific energy is the plate gap. The process input used to control
the consistency is the dilution water.

In this section, the MPC algorithm will be demonstrated on the TMP refiner (sim-
ulation results only). The refiner is modeled by a MIMO ( 3-input, 2-output and
6-state) state space model. Model predictive control of a TMP refiner has to our
knowledge not yet been demonstrated.

12.3.1 Description of the process variables

Input and output time series from a TMP refiner are presented in Figures 12.1 and
12.2. The time series is the result of a statistical experimental design .

The manipulable input variables

Refiner input variables


u1 : Plug screw speed, [rpm]

u2 : Flow of dilution water, [kgs ]
u3 : Plate gap, [mm]

The following vector of input variables is defined

uk =

 u1

u2

u3


k

∈ R3. (12.27)

The output variables
The process outputs used for identification is defined as follows

Refiner output variables

{
y1 : Refiner specific energy, [ MWh

1000kg ]

y2 : Refiner consistency, [%]

The following vector of process output variables is defined

yk =

[
y1

y2

]
k

∈ R2. (12.28)

12.3.2 Subspace identification

Input and output time series from a TMP refiner are presented in Figures 12.1 and
12.2. The time series is the result of a statistical experimental design .
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The problem is to identify a state space model, including the system order (n), for
both the deterministic part and the stochastic part of the system, i.e., the quadruple
matrices (A,B,D,E) and the double matrices (C,F ), respectively, directly from
known system input and output data vectors (or time series). The SSM is assumed
to be on innovations form (Kalman filter).

The known process input and output data vectors from the TMP process can be
defined as follows

uk ∀ k = 1, . . . , N
yk ∀ k = 1, . . . , N

}
Known data

For the TMP refiner example we have used:

N = 1500 [samples] for model identification
860 [samples] for model validation

Given sequences with process input and output raw data. The first step in a data
modeling procedure is usually to analyze the data for trends and time delays. Trends
should preferably be removed from the data and the time series should be adjusted
for time delays. The trend of a time series can often be estimated as the sample
mean which represents some working point. Data preprocessing is not necessary but
it often increase the accuracy of the estimated model.

The following constant trends (working points) are removed from the refiner input
and output data.

u0 =

 52.3
7.0

0.58

 , y0 =

[
1.59
34.3

]
(12.29)

The simplicity of the subspace method [6] will be illustrated in the following. Assume
that the data is adjusted for trends and time delays. Organize the process output
and input data vectors yk and uk as follows

Known data matrix of output variables︷ ︸︸ ︷
Y =


yT1
yT2
...
yTN

 ∈ RN×m (12.30)

Known data matrix of input variables︷ ︸︸ ︷
U =


uT1
uT2
...
uTN

 ∈ RN×r (12.31)

The problem of identifying a complete (usually) dynamic model for the process can
be illustrated by the following function (similar to a matlab function).[

A, B, C, D, E, F
]

= DSR(Y,U,L) (12.32)
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where the sixfold matrices (A,B,C,D,E, F ) are the state space model matrices in
Equations (12.1) and (12.2). The algorithm name DSR stands for Deterministic
and Stochastic model Realization and identification, see [1]- [7] for details. L is a
positive integer parameter which should be specified by the user. The parameter L
defines an upper limit for the unknown system order n. The user must chose the
system order by inspection of a plot with Singular Values (SV) or Principal Angles
(PA). The system order n is identified as the number of “non-zero” SV’s or “non-
zero” PA’s. Note that the Kalman filter gain is given by K = CF−1 and that the
covariance matrix of the noise innovation process is given by E(vkv

T
k ) = FF T .

L = 3 and n = 6 where chosen in this example.

12.3.3 Model predictive control

The following weighting matrices are used in the control objective, Equation (12.3):

Qi =

[
100 0
0 100

]
, Ri =

 0.5 0 0
0 0.1 0
0 0 100

 , Pi = 0r, ∀ i = 1, · · · , L. (12.33)

The following horizons are used

Horizons in MPC algorithm

{
L = 6, the prediction horizon
J = 6, the identification horizon

The following constraints are specified

umin
k =

 50.0
6.0
0.5

 , umax
k =

 54.0
8.0
0.7

 ∀ k > 0 (12.34)

∆umin
k =

 −0.5
−0.15
−0.05

 , ∆umax
k =

 0.5
0.15
0.05

 ∀ k > 0 (12.35)

ymin
k =

[
1.5
33

]
, ymax

k =

[
1.7
40

]
∀ k > 0 (12.36)

Simulation results are illustrated in Figures 12.3 and 12.4.
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12.4 Appendix: Some details of the MPC algorithm

12.5 The Control Problem

Consider a linear quadratic (LQ) objective functional

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LR∆uk|L + uTk|LPuk|L(12.37)

We will study the problem of minimizing Jk with respect to the future control inputs,
subject to input and output constraints.

This problem can be formulated as follows:

min
∆uk|L

Jk (12.38)

subject to:

umin
k|L ≤ uk|L ≤ umax

k|L (input amplitude constraints)

∆umin
k|L ≤ ∆uk|L ≤ ∆umax

k|L (input change constraints)

ymin
k+1|L ≤ yk+1|L ≤ ymax

k+1|L (output constraints)

(12.39)

12.6 Prediction Model

The prediction model is assumed to be of the form

yk+1|L = pL(k) + FL∆uk|L (12.40)

where pL(k) is defined in terms of the known state space model matrices (A,B,C,D, F )
and known past inputs (both control inputs and external inputs) and outputs. FL
is a constant lower triangular matrix.

12.7 Constraints

The constraints (12.39) can be written as an equivalent linear inequality:

A∆uk|L ≤ bk (12.41)

where

A =



S
−S
ILr
−ILr
FL
−FL

 , bk =



umax
k|L − cuk−1

−umin
k|L + cuk−1

∆umax
k|L

−∆umin
k|L

ymax
k+1|L − pL(k)

−ymin
k+1|L + pL(k)


(12.42)

This will be proved in the next subsections.
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12.7.1 Relationship between ∆uk|L and uk|L

It is convenient to find the relationship between ∆uk|L and uk|L in order to formulate
the constraints (12.39) in terms of future deviation variables ∆uk|L.

We have

uk|L = S∆uk|L + cuk−1 (12.43)

where

S =


Ir 0r 0r · · · 0r
Ir Ir 0r · · · 0r
Ir Ir Ir · · · 0r
...

...
...

. . . 0r
Ir Ir Ir · · · Ir

 ∈ RLr×Lr, c =


Ir
Ir
Ir
...
Ir

 ∈ RLr×r (12.44)

where Lr is the r × r identity matrix and 0r is the r × r matrix of zeroes.

The following alternative relation is also useful:

∆uk|L = S2uk|L − c2uk−1 (12.45)

where

S2 =


I 0 0 · · · 0
−I I 0 · · · 0

0 −I I · · · 0
...

...
...

. . . 0
0 0 0 · · · I

 , c2 =


I
0
0
...
0

 (12.46)

Note that S2 = S−1 and c2 = S−1c.

Note also that:

uk−1|L = (I − S2)uk|L + c2uk−1. (12.47)

12.7.2 Input amplitude constraints

The constraints

umin
k|L ≤ uk|L ≤ u

max
k|L (12.48)

is equivalent to

S∆uk|L ≤ umax
k|L − cuk−1

−S∆uk|L ≤ −umin
k|L + cuk−1

(12.49)
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12.7.3 Input change constraints

The constraints

∆umin
k|L ≤ uk|L ≤ ∆umax

k|L (12.50)

is equivalent to

∆uk|L ≤ ∆umax
k|L

−∆uk|L ≤ −∆umin
k|L

(12.51)

12.7.4 Output constraints

The constraints

ymin
k+1|L ≤ yk+1|L ≤ ymax

k+1|L (12.52)

By using the prediction model, Equation (12.40), we have the equivalent constraints:

FL∆uk|L ≤ ymax
k+1|L − pL(k)

−FL∆uk|L ≤ −ymin
k+1|L + pL(k)

(12.53)

12.8 Solution by Quadratic Programming

The LQ objective functional Equation (12.37) can be written as:

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L + J 0
k (12.54)

where

H = R+ F TLQFL + STPS (12.55)

fk = F TLQ(pL(k)− rk+1|L) + STPcuk−1 (12.56)

J 0
k = (pL(k)− rk+1|L)TQ(pL(k)− rk+1|L) + uTk−1c

TPcuk−1 (12.57)

H is a constant matrix which is referred to as the Hessian matrix. It is assumed
that H is positive definite (i.e. H > 0). fk is a vector which is independent of
the unknown present and future control inputs. fk is defined by the SSM model
matrices, a sequence of known past inputs and outputs (including yk). Similarly J 0

k

is a known scalar.

The problem can be solved by the following QP problem

min
∆uL|L

(∆uTk|LH∆uk|L + 2fTk ∆uk|L) (12.58)

subject to:
A∆uk|L ≤ bk

(12.59)

The QP problem can e.g. be solved in MATLAB by the Optimization toolbox
function QP, i.e.

∆uk|L = qp(H, fk,A, bk) (12.60)
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Figure 12.1: Input time series from a TMP plant at Union Bruk. The inputs are
from an experimental design. The manipulable input variables are u1, u2 and u3

These inputs are setpoints to local input controllers. The outputs from the local
controllers (controlled variables) are shown to the left and denoted u

pv
1 , u

pv
2 and

u
pv
3 .
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Figure 12.2: Actual and model output time series. The actual output time series is
from a TMP plant at Union Bruk. The corresponding input variables are shown in
Figure 12.1.
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Figure 12.3: Simulation results of the MPC algorithm applied on a TMP refiner.
The known references and process outputs are shown.
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Figure 12.4: Simulation results of the MPC algorithm applied on a TMP refiner.
The optimal control inputs are shown.
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Figure 12.5: Simulation results of the MPC algorithm applied on a TMP refiner.
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Chapter 13

EMPC: The case with a direct
feed trough term in the output
equation

13.1 Introduction

The MPC algorithms presented in the literature are as far as we know, usually
only considering the case with a strictly proper state space model (SSM), i.e., an
SSM with output equation yk = Dxk. In this note we describe how strictly proper
systems, i.e., an SSM with output equations yk = Dxk + Euk, are implemented in
the EMPC algorithm. This problem has many solutions and it is not self-evident
which of these are the best.

This paper is organized as follows: The Linear Quadratic (LQ) objective in case
of a direct feed through term in the output equation is discussed in Section 13.3.
The EMPC algorithm in case of only proper systems is presented in Section 13.4.
The equivalence between the solution to the unconstrained MPC problem and the
solution to the Linear Quadratic (LQ) optimal control problem and the correspond-
ing Riccati equation is presented in Section 13.5. Furthermore, the possibility of
incorporating a final state weighting in the objective is presented. This can be used
to ensure nominal stability of the controlled system. Finally, a new and explicit
non-iterative solution to the discrete time Riccati equation is presented. Finally
some concluding remarks follows in Section 13.7.

13.2 Problem and basic definitions

We assume a linear discrete time invariant process model of the form

xk+1 = Axk +Buk + Crk, (13.1)

yk = Dxk + Euk, (13.2)

where xk ∈ Rn is the state vector, uk ∈ Rr and yk ∈ Rm are the control input and
output vectors, respectively. rk ∈ Rm is a known reference vector. The quintuple
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matrices (A,B,C,D,E) are of appropriate dimensions. The reason for the reference
term in the state equation is that this is the result if an integrator zk+1 = zk+rk−yk
is augmented into a standard state equation xk+1 = Axk + Buk, in order to have
offset-free steady state output control. The traditional case is obtained by putting
C = 0.

Definition 13.1 (basic matrix definitions)
The extended observability matrix, Oi, for the pair (D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (13.3)

where the subscript i denotes the number of block rows.

The reversed extended controllability matrix, Cdi , for the pair (A,B) is defined as

Cdi
def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (13.4)

where the subscript i denotes the number of block columns. The lower block trian-
gular Toeplitz matrix, Hd

i , for the quadruple matrices (D,A,B,E)

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E

 ∈ Rim×(i+g−1)r, (13.5)

where the subscript i denotes the number of block rows and i+ g − 1 is the number
of block columns. Where 0m×r denotes the m× r matrix with zeroes.

The following extended L-block diagonal weighting matrices are defined for later use:

Q =


Qk 0m×m · · · 0m×m
0m×m Qk+1 · · · 0m×m
...

...
. . .

...
0m×m 0m×m · · · Qk+L−1

 ∈ RLm×Lm, (13.6)

R =


Rk 0r×r · · · 0r×r
0r×r Rk+1 · · · 0r×r
...

...
. . .

...
0r×r 0r×r · · · Rk+L−1

 ∈ RLr×Lr, (13.7)

P =


Pk 0r×r · · · 0r×r
0r×r Pk+1 · · · 0r×r
...

...
. . .

...
0r×r 0r×r · · · Pk+L−1

 ∈ RLr×Lr . (13.8)
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Given a number j of m-dimensional vectors, say, yi, yi+1, . . ., yi+j−1. Then the
extended vector yi|j are defined as

yi|j =


yi
yi+1
...
yi+j−1

 ∈ Rjm. (13.9)

13.3 The EMPC objective function

Consider the following LQ objective

Jk = (yk+g−1|L+g − rk+g−1|L+g)
TQ(yk+g−1|L+g − rk+g−1|L+g)

+∆uTk|L+gR∆uk|L+g + (uk|L+g − u0)TP (uk|L+g − u0), (13.10)

where the parameter g is either g = 0 or g = 1. The strictly proper case where E = 0
is parameterized with g = 0. The possibly non-zero nominal values for the inputs,
u0, will for the sake of simplicity be set to zero in the following discussion. Hence,
we have the LQ objective on matrix form which was used in Di Ruscio (1997c)

Jk,0 = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) + ∆uTk|LR∆uk|L + uTk|LPuk|L(13.11)

The term yk is not weighted in the objective because yk is not influenced by uk for
strictly proper systems.

Consider now the only proper case where E 6= 0. This is parameterized with g = 1.
Hence, we have the modified LQ objective

Jk,1 = (yk|L+1 − rk|L+1)TQ(yk|L+1 − rk|L+1) + ∆uTk|L+1R∆uk|L+1 + uTk|L+1Puk|L+1.(13.12)

It is important to note that the prediction horizon has increased by one, i.e., from
L to L+ 1 and that the output yk is weighted in the objective since yk is influenced
by uk for proper systems. Let us illustrate this with a simple example.

Example 13.1 The standard control objective which is used in connection with
models xk+1 = Axk + Buk and yk = Dxk can be illustrated with the following
LQ objective with prediction horizon L = 1

Jk,0 = q(yk+1 − rk+1)2 + pu2
k. (13.13)

Note that this objective is consistent with the model. I.e., the model states that uk
influences upon yk+1, and both uk and yk+1 are weighted in the objective.

Assume now that we instead have an output equation yk = Dxk + Euk. The above
objective is in this case not general enough and usually not sufficient, because uk
will influence upon yk and yk+1 is dependent of uk+1. Both yk and uk+1 are not
weighted in the objective (13.13). A more general objective is therefore

Jk,1 = q11(yk − rk)2 + q22(yk+1 − rk+1)2 + p11u
2
k + p22u

2
k+1. (13.14)

Hence, the prediction horizon in this case is L+ 1 = 2.
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13.4 EMPC with direct feed through term in SS model

We will in this section illustrate how the MPC problem for the strictly proper case,
i.e., with a direct feed through term in the output equation, can be properly solved.
We will focus on the EMPC method in Di Ruscio (1997b), (1997c) and Di Ruscio
and Foss (1998). This is a variant of the traditional MPC in witch the present state
is expressed in terms of past inputs and outputs as well as extended matrices witch
results from the subspace identification algorithm, Di Ruscio (1996) and (1997d).

13.4.1 The LQ and QP objective

In the following we are putting L =: L + 1 for simplicity of notation. Hence, we
consider the following LQ objective

Jk = (yk|L − rk|L)TQ(yk|L − rk|L) + ∆uTk|LR∆uk|L + uTk|LPuk|L. (13.15)

The prediction of yk|L is given by

yk|L = OLxk +Hd
Luk|L, (13.16)

uk|L = S∆uk|L + cuk−1, (13.17)

which gives

yk|L = F∆
L ∆uk|L + p∆

L , (13.18)

p∆
L = OLxk +Hd

Lcuk−1, (13.19)

F∆
L = Hd

LS. (13.20)

xk is taken as a state estimate based on J past inputs and outputs. J is defined
as the past identification horizon The LQ objective can then be written in a form
suited for Quadratic Programming (QP), i.e.,

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L, (13.21)

where

H = F∆T
L QF∆

L +R+ STPS, (13.22)

fk = F∆T
L Q(p∆

L − rk|L) + STPcuk−1. (13.23)

13.4.2 The EMPC control

The EMPC control is given by the following QP problem:

∆u∗k|L = arg min
Z∆uk|L≤bk

Jk = arg min
Z∆uk|L≤bk

(∆uTk|LH∆uk|L + 2fTk ∆uk|L). (13.24)

The matrices in the inequality for the constraints, Z∆uk|L ≤ bk, is presented in Di
Ruscio (1997c). If the problem is unconstrained, then we have the explicit solution

∆u∗k|L = −H−1fk (13.25)

= (F∆T
L QF∆

L +R+ STPS)−1(F∆T
L Q(p∆

L − rk|L) + STPcuk−1), (13.26)

if the inverse exists.
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13.4.3 Computing the state estimate when g = 1

The state can be expressed in terms of the known past inputs and outputs as follows

xk = AJO†Jyk−J |J + (CJ −AJO†JH
d
J)uk−J |J , (13.27)

where uk−J |J and yk−J |J is defined from the known past inputs and outputs, respec-
tively.

yk−J |J =


yk−J
yk−J+1
...
yk−1

 ∈ RJm, uk−J |J =


uk−J
uk−J+1
...
uk−1

 ∈ RJr, (13.28)

One should in this case note that yk−1 only is influenced by uk−1. However, the most
important remark is that yk is not used in order to compute the state estimate. The
reason for this is that yk is influenced by the present input uk which is not known.
Note that uk is to be computed by the control algorithm. If yk is available before
uk, then, then it make sense to use an approach with E = 0.

13.4.4 Computing the state estimate when g = 0

In order to compare with the strictly proper case, the when g = 0, we present how
the state is computed in this case:

xk = AJ−1O†Jyk−J+1|J + (CJ−1 −AJ−1O†JH
d
J)uk−J+1|J−1, (13.29)

where uk−J+1|J−1 and yk−J+1|J is defined from the known past inputs and outputs,
respectively.

yk−J+1|J =


yk−J+1

yk−J+2
...
yk−1

yk

 ∈ RJm, uk−J+1|J−1 =


uk−J+1

uk−J+2
...
uk−1

 ∈ R(J−1)r.(13.30)

One should in this case note that yk only is influenced by uk−1, and hence, yk can
be used for the state computation.

13.5 EMPC with final state weighting and the Riccati
equation

Consider for simplicity the case where we do not have external signals. The LQ
objective is given by

Jk = xTk+LSk+Lxk+L +

L−1∑
i=0

(yTk+iQk+iyk+i + uTk+iPk+iuk+i), (13.31)

where Sk+L is a final state weighting matrix. The weighting of the final state is
incorporated in order to obtain nominal stability of the controlled system, even for
finite prediction horizons L. This will be discussed later.
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13.5.1 EMPC with final state weighting

The objective can be written in matrix form as follows

Jk = xTk+LSxk+L + yTk|LQyk|L + uTk|LPuk|L, (13.32)

where we for simplicity of notation have defined S = Sk+L.

Lemma 13.1 The future optimal controls which minimizes the LQ objective (13.32)
can be computed as

u∗k|L = −(P +HdT
L QHd

L + CdTL SCdL)−1(HdT
L QOL + CdTL SAL)xk, (13.33)

if the inverse exists.

Proof 13.1 The future outputs, yk|L, and the final state, xk+L, can be expressed in
terms of the unknown inputs, uk|L, as:

yk|L = OLxk +Hd
Luk|L, (13.34)

xk+L = ALxk + CdLuk|L. (13.35)

Substituting into the LQ objective (13.32) gives

Jk = (ALxk + CdLuk|L)TS(ALxk + CdLuk|L)

+(OLxk +Hd
Luk|L)TQ(OLxk +Hd

Luk|L) + uTk|LPuk|L. (13.36)

The gradient with respect to uk|L is

∂Jk
∂uk|L

= 2CdTL S(ALxk + CdLuk|L) + 2HdT
L Q(OLxk +Hd

Luk|L) + 2Puk|L (13.37)

= 2(P +HdT
L QHd

L + CdTL SCdL)uk|L + 2HdT
L QOLxk + CdTL SALxk. (13.38)

Solving ∂Jk
∂uk|L

= 0 gives (13.33). 2

It is worth to note that when the prediction horizon, L, is large (or infinity) and
A is stable, then the final state weighting have small influence upon the optimal
control since the term AL ≈ 0 in (13.33), in this case. This is also a well known
property for the classical infinite horizon LQ solution which is independent of the
final state weighting. The connection and equivalence between the explicit MPC
solution (13.33) and the classical LQ solution is presented in the following section.

13.5.2 Connection to the Riccati equation

The optimal control can also be computed in the traditional way, i.e., by solving
a Riccati equation. However, traditionally the solution to the LQ problem is in
the classical literature, as far as we now, usually only presented for strictly proper
systems. Here we will present the solution for only proper systems, i.e., with an
output equation yk = Dxk +Euk and the LQ objective in (13.32). Furthermore, we
will present a new and non-iterative solution to the Riccati equation.



13.5 EMPC with final state weighting and the Riccati equation 127

Lemma 13.2 The LQ optimal control for the system xk+1 = Axk + Buk and
yk = Dxk + Euk subject to the LQ objective (13.31) or equivalently (13.32), can
be computed as

u∗k = −(Pk +BTRk+1B + ETQkE)−1(BTRk+1A+ ETQkD)xk, (13.39)

where Rk+1 is a solution to the Riccati equation

Rk = DTQkD +ATRk+1A

−(BTRk+1A+ ETQkD)T (Pk +BTRk+1B + ETQkE)−1(BTRk+1A+ ETQkD),

(13.40)

with final value condition

RL = Sk+L. (13.41)

Finally, the LQ objective (13.31) is equivalent with the following standard LQ ob-
jective

Jk = xTk+LSk+Lxk+L

+
∑k+L−1

i=k (xTi D
TQiDxi + 2xTi D

TQiEui + uTi (Pi + ETQiE)uk), (13.42)

with cross-term weightings between xk and uk.

Proof 13.2 See Appendix 13.9. 2

Note that the only proper case gives rise to cross-terms in the LQ objective. The
solution to this is of course well known. The Riccati equation is iterated backwards
from the final time, k + L, to obtain the solution Rk+1 which is used in order to
define the optimal control (13.39). Note that Rk+1 is constant for unconstrained
receding horizon control, provided the weighting matrices Sk+L, Q and P are time
invariant weighting matrices.

We will now show that the solution to the Riccati equation can be expressed directly
in terms of the extended observability matrix, OL, and the Toepliz matrix, Hd

L, of
impulse response matrices.

Lemma 13.3 Consider for simplicity the two cases where the final state weighting
is either Sk+L = 0 or Sk+L = S. An explicit and non-iterative solution to the Riccati
equation is given as:

Case with Sk+L = 0

Rk = (OL +Hd
LGOL)TQ(OL +Hd

LGOL) + (GOL)TPGOL

= OTL [(ILm +Hd
LG)TQ(ILm +Hd

LG) +GTPG]OL, (13.43)

where

G = −(P +HdT
L QHd

L)−1HdT
L Q. (13.44)
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Case with Sk+L = S

Rk = OTL(ILm +Hd
LG)TQ(ILm +Hd

LG) +GTPG]OL

+OTL [(ALO†L + CdLG)TS(ALO†L + CdLG)OL, (13.45)

where

G = −(P +HdT
L QHd

L + CdTL SCdL)−1(HdT
L Q+ CdLSA

LO†L), (13.46)

and O†L = (OLO
T
L)−1OTL .

This result was proved in Di Ruscio (1997a). However, for completeness, the prof is
presented below.

Proof 13.3 Substituting the optimal control (13.33) into the objective (13.36) gives
the minimum objective

J∗k = xTk

Rk︷ ︸︸ ︷
[(OL +Hd

LGOL)TQ(OL +Hd
LGOL) + (GOL)TPGOL]xk. (13.47)

From the classical theory of LQ optimal control we know that the minimum objective
corresponding to the LQ solution in Lemma 13.2 is given by

J∗k = xTkRkxk. (13.48)

Comparing (13.47) and (13.48) proves the lemma. 2

Proposition 13.1 Since the EMPC control given by Lemma 13.1 and the LQ opti-
mal control given by Lemma 13.2 gives the same minimum for the objective function,
they are equivalent.

Proof 13.4 The prof follows from the proof of Lemma 13.39. 2

It is of interest to note that the solution to the discrete Riccati equation is defined
in terms of the extended observability matrix OL and the Toepliz matrix Hd

L. These
matrices can be computed directly by the subspace identification algorithms, e.g., the
DSR algorithm, provided the identification signal uk is rich enough, i.e. persistently
exciting of sufficiently high order. However, in many cases it may be better to
redefine OL and Hd

L from the system matrices D,A,B.

13.5.3 Final state weighting to ensure nominal stability

It is well known from classical LQ theory that,under some detectability and stabi-
lizability conditions, the solution to the infinite time LQ problem results in a stable
closed loop system.
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Lemma 13.4 Consider the problem of minimizing the LQ objective (13.31) and
(13.32) subject to xk+1 = Axk + Buk and yk = Dxk + Euk. The LQ optimal
solution yields a stable nominal system if the final state weighting matrix is chosen
as

Sk+L = R, (13.49)

where R is the positive definite solution to the discrete algebraic Riccati equation
(13.40), where we have assumed that the pair (A,

√
DTQD) is detectable and the

pair (A,B) is stabilizable.

Proof 13.5 The infinite objective

Jk =
∞∑
i=0

(yTk+iQk+iyk+i + uTk+iPk+iuk+i). (13.50)

can be splitted into two parts

Jk = JL +

L−1∑
i=0

(yTk+iQk+iyk+i + uTk+iPk+iuk+i). (13.51)

where

JL =

∞∑
i=L

(yTk+iQk+iyk+i + uTk+iPk+iuk+i). (13.52)

Using the principle of optimality and that the minimum of the term JL with infinite
horizon is

JL = xTk+LRxk+L, (13.53)

where R is a solution to the DARE. 2

One point with all this is that we can re-formulate the infinite LQ objective into a
finite programming problem with nominal stability for all choices of the prediction
horizon, L.

Jk = uTk|LHuk|L + 2fTk uk|L (13.54)

where

H = P +HdT
L QHd

L + CdTL SCdL, (13.55)

fk = (HdT
L QOL + CdTL SAL)xk, (13.56)

S = R. (13.57)

Hence, we have the QP problem

u∗k|L = arg min
Zuk|L≤bk

Jk (13.58)

With nominal stability we mean stability for the case where there are no modeling
errors and that the inputs are not constrained.
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Example 13.2 Consider the LQ objective with the shortest possible prediction hori-
zon, i.e., L = 1.

Jk = xTk+1Rxk+1 + yTkQyk + uTk Puk, (13.59)

where R is the positive solution to the Discrete time Algebraic Riccati Equation
(DARE). The control input which minimizes the LQ objective is obtained from

∂Jk
∂uk

= 2BTR(Axk +Buk) + 2ETQ(Dxk + Euk) + 2Puk = 0, (13.60)

where we have used that xk+1 = Axk + Buk and yk = Dxk + Euk in (13.59). This
gives

u∗k = −(P +BTRB + ETQE)−1(BTRA+ ETQD)xk, (13.61)

which is exactly (13.39) with Rk+1 = R. Hence, the closed loop system is stable
since (13.61) is the solution to the infinite horizon LQ problem.

A promising and simple infinite horizon LQ controller (LQ regulator) with con-
straints is then given by the QP problem with inequality constraints

minuk Jk = xTk+1Rxk+1 + yTkQyk + uTk Puk,
subject to Zuk ≤ b.

(13.62)

Using the process model we write this in standard QP form as follows

Lemma 13.5 (Infinite horizon LQ controller with constraints)
Given a discrete time linear model with matrices (A,B,D,E), and weighting matri-
ces Q and P for the LQ objective

Jk =
∞∑
i=0

(yTk+iQyk+i + uTk+iPuk+i). (13.63)

A solution to the infinite horizon LQ problem with constraints is simply given by the
QP problem (here) with inequality constraints

minuk Jk = uTkHuk + 2fTk uk,
subject to Zuk ≤ b.

(13.64)

where

H = P +BTRB + ETQE, (13.65)

f = (BTRA+ ETQD)xk, (13.66)

and R is the solution to the discrete time algebraic (form of the) Riccati equation
(13.40).

Proof 13.6 Consider the case where the constraints are not active, i.e., consider
first the unconstrained case. The solution is then

u∗k = −H−1f, (13.67)

which is identical to the LQ solution as presented in (13.61).
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13.6 Linear models with non-zero offset

A linear model are often valid around some steady state values, xs, for the states
and us for the inputs. This is usually the case when the linear model is obtained
by linearizing a non-linear model and when a linear model is identified from data
which are adjusted for constant trends. Hence,

xpk+1 − x
s = Ap(x

p
k − x

s) +Bp(uk − us), (13.68)

yk = Dpx
p
k + y0

= Dp(x
p
k − x

s) + ys, (13.69)

where y0 = ys−Dxs and the initial state is xp0. If the model is obtained by linearizing
a non-linear model, then we usually have that y0 = ys −Dxs = 0. However, this is
usually not the case when the model is obtained from identification and when the
identification input and output data is adjusted for some constant trends us and ys,
e.g. the sample mean. In order to directly use this model, many of the algorithms
which are presented in the literature, has to be modified in order to properly handle
the offset values. Instead on should note that there exists an equivalent state space
model of the form

Lemma 13.6 (Linear model without constant terms) The linear model (13.68)
and (13.69) is equivalent with

xk+1 = Axk +Buk, (13.70)

yk = Dxk, (13.71)

where A, B and D are given by

A =

[
Ap 0n×1

01×n 1

]
, B =

[
Bp
01×r

]
, D =

[
Dp Dz

]
, (13.72)

and where the vector Dz and the initial state, x0, are given by

Dz = Dp(x
s − (In −Ap)−1Bpu

s) + y0 = −Dp(In −Ap)−1Bpu
s + ys, (13.73)

x0 =

[
xp0 − xs + (In −Ap)−1Bpu

s

1

]
. (13.74)

Proof 13.7 The model (13.68) and (13.69) can be separated into

xpk+1 = Apx
p
k +Bpuk, (13.75)

xs = Axs +Bus, (13.76)

yk = Dpx
p
k −Dpx

s + ys. (13.77)

The states in (13.76) are time-invariant. Hence, we can solve for xs, i.e.,

xs = (In −Ap)−1Bpu
s. (13.78)
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Substituting (13.78) into (13.77) gives

yk = Dpx
p
k + y0, (13.79)

y0 = −Dpx
s + ys. (13.80)

Using (13.75), (13.79) and an integrator zk+1 = zk in order to handle the off-set y0

in (13.79), gives [
xpk+1

zk+1

]
=

[
Ap 0n×1

01×n 1

] [
xpk
zk

]
+

[
Bp
01×r

]
uk, (13.81)

yk =
[
Dp y

0
] [ xpk
zk

]
. (13.82)

The initial states can be found by comparing (13.69) with (13.82) at time k = 0,
i.e.,

Dpx
p
0 + y0z0 = D(xp0 − x

s) + ys. (13.83)

Choosing z0 = 1 gives

xp0 = (xp0 − x
s) + xs. (13.84)

2

The number of states in the model (13.70) and (13.71) has increased by one compared
to the number of states in the model (13.68) and (13.69), in order to handle the
non-zero offset. Moreover, the matrix A will have a unit eigenvalue representing
an uncontrollable integrator, which is used to handle the offset. Lemma 13.7 is
important because it implies that theory which is based on a linear state space
models without non-zero mean constant values still can be used. However, the
theory must be able to handle the integrator. This is not always the case.

In practice we could very well work with non-zero mean values on the output. Hence,
we have the following lemma

Lemma 13.7 (Linear model without constant state and input terms) The
linear model (13.68) and (13.69) is equivalent with

xpk+1 = Apx
p
k +Bpuk, (13.85)

yk = Dpx
p
k + y0, (13.86)

where the initial state is

xp0 = (xp0 − x
s) + x̃s, (13.87)

x̃s = (I −Ap)−1Bpu
s, (13.88)

end where the off-set y0 is given by

y0 = ys −Dpx̃
s. (13.89)
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Proof 13.8 The proof follows from the proof of Lemma 13.6, and in particular
Equations (13.75), (13.79), (13.80), (13.78) and (13.84).

Hence, one only need to take properly care of non-zero mean constant values on the
output.

Another simple method for constructing a model without offset variables is to first
simulate the model (13.68) and (13.69) in order to generate identification data and
then to use a subspace identification algorithm, e.g. the DSR-method. The cor-
rect order for the state in the equivalent model is then identified by the subspace
algorithm.

13.7 Conclusion

The problem of MPC of systems which is only proper, i.e., systems with a direct feed
through term in the output equation, is addressed and a direct matrix based solution
is proposed. The solution can be expressed in terms of some extended matrices from
subspace identification. These matrices may be identified directly or formed from
any linear model.

A final state weighting is incorporated in the objective in order to ensure stability
of the nominal and unconstrained closed loop system.

The equivalence between the solution to the classical discrete time LQ optimal con-
trol problem and the solution to the unconstrained MPC problem is proved.

Furthermore, a new explicit and non-iterative solution to the discrete Riccati equa-
tion is presented. This solution is a function of two matrices which can be computed
directly from the DSR subspace identification method.
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13.9 Appendix: Proof of Lemma 13.2

We are going to use the Maximum principle for the proof. The Hamilton function
is

Hk =
1

2
((Dxk + Euk)

TQk(Dxk + Euk) + uTk Pkuk) + pTk+1((A− I)xk +Buk),(13.90)

where pk is the co-state vector.

13.9.1 The LQ optimal control

An expression for the optimal control is found from the gradient

∂Hk

∂uk
= ETQk(Dxk + Euk) + Pkuk +BT pk+1 = 0, (13.91)

which gives

(Pk + ETQkE)uk = −BT pk+1 − ETQkDxk. (13.92)

It can be shown from the state and co-state equations that

pk = Rkxk. (13.93)

See Section 13.9.3 for a proof. Using this in (13.92) gives

(Pk + ETQkE)uk = −BTRk+1(Axk +Buk)− ETQkDxk. (13.94)

Hence, we have the following expression for the optimal control

uk = (Pk + ETQkE +BTRk+1B)−1(BTRk+1A+ ETQkD)xk, (13.95)

which is the same as in Lemma 13.2. 2

13.9.2 The Riccati equation

An expression for the co-state vector are determined from

pk+1 − pk = −∂Hk

∂xk
= −(DTQk(Dxk + Euk) + (A− I)T pk+1), (13.96)

which gives

pk = DTQkDxk +DTQkEuk +AT pk+1, (13.97)
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Using (13.93) and the state equation gives

Rkxk = DTQkDxk +DTQkEuk +ATRk+1(Axk +Buk). (13.98)

This can be simplified to

Rkxk = DTQkDxk + (BTRk+1A+ ETQkD)Tuk +ATRk+1Axk. (13.99)

Substituting the optimal control (13.95) into (13.99)gives

Rkxk = DTQkDxk +ATRk+1Axk

(BTRk+1A+ ETQkD)T (Pk + ETQkE +BTRk+1B)−1(BTRk+1A+ ETQkD)xk

(13.100)

This equation must hold for all xk 6= 0, and the Riccati Equation (13.40) follows. 2

13.9.3 The state and co-state equations

Substituting the optimal control given by (13.92), which we have written as uk =
G1xk +G2pk+1, into the co-state equation (13.97) and the state equation gives the
state and co-state system

xk+1 = (A+BG1)xk +BG2pk+1, (13.101)

pk = (DTQkD +DTQkEG1)xk + (AT p+DTQkEG2)pk+1. (13.102)

Starting with the final condition for the co-state, i.e., pk+L = Sk+Lxk+L, and using
induction shows the linear relationship

pk = Rkxk, (13.103)

between the co-state and the state. 2

13.10 Appendix: On the EMPC objective with final
state weighting

In the general case we have to incorporate external signals into the problem. For
the sake of completeness, this is discussed in this section

Jk = (xk+L − xr)TSk+L(xk+L − xr) + (yk|L − rk|L)TQ(yk|L − rk|L)

+∆uTk|LR∆uk|L + (uk|L − u0)TP (uk|L − u0), (13.104)

where xr is a reference for the final state weighting and u0 is a target vector for the
future control inputs
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Part III

Optimization and system
identification





Chapter 14

Prediction error methods

14.1 Overview of the prediction error methods

Given the state space model on innovations form.

x̄k+1 = Ax̄k +Buk +Kek, (14.1)

yk = Dx̄k + Euk︸ ︷︷ ︸
ȳk

+ek, (14.2)

where ∆ = E(eke
T
k ) is the covariance matrix of the innovations process and x̄1 is

the initial predicted state. Suppose now that the model is parameterized, i.e. so
that the free parameters in the model matrices (A,B,K,D,E, x1) are organized
into a parameter vector θ. The problem is to identify the ”best” parameter vector
from known output and input data matrices (Y,U). The optimal predictor, i.e. the
optimal prediction, ȳk, for the output yk, is then of the form

x̄k+1 = (A−KD)x̄k + (B −KE)uk +Kyk, (14.3)

ȳk(θ) = Dx̄k + Euk, (14.4)

with initial predicted state x̄1. ȳk(θ) is the prediction of the output yk given inputs
u up to time k, outputs y up to time k − 1 and the parameter vector θ. Note that
if E = 0m×r then inputs u only up to k − 1 are needed. The free parameters in
the system matrices are mapped into the parameter vector (or visa versa). Note
that the predictor ȳk(θ) is (only) optimal for the parameter vector θ which minimize
some specified criterion. This criterion is usually a function of the prediction errors.
Note also that it is common to use the notation ȳk|θ for the prediction. Hence,
ȳk|θ = ȳk(θ).

Define the Prediction Error (PE)

εk(θ) = yk − ȳk(θ). (14.5)

A good model is a model for which the model parameters θ results in a ”small” PE.
Hence, it make sense to use a PE criterion which measure the size of the PE. A PE
criterion is usually always in one ore another way defined as a scalar function of the
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following important expression and definition

Rε(θ) =
1

N

N∑
k=1

εk(θ)εk(θ)
T ∈ Rm×m, (14.6)

which is the sample covariance matrix of the PE. This means that we want to find
the parameter vector which make Rε as small as possible. Hence, it make sense to
use a PE criterion which measure the size of the sample covariance matrix of the
PE. A common scalar PE criterion for multivariable output systems is thus

VN (θ) = tr(
1

N

N∑
k=1

εk(θ)εk(θ)
T ) =

1

N

N∑
k=1

εk(θ)
T εk(θ). (14.7)

Note that the trace of a matrix is equal to the sum of its diagonal elements and
that tr(AB) = tr(BA) of two matrices A and B of appropriate dimensions. We will
in the following give a discussion of the PE criterion as well as some variants of it.
Define a PE criterion as follows

VN (θ) =
1

N

N∑
k=1

`(εk(θ)) (14.8)

where `(·) is a scalar valued function, e.g. the Euclidean l2 norm, i.e.

`(εk(θ)) =‖ εk(θ) ‖22= εk(θ)
T εk(θ), (14.9)

or a quadratic function

`(εk(θ)) = εk(θ)
TΛεk(θ) = tr(Λεk(θ)εk(θ)

T ), (14.10)

for some weighting matrix Λ. A common criterion for multiple output systems (with
weights) is thus also

VN (θ) =
1

N

N∑
k=1

εk(θ)
TΛεk(θ) = tr(Λ(

1

N

N∑
k=1

εk(θ)εk(θ)
T )), (14.11)

where we usually simply are using Λ = I. The weighting matrix Λ is usually a
diagonal and positive matrix.

One should note that there exist an optimal weighting matrix Λ, but that this
matrix is difficult to define a-priori. The optimal weighting (when the number of
observations N is large) is defined from the knowledge of the innovations noise
covariance matrix of the system, i.e., Λ = ∆−1 where ∆ = E(eke

T
k ). An interesting

solution to this would be to define the weighting matrix from the subspace system
identification method DSR or DSR e and use ∆ = FF T where F is computed by
the DSR algorithm.

The sample covariance matrix of the PE is positive semi-definite, i.e. Rε ≥ 0.
The PE may be zero for deterministic systems however for combined deterministic
and stochastic systems we usually have that Rε > 0, i.e. positive definite. This
means off-course in any case that Rε is a symmetric matrix. The eigenvalues of a
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symmetric matrix are all real. Define λ1, . . . , λm as the eigenvalues of Rε(θ) for use
in the following discussion.

Hence, a good parameter vector, θ, is such that the sample covariance matrix Rε is
small. The trace operator in (14.11), i.e. the PE criterion

VN (θ) = tr(Rε(θ)) = λ1 + . . .+ λm, (14.12)

is a measure of the size of the matrix Rε(θ). Hence, the trace of a matrix is equal
to the sum of the diagonal elements of the matrix, but the trace is also equal to the
sum of the eigenvalues of a symmetric matrix.

An alternative PE criterion which often is used is the determinant, i.e.,

VN (θ) = det(Rε(θ)) = λ1λ2 . . . λm. (14.13)

Hence, the determinant of the matrix is equal to the product of its eigenvalues. This
lead us to a third alternative, which is to use the maximum eigenvalue of Rε(θ) as
a measure of its size, i.e., we may use the following PE criterion

VN (θ) = λmax(Rε(θ)), (14.14)

where λmax(·) denotes the maximum eigenvalue of a symmetric matrix.

Note the special case for a single output system, then we have

VN (θ) =
1

N

N∑
k=1

εk(θ)
2 =

1

N

N∑
k=1

(yk − ȳk(θ))2. (14.15)

The minimizing parameter vector is defined by

θ̂N = arg min
θ∈DM

VN (θ) (14.16)

where arg min denotes the operator which returns the argument that minimizes the
function. The subscript N is often omitted, hence θ̂ = θ̂N and V (θ) = VN (θ).
The definition (14.16) is a standard optimization problem. A simple solution is
then to use a software optimization algorithm which is dependent only on function
evaluations, i.e., where the user only have to define the PE criterion V (θ).

We will in the following give a discussion of how this may be done. The minimizing
parameter vector θ̂ = θ̂N ∈ Rp has to be searched for in the parameter space DM by
some iterative non-linear optimization method. Optimization methods are usually
constructed as variations of the Gauss-Newton method and the Newton-Raphson
method, i.e.,

θi+1 = θi − αH−1
i (θi)gi(θi) (14.17)

where α is defined as a line search (ore step length) scalar parameter chosen to ensure
convergence (i.e. chosen to ensure that V (θi+1 < V (θi)), and where the gradient,
gi(θi), is

gi(θi) =
dV (θi)

dθi
∈ Rp, (14.18)
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and

Hi(θi) =
dgi(θi)

dθTi
=

d

dθTi
(
dV (θi)

dθi
) =

d2V (θi)

dθTi dθi
∈ Rp×p, (14.19)

is the Hessian matrix. Remark that the Hessian is a symmetric matrix and that it
is positive definite in the minimum, i.e.,

H(θ̂) =
d2V (θ̂)

dθ̂Tdθ̂
> 0, (14.20)

where θ̂ = θ̂N is the minimizing parameter vector. Note that the iteration scheme
(14.17) is identical to the Newton-Raphson method when α = 1. In practice one
often have to use a variable step length parameter α, both in order to stabilize the
algorithm and to improve the rate of convergence far from the minimum. Once the
gradient, gi(θi) and the Hessian matrix Hi(θi) (or an approximation of the Hessian)
have been computed, we can chose the line search parameter, α, as

α = arg min
α
VN (θi+1(α)) = arg min

α
(θi − αH−1

i (θi)gi(θi)). (14.21)

Equation (14.21) is an optimization problem for the line search parameter α. Once
α have been determined from the scalar optimization problem (14.21), the new
parameter vector θi+1 is determined from (14.17).

The iteration process (14.17) must be initialized with an initial parameter vector,
θ1. This was earlier (before the subspace methods) a problem. However, a good
solution is to use the parameters from a subspace identification method. Equation
(14.17) can then be implemented in a while or for loop. That is to iterate Equation
(14.17) for i = 1, . . . , until convergence, i.e., until the gradient is sufficiently zero,
i.e., until gi(θi) ≈ 0 for some i ≥ 1. This, and only such a parameter vector is our
estimate, i.e. θ̂ = θ̂N = θi when g(θi) ≈ 0.

The iteration equation (14.17) can be deduced from the fact that in the minimum
we have that the gradient, g, is zero, i.e.,

g(θ̂) =
dV (θ̂)

dθ̂
= 0. (14.22)

We can now use the Newton-Raphson method, which can be deduced as follows. An
expression of g(θ̂) can be defined from a Taylor series expansion of g(θ) around θ,
i.e.,

0 = g(θ̂) ≈ g(θ) + dg(θ)
dθT

∣∣∣
θ

(θ̂ − θ). (14.23)

Using this and that g(θ̂) = 0 gives

θ̂ = θ − ( dg(θ)
dθT

∣∣∣
θ
)−1g(θ). (14.24)

This equation is the background for the iteration scheme (14.17), i.e., putting θ := θi
and θ̂ := θi+1. Hence,

θi+1 = θi − ( dg(θ)
dθT

∣∣∣
θi

)−1g(θi). (14.25)
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Note that we in (14.17) has used the shorthand notation

dg(θi)

dθTi
= dg(θ)

dθT

∣∣∣
θi
. (14.26)

Note that the parameter vector, θ, the gradient, g, and the Hessian matrix have
structures as follows

θ =

 θ1
...
θp

 ∈ Rp, (14.27)

g(θ) =
dV (θ)

dθ
=

 g1
...
gp

 =


dV
dθ1
...
dV
dθp

 ∈ Rp, (14.28)

H =
dg(θ)

dθT
=
d2V (θ)

dθTdθ
=


dg1

dθ1
. . . dg1

dθp
...

. . .
...

dgp
dθ1

. . .
dgp
dθp

 =


d2V
dθ2

1
. . . d2V

dθpdθ1
...

. . .
...

d2V
dθ1dθp

. . . d2V
dθ2
p

 ∈ Rp×p.(14.29)

The gradient and the Hessian can be computed numerically. However, it is usually
more efficient by an analytically computation if possible. Remark that a common
notation of the Hessian matrix is

H =
d2V (θ)

dθ2
, (14.30)

and that the elements in the Hessian is given by

hij =
∂2V (θ)

∂θi∂θj
, (14.31)

where θi and θj are parameter number i and j, respectively, in the parameter vector
θ.

The iteration process (14.17) is guaranteed to converge to a local minimum, at least
theoretically. There may exist many local minima. However, our experience is that
the parameters from an estimated model from a subspace method is very close to
the minimum. Hence, this initial choice for θ1 should always be considered first.
For systems with many outputs, many inputs and many states there may be a huge
number of parameters. The optimization problem may in some circumstances be
so complicated that the process (14.17) diverges even when the initial parameter
θ1 is close to minimum, due to numerical problems. Another problem with PEM
is the model parameterization (canonical form) for systems with many outputs.
One need to specify a canonical form of the state space model, i.e. a state space
realization where there are as few free parameters as possibile in the model matrices
(A,B,D,E,K, x1). A problem for multiple output systems is that there may not
even exist such a canonical form. Another problem is that the PE criterion, VN (θ),
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may be almost in-sensitive to perturbations in the parameter vector, θ, for the
specified canonical form. Hence, the optimization problem may be ill-conditioned.

An advantage of the PE methods is that it does not matter if the data (Y , U) is
collected from closed loop or open loop process operation. It is however necessary
that for open loop experiments, that the inputs, uk, are rich enough for the specified
model structure (usually the model order, n). For closed loop experiments we must
typically require that the feedback is not to simple, e.g. not a simple proportional
controller uk = Kpyk. However, feedback of the type uk = Kp(rk − yk) where the
reference, rk, is perturbed gives data which are informative enough.

14.1.1 Further remarks on the PEM

Note also that in the multivariable case we have that the parameter estimate

θ̂N = arg min
θ

tr(ΛRε(θ)), (14.32)

with Λ = ∆−1 where ∆ = (E(eke
T
k )), has the same asymptotic covariance matrix as

the parameter estimate

θ̂N = arg min
θ

det(Rε(θ)). (14.33)

It can also be shown that the PEM parameter estimate for Gaussian distributed
disturbances, ek, (14.33), or equivalently the PEM estimate (14.32) with the optimal
weighting, is identical to the Maximum Likelihood (ML) parameter estimate. The
PEM estimates (14.32) or (14.33) are both statistically optimal. The only drawback
by using (14.33), i.e., minimizing the determinant PE criterion VN (θ) = det(Rε(θ)),
is that it requires more numerical calculations than the trace criterion. However, on
the other side the evaluation of the PE criterion (14.32) with the optimal weighting
matrix Λ = ∆−1 is not (directly) realistic since the exact covariance matrix ∆ is not
known in advance. However, note that an estimate of ∆ can be built up during the
iteration (optimization) process.

The parameter estimate θ̂N is a random vector, i.e., Gaussian distributed when ek
is Gaussian. This means that θ̂N has a mean and a variance. We want the mean to
be as close to the true parameter vector as possibile and the variance to be as small
as possible. We can show that the PEM estimate θ̂N is consistent, i.e., the mean of
the parameter estimate, θ̂N , converges to the true parameter vector, θ0, as N tends
to infinity. In other words we have that E(θ̂N ) = θ0. Consider g(θ̂N ) = 0 expressed
as a Taylor series expansion of g(θ0) around the true parameter vector θ0, i.e.

0 = g(θ̂N ) ≈ g(θ0) +H(θ0)(θ̂N − θ0). (14.34)

where the Hessian matrix

H(θ0) = dg(θ)
dθ

∣∣∣
θ0
, (14.35)

is a deterministic (constant) matrix. However, the gradient, g(θ0), is a random vector
with zero mean and covariance matrix P0. From this we have that the difference
between our estimate, θ̂N and the true vector θ0 is given by

θ̂N − θ0 = −H−1(θ0)g(θ0). (14.36)
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Hence,

E(θ̂N − θ0) = −H−1(θ0)E(g(θ0)) = 0. (14.37)

This shows consistency of the parameter estimate, i.e.

E(θ̂N ) = θ0, (14.38)

because θ0 is deterministic.

The parameter estimates (14.33) and (14.32) with optimal weighting are efficient,
i.e., they ensures that the parameter covariance matrix

P = E((θ̂N − θ0)(θ̂N − θ0)T ) = H−1(θ0)E(g(θ0)g(θ0)T )H−1(θ0) (14.39)

is minimized. The covariance matrix P may be estimated from the data by evalu-
ating (14.39) numerically by using the approximation θ0 ≈ θ̂N .

For single output systems (m = 1) we have that the parameter covariance matrix,
P , can be expressed as

P = E((θ̂N − θ0)(θ̂N − θ0)T ) = ∆(E(ψk(θ0)ψTk (θ0)))−1, (14.40)

where ∆ = E(eke
T
k ) = E(e2

k) in the single output case, and with

ψk(θ0) =
dȳk(θ)

dθ
|θ0 ∈ Rp×m (14.41)

Loosely spoken, Equation (14.40) states that the variance, P , of the parameter
estimate, θ̂N , is ”small” if the covariance matrix of ψk(θ0) is large. This covariance
matrix is large if the predictor ȳk(θ) is ”very” sensitive to (perturbations in) the
parameter vector θ.

14.1.2 Derivatives of the prediction error criterion

Consider the PE criterion (14.8) with (14.10), i.e.,

VN (θ) =
1

N

N∑
k=1

`(εk(θ)) =
1

N

N∑
k=1

`(εk(θ))︷ ︸︸ ︷
εTk (θ)Λεk(θ) . (14.42)

The derivative of the scalar valued function ` = `(εk(θ)) with respect to the param-
eter vector θ can be expressed from the chain rule

∂`(εk(θ))

∂θ
=
∂εk
∂θ

∂`(εk(θ))

∂εk
= −∂ȳk(θ)

∂θ
2Λεk. (14.43)

Define the gradient matrix of the predictor ȳk ∈ R×m with respect to the parameter
vector θ ∈ R×p as

ψk(θ) =
∂ȳk(θ)

∂θ
∈ Rp×m. (14.44)

This gives the following general expression for the gradient, i.e.,

g(θ) =
∂VN (θ)

∂θ
=

1

N

N∑
k=1

∂`(εk(θ))

∂θ
= −2

1

N

N∑
k=1

ψk(θ)Λεk (14.45)
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14.1.3 Least Squares and the prediction error method

The optimal predictor, ȳk(θ), is generally a non-linear function of of the unknown
parameter vector, θ. The PEM estimate can in this case in generally not be solved
analytically. However, in some simple and special cases we have that the predictor is
a linear function of the parameter vector. This problem have an analytical solution
and the corresponding PEM is known as the Least Squares (LS) method. we will in
this section give a short description of the solution to this problem.

Linear regression models

Consider the simple special case of the general linear system (14.1) and (14.2) de-
scribed by

yk = Euk + ek, (14.46)

where yk ∈ Rm, E ∈ Rm×r, uk ∈ Rr and ek ∈ Rm is white with covariance matrix
∆ = E(eke

T
k ). The model (14.46) can be written as a linear regression

yk = ϕTk θ + ek, (14.47)

where

ϕTk = uTk ⊗ Im ∈ Rm×rm (14.48)

and the true parameters in the system, θ0, is related to those in E as

θ = vec(E) ∈ Rmr. (14.49)

Note that the number of parameters in this case is p = mr. Furthermore, note that
(14.47) is a standard notation of a linear regression equation used in the identification
literature. In order to deduce (14.47) from (14.46) we have used that vec(AXB) =
(BT ⊗A)vec(X). Using this and the fact that Euk = ImEuk gives (14.47).

Also note that dynamic systems described by ARX models can be written as a linear
regression of the form (14.47).

The least squares method

Given a linear regression of the form

yk = ϕTk θ0 + ek, (14.50)

where yk ∈ Rm, ϕk ∈ Rp×m, ek ∈ Rm is white with covariance matrix ∆ = E(eke
T
k )

∈ Rm×m and where θ0 ∈ Rp is the true parameter vector.

Here ϕk is a vector of known variables (or quantities) and these variables is often
called regression variables or regressors. The output variables yk is also called the
regressed variables.

A natural predictor is as usual

ȳk(θ) = ϕTk θ. (14.51)
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We will in the following find the parameter estimate, θ̂N , which minimizes the PE
criterion

VN (θ) =
1

N

N∑
k=1

εTk (θ)Λεk(θ), (14.52)

where εk = yk − ϕTk θ is the Prediction Error (PE). The gradient matrix, ψk(θ),
defined in (14.44) is in this case given by

ψk(θ) =
∂ȳk(θ)

∂θ
= ϕk ∈ Rp×m. (14.53)

Using this and the expression (14.45) for the gradient, g(θ), of the PE criterion,
VN (θ), gives

g(θ) =
∂VN (θ)

∂θ
= −2

1

N

N∑
k=1

ϕkΛ(yk − ϕTk θ) = −2
1

N

N∑
k=1

(ϕkΛyk − ϕkΛϕTk θ)).(14.54)

The OLS and the PEM estimate is here simply given by solving g(θ) = 0, i.e.,

θ̂N = (

N∑
k=1

ϕkΛϕ
T
k )−1

N∑
k=1

ϕkΛyk. (14.55)

if the indicated inverse (of the Hessian) exists. Note that the Hessian matrix in this
case is simply given by

H(θ) =
∂g(θ)

∂θT
= 2

1

N

N∑
k=1

ϕkΛϕ
T
k . (14.56)

The Hessian (symmetric) matrix should be positive definite, H(θ) > 0, for Eq.
(14.55) to be a minimum. This indicates a positive weighting matrix Λ > 0.

The gradient vector in Eq. (14.54) may also be derived using the chain rule as
follows

g(θ) =
∂(VN (θ))

∂θ
=

1

N

N∑
k=1

∂εk
∂θ

∂(εk(θ)
TΛεk(θ))

∂εk
=
−2

N

N∑
k=1

ϕΛ(yk − ϕT θ).(14.57)

Putting g(θ) = 0 gives the optimal solution in Eq. (14.55).

Matrix derivation of the least squares method

For practical reasons when computing the least squares solution as well as for the
purpose of analyzing the statistical properties of the estimate it may be convenient
to write the linear regression (14.47) in vector/matrix form as follows

Y = Φθ0 + e, (14.58)
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where Y ∈ RmN , Φ ∈ RmN×p, θ0 ∈ Rp, p = mr and e ∈ RmN and given by

Y =


y1

y2
...
yN

 ∈ RmN , Φ =


ϕT1
ϕT2
...
ϕTN

 ∈ RmN×p, e =


e1

e2
...
eN

 ∈ RmN . (14.59)

Furthermore, e, is zero mean with covariance matrix ∆̃ = E(eeT ). This covariance
matrix will be discussed later in this section.. Define

ε =


ε1
...
εk
...
εN

 = Y − Φθ, (14.60)

as the matrix of prediction errors. Hence we have that the PE criterion is given by

VN (θ) =
1

N

N∑
k=1

εTk (θ)Λεk(θ) =
1

N
εT Λ̃ε, (14.61)

where Λ̃ is a block diagonal matrix with Λ on the block diagonals, i.e.,

Λ̃ =


Λ 0 . . . 0
0 Λ . . . 0
...

...
. . .

...
0 0 . . . Λ

 ∈ RmN×mN . (14.62)

The nice thing about (14.61) is that the summation is not present in the last ex-
pression of the PE criterion. Hence we can obtain a more direct derivation of the
parameter estimate. The gradient in (14.54) can in this case simply be expressed as

g(θ) =
∂VN (θ)

∂θ
=
∂ε

∂θ

∂VN (θ)

∂ε
=

1

N
(−ΦT )2Λ̃(Y − Φθ). (14.63)

The Hessian is given by

H(θ) =
∂g(θ)

∂θT
= 2

1

N
ΦT Λ̃Φ. (14.64)

Solving g(θ) = 0 gives the following expression for the estimate

θ̂N = (ΦT Λ̃Φ)−1ΦT Λ̃Y, (14.65)

which is identical to (14.55). It can be shown that the optimal weighting is given
by Λ = ∆−1. The solution (14.55) or (14.65) with the optimal weighting matrix
Λ = ∆−1 is known in the literature as the Best Linear Unbiased Estimate (BLUE).
Choosing Λ = Im in (14.55) or (14.65) gives the OLS solution.

A short analysis of the parameter estimate is given in the following. Substituting
(14.58) into (14.65) gives an expression of the difference between the parameter
estimate and the true parameter vector, i.e.,

θ̂N − θ0 = (ΦT Λ̃Φ)−1ΦT Λ̃e. (14.66)
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The parameter estimate (14.65) is an unbiased estimate since

E(θ̂N ) = θ0 + (ΦT Λ̃Φ)−1ΦT Λ̃E(e) = θ0. (14.67)

The covariance matrix of the parameter estimate is given by

P = E((θ̂N − θ0)(θ̂N − θ0)T ) = (ΦT Λ̃Φ)−1ΦT Λ̃E(eeT )Λ̃Φ(ΦT Λ̃Φ)−1. (14.68)

Suppose first that we are choosing the weighting matrix Λ̃ = ∆̃−1 where ∆̃ = E(eeT ).
It should be noted that ∆̃ also is a block diagonal matrix with ∆ = E(eie

T
i ) on the

block diagonals. Then we have

PBLUE = E((θ̂N − θ0)(θ̂N − θ0)T ) =

N∑
k=1

ϕk∆
−1ϕTk = (ΦT ∆̃−1Φ)−1. (14.69)

The Ordinary Least squares (OLS) estimate is obtained by choosing Λ = Im, i.e.,
no weighting. For the OLS estimate we have that

POLS = E((θ̂N − θ0)(θ̂N − θ0)T ) = (ΦTΦ)−1ΦTE(eeT )Φ(ΦTΦ)−1. (14.70)

In the single output case we have that ∆̃ = E(eeT ) = δ0IN . Using this in (14.70)
gives the standard result for univariate (m = 1) data which is presented in the
literature, i.e.,

POLS = E((θ̂N − θ0)(θ̂N − θ0)T ) = δ0(ΦTΦ)−1. (14.71)

An important result is that

PBLUE ≤ POLS. (14.72)

In fact, all other symmetric and positive definite weighting matrices gives a larger
parameter covariance matrix than the covariance matrix of the BLUE estimate.

Alternative matrix derivation of the least squares method

Another linear regression model formulation which is frequently used, e.g., in the
Chemometrics literature, is given by

Y = XB + E, (14.73)

where Y ∈ RN×m is a matrix of dependent variables (outputs), X ∈ RN×r is a
matrix of the independent variables (regressors or inputs), B ∈ Rm×r is a matrix of
system parameters (regression coefficients). E ∈ RN×m is a matrix of white noise.

The OLS solution is simply obtained by solving the normal equations XTY =
XTXB for B, i.e,

BOLS = (XTX)−1XTY, (14.74)

it XTX is non-singular.
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14.2 Input and output model structures

Input and output discrete time model structures are frequently used in connection
with the prediction error methods and software. We will in this section give a
description of these model structures and the connection with the general state
space model structure.

14.2.1 ARMAX model structure

An ARMAX model structure is defined by the (polynomial) model

A(q)yk = B(q)uk + C(q)ek. (14.75)

The acronym ARMAX comes from the fact that the term A(q)yk is defined as an
Auto Regressive (AR) part, the term C(q)ek is defined as an Moving Average (MA)
part and that the part B(q)uk represents eXogenous (X) inputs. Note in connection
with this that an Auto Regressive (AR) model is of the form A(q)yk = ek, i.e.
with additive equation noise. The noise term, C(q)ek, in a so called ARMA model
A(q)yk = C(q)ek represents a moving average of the white noise ek.

In general we have that the polynomials in Eq. (14.75) may be expressed as

A(q) = 1 + a1q
−1 + . . .+ anaq

−na, (14.76)

B(q) = b1q
−1 + . . .+ bnbq

−nb, (14.77)

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc, (14.78)

when yk, uk and ek are scalar signals and where na, nb and nc are the order of the
A(q), B(q) and the C(q) polynomials, respectively. Note also that the polynomials
also may be written as A(q) = A(q−1), B(q) = B(q−1) and C(q) = C(q−1) where
q−1 is the shift operator such that

q−1yk = yk−1. (14.79)

The ARMAX model structure can be deduced from a general linear SISO state space
model. MIMO systems is not considered in this Section. This will be illustrated in
the following example.

Example 14.1 (Estimator canonical form to polynomial form) Consider the
following single input and single output discrete time state space model on estimator
canonical form

xk+1 =

[
−a1 1
−a0 0

]
xk +

[
b1
b0

]
uk +

[
c1

c0

]
vk (14.80)

yk =
[

1 0
]
xk + euk + fvk (14.81)

where uk is a known deterministic input signal, vk is an unknown white noise process
and xTk =

[
x1
k+1 x

2
k+1

]
is the state vector.
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An input output model formulation can be derived as follows

x1
k+1 = −a1x

1
k + x2

k + b1uk + c1vk (14.82)

x2
k+1 = −a0x

1
k + b0uk + c0vk (14.83)

yk = x1
k + euk + fvk (14.84)

Express Equation (14.82) with k =: k+1 and substitute for x2
k+1 defined by Equation

(14.83). This gives an equation in terms of the 1st state x1
k. Finaly, eliminate x1

k

by using Equation (14.84). This gives

[
1 a1 a0

]  yk
yk−1

yk−2


=
[
e b1 + a1e b0 + a0e

]  uk
uk−1

uk−2

+
[
f c1 + a1f c0 + a0f

]  vk
vk−1

vk−2

 (14.85)

Let us introduce the backward shift operator q−1 such that q−1uk = uk−1. This gives
the following polynomial (or transfer function) model

A(q)︷ ︸︸ ︷
(1 + a1q

−1 + a0q
−2) yk

=

B(q)︷ ︸︸ ︷
(e+ (b1 + a1e)q

−1 + (b0 + a0e)q
−2)uk +

C(q)︷ ︸︸ ︷
(f + (c1 + a1f)q−1 + (c0 + a0f)q−2) vk

(14.86)

which is equal to an ARMAX model structure.

Example 14.2 (Observability canonical form to polynomial form)
Consider the following single input and single output discrete time state space model
on observability canonical form

xk+1 =

[
0 1
−a1 −a0

]
xk +

[
b0
b1

]
uk +

[
c0

c1

]
vk, (14.87)

yk =
[

1 0
]
xk + euk + fvk, (14.88)

where uk is a known deterministic input signal, vk is an unknown white noise process
and xTk =

[
x1
k+1 x

2
k+1

]
is the state vector. An input and output model can be derived

by eliminating the states in (14.87) and (14.88). We have

x1
k+1 = x2

k + b0uk + c0vk, (14.89)

x2
k+1 = −a1x

1
k − a0x

2
k + b1uk + c1vk, (14.90)

yk = x1
k + euk + fvk. (14.91)

Solve (14.89) for x2
k and substitute into (14.90). This gives an equation in x1

k, i.e.,

x1
k+2 − b0uk+1 − c0vk+1 = −a1x

1
k − a0(x1

k+1 − b0uk − c0vk) + b1uk + c1vk.(14.92)
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Solve (14.91) for x1
k and substitute into (14.92). This gives

yk+2 − euk+2 − fvk+2 − b0uk+1 − c0vk+1 = −a1(yk − euk − fvk)
−a0(yk+1 − euk+1 − fvk+1) + a0b0uk + a0c0vk + b1uk + c1vk. (14.93)

This gives the input and output equation

[
1 a0 a1

]  yk+2

yk+1

yk

 =
[
e b0 + a0e b1 + a0b0 + a1e

]  uk+2

uk+1

uk


+
[
f c0 + a0f c1 + a0c0 + a1f

]  vk+2

vk+1

vk

 . (14.94)

Hence, we can write (14.94) as an ARMAX polynomial model

A(q)yk = B(q)uk + C(q)vk, (14.95)

A(q) = 1 + a0q
−1 + a1q

−2, (14.96)

B(q) = e+ (b0 + a0e)q
−1 + (b1 + a0b0 + a1e)q

−2, (14.97)

C(q) = f + (c0 + a0f)q−1 + (c1 + a0c0 + a1f)q−2. (14.98)

14.2.2 ARX model structure

An Auto Regression (AR) model A(q)yk = ek with eXtra (or eXogenous) inputs
(ARX) model can be expressed as follows

A(q)yk = B(q)uk + ek (14.99)

where the term A(q)yk is the Auto Regressive (AR) part and the term B(q)uk
represents the part with the eXtra (X) inputs. The eXtra variables uk are called
eXogenous in econometrics. Note also that the ARX model also is known as an
equation error model because of the additive error or white noise term ek.

It is important to note that the parameters in an ARX model, e.g. as defined in
Equation (14.99) where ek is a white noise process, can be identified directly by the
Ordinary Least Squares (OLS) method, if the inputs, uk, are informative enough. A
problem with the ARX structure is off-course that the noise model (additive noise)
is to simple in many practical cases.

Example 14.3 (ARX and State Space model structure) Comparing the ARX
model structure (14.99) with the more general model structure given by (14.86) we
find that the state space model (14.80) and (14.81) is equivalent to an ARX model
if

c1 = −a1f, c0 = −a0f, ek = fvk (14.100)

This gives the following ARX model

A(q)︷ ︸︸ ︷
(1 + a1q

−1 + a0q
−2) yk =

B(q)︷ ︸︸ ︷
(e+ (b1 + a1e)q

−1 + (b0 + a0e)q
−2)uk + fvk(14.101)
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which, from the above discussion, have the following state space model equivalent

xk+1 =

[
−a1 1
−a0 0

]
xk +

[
b1
b0

]
uk +

[
−a1

−a0

]
fvk (14.102)

yk =
[

1 0
]
xk + euk + fvk (14.103)

It is at first sight not easy to see that this state space model is equivalent to an
ARX model. It is also important to note that the ARX model has a state space
model equivalent. The noise term ek = fvk is white noise if vk is withe noise. The
noise ek appears as both process (state equation) noise and measurements (output
equation) noise. The noise is therefore filtred throug the process dynamics.

14.2.3 OE model structure

An Output Error (OE) model structure can be represented as the following polyno-
mial model

A(q)yk = B(q)uk +A(q)ek (14.104)

or equivalently for single output plants

yk =
B(q)

A(q)
uk + ek (14.105)

Example 14.4 (OE and State Space model structure) From (14.86) we find
that the state space model (14.80) and (14.81) is equivalent to an OE model if

c1 = 0, c0 = 0, f = 1, vk = ek (14.106)

Hence, the following OE model

A(q)︷ ︸︸ ︷
(1 + a1q

−1 + a0q
−2) yk =

B(q)︷ ︸︸ ︷
(e+ (b1 + a1e)q

−1 + (b0 + a0e)q
−2)uk

+

A(q)︷ ︸︸ ︷
(1 + a1q

−1 + a0q
−2) ek (14.107)

have the following state space model equivalent

xk+1 =

[
−a1 1
−a0 0

]
xk +

[
b1
b0

]
uk (14.108)

yk =
[

1 0
]
xk + euk + ek (14.109)

Note that the noise term ek appears in the state space model as an equivalent mea-
surements noise term or output error term.
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14.2.4 BJ model structure

In an ARMAX model structure the dynamics in the path from the inputs uk to
the output yk is the same as the dynamics in the path from the process noise ek to
the output. In practice it is quite realistic that some or all of the dynamics in the
two paths are different. This can be represented by the Box Jenkins (BJ) model
structure

F (q)D(q)yk = D(q)B(q)uk + F (q)C(q)ek (14.110)

or for single output systems

yk =
B(q)

F (q)
uk +

C(q)

D(q)
ek (14.111)

In the BJ model the moving average noise (coloured noise) term C(q)ek is filtred
throug the dynamics represented by the polynomial D(q). Similarly, the dynamics
in the path from the inputs uk are represented by the polynomial A(q).

However, it is important to note that the BJ model structure can be represented by
an equivalent state space model structure.

14.2.5 Summary

The family of polynomial model structures

BJ : Box Jenkins
ARMAX : Auto Regressive Moving Average with eXtra inputs
ARX : Auto Regressive with eXtra inputs
ARIMAX : Auto Regressive Integrating Moving Average with eXtra inputs
OE : Output Error

(14.112)

can all be represented by a state space model of the form

yk = Dxk + Euk + Fek, (14.113)

xk+1 = Axk +Buk + Cek. (14.114)

When using the prediction error methods for system identification the model struc-
ture and the order of the polynomial need to be specified. It is important that the
prediction error which is to be minimized is a function of as few unknown parameters
as possible. Note also that all of the model structures discussed above are linear
models. However, the optimization problem of computing the unknown parameters
are highly non-linear. Hence, we can run into numerical problems. This is especially
the case for multiple output and MIMO systems.

The subspace identification methods, e.g. DSR, is based on the general state space
model defined by (14.113) and (14.114. The subspace identification methods is
therefore flexibile enough to identify systems described by all the polynomial model
structures (14.112). Note also that not even the system order n need to be specified
beforehand when using the subspace identification method.
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Remark 14.1 (Other notations frequently used)
Another notation for the backward shift operator q−1 (defined such that q−1yk =
yk−1) is the z− operator, (z−1 such that z−1yk = yk−1. The notation A(q), B(q)
and so on are used by Ljung (1999). In Söderström and Stoica (1989) the notation
A(q−1), B(q−1) are used for the same polynomials.

14.3 Optimal one-step-ahead predictions

14.3.1 State Space Model

Consider the innovations model

x̄k+1 = Ax̄k +Buk +Kek, (14.115)

yk = Dx̄k + Euk + ek, (14.116)

where K is the Kalman filter gain matrix. A predictor ȳk for yk can be defined as
the two first terms on the right hand side of (14.116), i.e.

ȳk = Dx̄k + Euk. (14.117)

The equations for the (optimal) predictor (Kalman filter) is therefore given by

x̄k+1 = Ax̄k +Buk +K(yk − ȳk), (14.118)

ȳk = Dx̄k + Euk, (14.119)

which can be written as

x̄k+1 = (A−KD)x̄k + (B −KE)uk +Kyk, (14.120)

ȳk = Dx̄k + Euk. (14.121)

Hence, the optimal prediction, ȳk, of the output yk can simply be obtained by simu-
lating (14.120) and (14.121) with a specified initial predicted state x̄1. The results is
known as the one-step ahead predictions. The name one-step ahead predictor comes
from the fact that the prediction of yk+1 is based upon all outputs up to time k as
well as all relevant inputs. This can be seen by writing (14.120) and (14.121) as

ȳk+1 = D(A−KD)x̄k +D(B −KE)uk + Euk+1 +DKyk, (14.122)

which is the one-step ahead prediction.

Note that the optimal prediction (14.120) and (14.121) can be written as the follow-
ing transfer function model

ȳk(θ) = Hd
e (q)uk +Hs

e (q)yk, (14.123)

where

Hd
e (q) = D(qI − (A−KD))−1(B −KE) + E, (14.124)

Hs
e (q) = D(qI − (A−KD))−1K. (14.125)

The derivation of the one-step-ahead predictor for polynomial models is further
discussed in the next section.
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14.3.2 Input-output model

The linear system can be expressed as the following input and output polynomial
model

yk = G(q)uk +H(q)ek. (14.126)

The noise term ek can be expressed as

H−1(q)yk = H−1(q)G(q)uk + ek. (14.127)

Adding yk on both sides gives

yk = (I −H−1(q))yk +H−1(q)G(q)uk + ek. (14.128)

The prediction of the output is given by the first two terms on the right hand side
of (14.128) since ek is white and therefore cannot be predicted, i.e.,

ȳk(θ) = (I −H−1(q))yk +H−1(q)G(q)uk. (14.129)

Loosely spoken, the optimal prediction of yk is given by the predictor, ȳk, so that a
measure of the difference ek = yk−ȳk(θ), e.g., the variance, is minimized with respect
to the parameter vector θ, over the data horizon. We also assume that a sufficient
model structure is used, and that the unknown parameters is parameterized in θ.
Ideally, the prediction error ek will be white.

14.4 Optimal M-step-ahead prediction

14.4.1 State space models

The aim of this section is to develop the optimal j-step-ahead predictions ȳk+j ∀ j =
1, ...,M . The optimal one-steap-ahead predictor, i.e., for j = 1, is defined in (14.122).
We will in the following derivation assume that only outputs up to time k is available.
Furthermore, it is assumed that all inputs which are needed in the derivation are
available. This is realistic in practice. Only, past outputs . . . , yk−2, yk−1, yk are
known. Note that we can assume values for the future inputs, or the future inputs
can be computed in an optimization strategy as in Model Predictive Control (MPC).
The Kalman filter on innovations form is

x̄k+1 = Ax̄k +Buk +Kek, (14.130)

yk = Dx̄k + Euk + ek. (14.131)

The prediction for j = 1, i.e., the one-step-ahead prediction, is given in (14.122).
The other predictions are derived as follows. The output at time k := k + 2 is then
defined by

x̄k+2 = Ax̄k+1 +Buk+1 +Kek+1, (14.132)

yk+2 = Dx̄k+2 + Euk+2 + ek+2. (14.133)
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The (white) noise vectors, ek+1 and ek+2 are all in the future, and they can not be
predicted because they are white. The best prediction of yk+2 must then be to put
ek+1 = 0 and ek+2 = 0. Hence, the predictor for j = 2 is

xk+1 = x̄k+1, (14.134)

xk+2 = Axk+1 +Buk+1, (14.135)

ȳk+2 = Dxk+2 + Euk+2. (14.136)

This can simply be generalized for j > 2 as presented in the following lemma.

Lemma 14.1 (Optimal j-step-ahead predictions)
The optimal j-step-ahead predictions, j = 1, 2, . . . ,M , can be obtained by a pure
simulation of the system (A,B,D,E) with the optimal predicted Kalman filter state
x̄k+1 as the initial state.

xk+j+1 = Axk+j +Buk+j , (14.137)

yk+j = Dxk+j + Euk+j , ∀ j = 1, . . . ,M (14.138)

where the initial state xk+1 = x̄k+1 is given from the Kalman filter state equation

x̄k+1 = (A−KD)x̄k + (B −KE)uk +Kyk, (14.139)

where the initial state x̄1 is known and specified. This means that all outputs up to
time, k, and all relevant inputs, are used to predict the output at time k + 1, . . .,
k +M .

Example 14.5 (Prediction model on matrix form (proper system))
Given the Kalman filter matrices (A,B,D,E,K) of an only proper process, and the
initial predicted state x̄k. The predictions ȳk+1, ȳk+2 and ȳk+3 can be written in
compact form as follows ȳk+1

ȳk+2

ȳk+3

 =

DDA
DA2

 (A−KD)x̄k +

DDA
DA2

Kyk
+

D(B −KE) E 0 0
DA(B −KE) DB E 0
DA2(B −KE) DAB DB E



uk
uk+1

uk+2

uk+3

 . (14.140)

This formulation may be useful in e.g., model predictive control.

Example 14.6 (Prediction model on matrix form (strictly proper system))

Given the Kalman filter matrices (A,B,D,K) of an strictly proper system, and
the initial predicted state x̄k. The predictions ȳk+1, ȳk+2 and ȳk+3 can be written in
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compact form as follows ȳk+1

ȳk+2

ȳk+3

 =

DDA
DA2

 (A−KD)x̄k +

DDA
DA2

Kyk
+

DB 0 0
DAB DB 0
DA2B DAB DB

 ukuk+1

uk+2

 . (14.141)

This formulation is more realistic for control considerations, where we almost always
have a delay of one sample between the input and the output.

14.5 Matlab implementation

We will in this section illustrate a simple but general MATLAB implementation of
a Prediction Error Method (PEM).

14.5.1 Tutorial: SS-PEM Toolbox for MATLAB

The MATLAB files in this work is built up as a small toolbox, i.e., the SS-PEM
toolbox for MATLAB. This toolbox should be used in connection with the D-SR
Toolbox for MATLAB. An overview of the functions in the toolbox is given by the
command

>> help ss-pem

The main prediction error method is implemented in the function sspem.m. An
initial parameter vector, θ1, is computed by first using the DSR algorithm to com-
pute an initial state space Kalman filter model, i.e. the corresponding matrices
(A,B,D,E,K, x1). This model is then transformed to observability canonical form
by the D-SR Toolbox function ss2cf.m. The initial parameter vector, θ1, is then
taken as the free parameters in these canonical state space model matrices. The min-
imizing parameter vector, θ̂, is then computed by the Optimization toolbox function
fminunc.m. Other optimization algorithms can off-course be used.

A tutorial and overview is given in the following. Assume that output and input data
matrices, Y ∈ RN×m and U ∈ RN×r are given. A state space model (Kalman filter)
can then simply be identified by the PEM function sspem.m, in the MATLAB
command window as follows.

>> [A,B,D,E,K,x1]=sspem(Y,U,n);

A typical drawback with PEMs is that the system order, n, has to be specified
beforehand. A good solution is to analyze and identify the system order, n, by
the subspace algorithm DSR. The identified model is represented in observability
canonical form. That is a state space realization with as few free parameters as
possibile. This realization can be illustrated as follows. Consider a system with
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m = 2 outputs, r = 2 inputs and n = 3 states, which can be represented by a linear
model. The resulting model from sspem.m will be on Kalman filter innovations
form, i.e.,

xk+1 = Axk +Buk +Kek, (14.142)

yk = Dxk + Euk + ek, (14.143)

with initial predicted state x1 given, or on prediction form, i.e.,

xk+1 = Axk +Buk +K(yk − ȳk), (14.144)

ȳk(θ) = Dxk + Euk, (14.145)

and where the model matrices (A,B,D,E,K) and the initial predicted state x1 are
given by

A =

 0 0 1
θ1 θ3 θ5

θ2 θ4 θ6

 , B =

 θ7 θ10

θ8 θ11

θ9 θ12

 , K =

 θ13 θ16

θ14 θ17

θ15 θ18

 , (14.146)

D =

[
1 0 0
0 1 0

]
, E =

[
θ19 θ21

θ20 θ22

]
, x1

 θ23

θ24

θ25

 . (14.147)

This model is on a so called observability canonical form, i.e. the third order model
has as few free parameters as possibile. The number of free parameters are in this
example 25. The observability canonical form is such that the D matrix is filled
with ones and zeros. We have that D = ones(m,n). Furthermore, we have that a
concatenation of the D matrix and the first n−m rows of the A matrix is the identity

matrix, i.e.

[
D
A(1 : n−m, :)

]
= In. This may be used as a rule when writing up the

n−m first rows of the A matrix. The rest of the A matrix as well as the matrices
B, K, E and x1 is filled with parameters. However, the user does not have to deal
with the construction of the canonical form, when using the SSPEM toolbox.

The total number of free parameters in a linear state space model and in the pa-
rameter vector θ ∈ Rp are in general

p = mn+ nr + nm+mr + n = (2m+ r + 1)n+mr (14.148)

An existing DSR model can also be refined as follows. Suppose now that a state space
model, i.e. the matrices (A,B,D,E,K, x1) are identified by the DSR algorithm as
follows

>> [A,B,D,E,C,F,x1]=dsr(Y,U,L);

>> K=C*inv(F);

This model can be transformed to observability canonical form and the free param-
eters in this model can be mapped into the parameter vector θ1 by the function
ss2thp.m, as follows
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>> th_1=ss2thp(A,B,D,E,K,x1);

The model parameter vector θ1 can be further refined by using these parameters as
initial values to the PEM method sspem.m. E.g. as follows

>> [A,B,D,E,K,x1,V,th]=sspem(Y,U,n,th_1);

The value of the prediction error criterion, V (θ), is returned in V . The new and
possibly better (more optimal) parameter vector is returned in th.

Note that for a given parameter vector, then the state space model matrices can be
constructed by

>> (A,B,D,E,K,x1)=thp2ss(th,n,m,r);

It is also worth to note that the value, V (θ), of the prediction error criterion is
evaluated by the MATLAB function vfun mo.m. The data matrices Y and U and
the system order, n, must first be defined as global variables, i.e.

>> global Y U n

The PE criterion is then evaluated as

>> V=vfun_mo(th);

where th is the parameter vector. Note that the parameter vector must be of length
p as explained above.

See also the function ss2cf.m in the D-SR Toolbox for MATLAB which returns an
observability form state space realization from a state space model.
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14.6 Recursive ordinary least squares method

We start this section by a simple example of how the mean of a variable, say yk,
may be recursively estimated.

Example 14.7
The mean of a variable yk at present time t may be expressed as

ȳt =
1

t

t∑
k=1

yk. (14.149)

In recursive identification we want to use new information at present time, i.e., yt,
to update an estimate at the previous time instant. The sum in Eq. (14.149) may
be divided into two parts and expressed as follows

ȳt =
1

t
(
t−1∑
k=1

yk + yt) =
t− 1

t

ȳt−1︷ ︸︸ ︷
1

t− 1

t−1∑
k=1

yk +
1

t
yt. (14.150)

This may be written as

ȳt = ȳt−1 +
1

t
(yt − ȳt−1), (14.151)

where

ȳt−1 =
1

t− 1

t−1∑
k=1

yk, (14.152)

is the mean at the previous time instant.

Eq. (14.151) is quite appealing since the mean is estimated very similarly as a
Kalman filter estimate, i.e., the new estimate is obtained as the sum of the previous
estimate plus a correction term.

The OLS estimate (14.55) can be written as

θ̂t = (
t∑

k=1

ϕkΛϕ
T
k )−1

t∑
k=1

ϕkΛyk. (14.153)

We have simply replaced N in (14.55) by t in order to stress the dependence of θ̂ on
time, t. Let us define the indicated inverse in (14.153) by

Pt = (

t∑
k=1

ϕkΛϕ
T
k )−1. (14.154)

From this definition we have that

Pt = (

t−1∑
k=1

ϕkΛϕ
T
k + ϕtΛϕ

T
t )−1. (14.155)
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which gives.

P−1
t = P−1

t−1 + ϕtΛϕ
T
t (14.156)

Pt can be viewed as a covariance matrix which can be recursively computed at each
time step by (14.156).

The idea is now to write (14.153) as

θ̂t = Pt

t∑
k=1

ϕkΛyk

= Pt(

t−1∑
k=1

ϕkΛyk + ϕtΛyt) (14.157)

From (14.153) we have that θ̂t−1 is given by

θ̂t−1 = Pt−1

t−1∑
k=1

ϕkΛyk (14.158)

Substituting this into (14.157) gives

θ̂t = Pt(P
−1
t−1θ̂t−1 + ϕtΛyt) (14.159)

From (14.156) we have that

P−1
t−1 = P−1

t − ϕtΛϕTt (14.160)

Substituting this into (14.159) gives

θ̂t = Pt((P
−1
t − ϕtΛϕTt )θ̂t−1 + ϕtΛyt) (14.161)

Rearranging this we get

θ̂t = θ̂t−1 + PtϕtΛ(yt − ϕTt θt−1) (14.162)

We then have the following ROLS algorithm

Algorithm 14.6.1 (Recursive OLS algorithm)
The algorithm is summarized as follows:

Step 1 Initial values for Pt=0 and θ̂t=0. It is common practice to take Pt=0 = ρIp
with ρ a ”large” constant and θ̂t=0 = 0 without any a-priori information.

Step 2 Updating the covariance matrix, Pt, and the parameter estimate, θt, as
follows

P−1
t = P−1

t−1 + ϕtΛϕ
T
t , (14.163)

Kt = PtϕtΛ, (14.164)

and

θ̂t = θ̂t−1 +Kt(yt − ϕTt θ̂t−1). (14.165)
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At each time step we need to compute the inverse

Pt = (P−1
t−1 + ϕtΛϕ

T
t )−1. (14.166)

Using the following matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (14.167)

we have that (14.166) can be written as

Pt = Pt−1 − Pt−1ϕt(Λ
−1 + ϕTt Pt−1ϕt)

−1ϕTt Pt−1. (14.168)

Example 14.8 (Recursive OLS algorithm)
Given a system described by a state space model

xk+1 = Axk +Buk + Cek (14.169)

yk = Dxk (14.170)

where

A =

[
0 1
a1 a2

]
, B =

[
b1
b2

]
, C =

[
c1

c2

]
, D =

[
1 0
]

(14.171)

This gives the input and output (ARMAX) model

yk+2 = a2yk+1 + a1yk

+ b1uk+1 + (b2 − a2b1)uk

+ ek+2 + (c1 − a2)ek+1 + (c2 − a2c1 − a1)ek (14.172)

Putting c1 = a2 and c2 = a2
2 + a1 and changeing the time index with t = k+ 2 gives

the ARX model

yt = a2yt−1 + a1yt−2 + b1ut−1 + (b2 − a2b1)ut−2 + et (14.173)

This can be written as a linear regression model

yt =

ϕTt︷ ︸︸ ︷[
yt−1 yt−2 ut−1 ut−2

]
θ︷ ︸︸ ︷
a2

a1

b1
b2 − a2b1

+et. (14.174)

An ROLS algorithm for the estimation of the parameter vector is implemented in
the following MATLAB script.

% File name: main_rols_ex.m

% Example:

% Implementation of a Reqursive Ordinary Least Squares (ROLS) algorithm

% for ARX model parameter estimation.

a1=-0.7; a2=1.5; b1=0.25; b2=0.625;



164 Prediction error methods

A=[0 1;a1 a2]; B=[b1;b2]; D=[1,0];

N=200;

rand(’state’,0), randn(’seed’,0)

u=randn(N,1);

u=prbs1(N,10,40);

randn(’seed’,0)

for i=1:5 % Simulate M=5 different data set..

y=dlsim(A,B,D,0,u);

y=y+randn(N,1)*0.01;

Th=zeros(N,4); % Array to hold parameter estimates

P=10000*eye(4); th=[0;0;0;0]; Lam=0.998; % Initial values

%Lam=1;

lf=1;

for t=3:N

Phi=[y(t-1);y(t-2);u(t-1);u(t-2)]; % Varphi_t matrix at time t.

ybar=Phi’*th; % Predikted output at time t.

Pi=inv(P); % Updating the covariance matrix, P_t.

Pi=lf*Pi+Phi*Lam*Phi’; P=inv(Pi);

K=P*Phi*Lam; % Kalman gain, K_t.

th=th+K*(y(t)-Phi’*th); % Parameter estimates at time, t.

Th(t,:)=th’; % Store the parameter estimates.

end

Tm(i,:)=th’;

end

th

th0=[a2;a1;b1;b2-a2*b1]

figure(1)

subplot(411), plot(Th(:,1)), ylabel(’a_2’), title(’ROLS example’)

subplot(412), plot(Th(:,2)), ylabel(’a_1’)

subplot(413), plot(Th(:,3)), ylabel(’b_1’)

subplot(414), plot(Th(:,4)), ylabel(’b_2-a_2b_1’)

xlabel(’Diskret tid: t’)

figure(2)

subplot(211), plot(u), ylabel(’u_k’), title(’ROLS_example’)

subplot(212), plot(y), ylabel(’y_k’)

xlabel(’Diskret tid: t’)
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14.6.1 Comparing ROLS and the Kalman filter

Let us compare the ROLS algorithm with the Kalman filter on the following model.

θt+1 = θt, (14.175)

yt = ϕTt θt + wt, (14.176)

with given noise covariance matrix W = E(wtw
T
t ).

The kalman filter gives

ȳt = Dtθ̄t (14.177)

Kt = X̂tD
T
t W

−1 = X̄tD
T
t (DtX̄tD

T
t +W )−1 (14.178)

θ̂t = θ̄t +Kt(yt − ȳt) (14.179)

θ̄t+1 = θ̂t (14.180)

X̂t = X̄t − X̄tD
T
t (W +DtX̄tD

T
t )−1DtX̄t (14.181)

X̄t+1 = X̂t (14.182)

From this we have that X̄t = X̂t−1 which gives with Dt = ϕTt that

X̂t = X̂t−1 − X̂t−1ϕt(W + ϕTt X̂t−1ϕt)
−1ϕTt X̂t−1 (14.183)

Comparing this with the ROLS algorithm, Equation (14.168) shows that

Pt = X̂t = E((θt − θ̂t)(θt − θ̂t)T ) (14.184)

Using (14.180) in (14.179) gives

θ̂t = θ̂t−1 +Kt(yt − ϕTt θ̂t−1). (14.185)

Hence, θ̄t = θ̂t−1. Finally, the comparisons with ROLS and the Kalman filter also
shows that

Λ = W−1. (14.186)

Hence, the optimal weighting matrix in the OLS algorithm is the inverse of the
measurements noise covariance matrix.

The formulation of the Kalman filter gain presented in (14.178) is slightly different
from the more common formulation, viz.

Kt = X̄tD
T
t (W +DtX̄D

T
t )−1. (14.187)

In order to prove that (14.178) are equivalent we substititute X̂t into the first ex-
pression in (14.178), i.e.,

Kt = X̂tD
T
t W

−1

= (X̄t − X̄tD
T
t (W +DtX̄tD

T
t )−1DtX̄t)D

T
t W

−1

= (X̄tD
T
t W

−1 − X̄tD
T
t (W +DtX̄tD

T
t )−1DtX̄tD

T
t W

−1)

= X̄tD
T
t (W−1 − (W +DtX̄tD

T
t )−1DtX̄tD

T
t W

−1)

= X̄tD
T
t (W +DtX̄D

T
t )−1((W +DtX̄D

T
t )W−1 −DtX̄tD

T
t W

−1)

= X̄tD
T
t (W +DtX̄D

T
t )−1. (14.188)
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14.6.2 ROLS with forgetting factor

Consider the following modification of the objective in (14.52), i.e.,

Vt(θ) =

t∑
k=1

λt−kεTk (θ)Λεk(θ). (14.189)

where we simply have set N = t and omitted the mean 1
t and included a forgetting

factor λ in order to be able to weighting the newest data more than old data. We
have typically that 0 < λ ≤ 1, often λ = 0.99.

The least squares estimate is given by

θ̂t = Pt

t∑
k=1

λt−kϕkΛyk. (14.190)

where

Pt = (
t∑

k=1

λt−kϕkΛϕ
T
k )−1. (14.191)

A recursive formulation is deduced as follows.

Recursive computation of Pt

Let us derive a recursive formulation for the covariance matrix Pt. We have from
the definition of Pt that

Pt = (

t∑
k=1

λt−kϕkΛϕ
T
k )−1

= (
t−1∑
k=1

λt−kϕkΛϕ
T
k + ϕtΛϕ

T
t )−1

= (λ
t−1∑
k=1

λt−1−kϕkΛϕ
T
k︸ ︷︷ ︸

P−1
t−1

+ϕtΛϕ
T
t )−1 (14.192)

Using that

Pt−1 = (

t−1∑
k=1

λt−1−kϕkΛϕ
T
k )−1 (14.193)

gives

Pt = (λP−1
t−1 + ϕtΛϕ

T
t )−1 (14.194)

Using the matrix inversion lemma (14.167) we have the more common covariance
update equation

λPt = Pt−1 − Pt−1ϕt(λΛ−1 + ϕTt Pt−1ϕt)
−1ϕTt Pt−1 (14.195)
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Recursive computation of θ̂t

From the OLS parameter estimate (14.190) we have that

θ̂t = Pt

t∑
k=1

λt−kϕkΛyk

= Pt(
t−1∑
k=1

λt−kϕkΛyk + ϕtΛyt)

= Pt(λ

t−1∑
k=1

λt−1−kϕkΛyk︸ ︷︷ ︸
P−1
t−1θ̂t−1

+ϕtΛyt). (14.196)

From the OLS parameter estimate (14.190) we also have that

θ̂t−1 = Pt−1

t−1∑
k=1

λt−1−kϕkΛyk. (14.197)

Substituting (14.197) into (14.196) gives

θ̂t = Pt(λP
−1
t−1θ̂t−1 + ϕtΛyt). (14.198)

From (14.194) we have that

λP−1
t−1 = P−1

t − ϕtΛϕTt (14.199)

Substituting this into (14.198) gives

θ̂t = Pt((P
−1
t − ϕtΛϕTt )θ̂t−1 + ϕtΛyt)

= θ̂t−1 + PtϕtΛyt − PtϕtΛϕTt θ̂t−1 (14.200)

hence,

θ̂t = θ̂t−1 + PtϕtΛ(yt − ϕTt θ̂t−1) (14.201)

14.7 Higher order ARX modeling

It is well known that general linear dynamic systems, in state space form, or input
output ARMAX formulations, may be approximated by higher order ARX systems.
We will in this section discuss this and use it for subspace system identification. One
advantage of this approach is that the theory is applicable for both open as well as
closed loop systems. A drawback is that it requires that the input experiment is rich
enough with perturbations in order to estimate the higher order ARX model, and
this usually limit the approach for practical reasons. The variance of the resulting
model parameters will also usually be larger than a direct prediction error approach.
The discussion gives also some relationships to the subspace system identification
algorithm DSR e.

A system identification algorithm based on the identification of a higher order ARX
(OLS) model may be described in the following items:
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Algorithm 14.7.1 (HARX algorithm)

1. Identify a higher order ARX model using the OLS approach. The order of the
ARX model should be chosen large enough, and such that the residual is ap-
proximately white noise. One have to ensure that the input or reference signal
experiment is rich enough with perturbations in order for the OLS problem to
be well defined.

2. Form a higher order state space model from the ARX model parameters and
then form the necessary number of impulse response matrices. the impulse
response matrices may also be formed directly from the ARX model parameters.

3. Use Hankel matrix realization theory to compute a reduced order state space
model of correct order.

14.7.1 Miscellaneous examples

Example 14.9 (Higher order ARX model)
Given a 1st order state space model in the form

xk+1 = axk + buk + cek, (14.202)

yk = xk + ek. (14.203)

This can be written as the following ARMAX model

yk + a1yk−1 = b1uk−1 + ek + c1ek−1, (14.204)

where a1 = −a, b1 = b and c1 = c− a.

Let us now investigate how well the parameters can be estimated by a third order
ARX model.

Putting k := k + 1 in (14.204) and substitute for ek solved from (14.204) into
this equation gives a second order difference equation. Repetition of this gives the
following third order difference model

yk+2 + (a1 − c1)yk+1 + (c2
1 − c1a1)yk + c2

1a1yk−1 = b1uk+1 − c1b1uk + c2
1b1uk−1

+ ek+2 + c3
1ek−1. (14.205)

This can be written as the approximate linear regression model

yk =

ϕTk︷ ︸︸ ︷[
yk−1 yk−2 yk−3 uk−1 uk−2 uk−3

]
θ︷ ︸︸ ︷

c1 − a1

c1a1 − c2
1

−c2
1

b1
−c1b1
c2

1b1

+ek + c3
1ek−3 (14.206)

The parameters in this model can be approximately estimated via an ARX model
solved by the Ordinary Least Squares (OLS) method when c3

1 = (c − a)3 ≈ 0. Note
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also that the predictor (Kalman filter) on innovations form is stable. This means
that the magnitude of the eigenvalues of the predictor, a−cd, is less than one. Hence,
c3

1 = (c− a)3 ≈ 0 is a good assumption.

Example 14.10 (Higher order ARX model)
Given a 1st order state space model in the form

xk+1 = axk + buk + kek, (14.207)

yk = xk + ek. (14.208)

This can be written as the following 1st order ARMAX model

yk = ayk−1 + buk−1 + ek + (k − a)ek−1, (14.209)

Note also that the noise term may be expressed as

ek = yk − ayk−1 − buk−1 − (k − a)ek−1, (14.210)

Putting k := k − 1 in (14.210) and substituting into (14.209) gives the 2nd order
ARX model approximation

yk = kyk−1 − a(k − a)yk−2 + buk−1 − b(k − a)uk−2 + ek − (k − a)2ek−2,(14.211)

when (k − a)2 ≈ 0. Similarly expressing ek−2 from (14.210) and substituting into
(14.211) gives the 3rd order ARX model approximation

yk = kyk−1 + (−a(k − a)− (k − a)2)yk−2 + a(k − a)2yk−3

+ buk−1 − b(k − a)uk−2 + b(k − a)2uk−3 + ek + (k − a)3ek−3, (14.212)

when (k − a)3 ≈ 0.
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Chapter 15

The conjugate gradient method
and PLS

15.1 Introduction

The PLS method for univariate data (usually denoted PLS1) is optimal in a pre-
diction error sense, Di Ruscio (1998). Unfortunately (or not), the PLS algorithm
for multivariate data (usually denoted PLS2 in the literature) is not optimal in the
same way as PLS1. It is often judged that PLS has good predictive properties. This
statement is based on experience and numerous applications. This may well be true.
Intuitively, we believe that the predictive performance of PLS1 and PLS2 is differ-
ent. The reason for this is that PLS1 is designed to be optimal on the identification
data while PLS2 is not. If the model structure is correct and time invariant, then,
PLS1 would also be good for prediction.

We will in this note propose a new method which combines the predictive properties
of PLS1 and PLS2. We are seeking a method which has better prediction properties
than both PLS1 and PLS2.

15.2 Definitions and preliminaries

Definition 15.1 (Krylov matrix)
Given data matrices X ∈ RN×r and Y ∈ RN×m. The ith component Krylov matrix
Ki ∈ Rr×im for the pair (XTX,XTY ) is defined as

Ki =
[
XTY XTXXTY (XTX)2XTY · · · (XTX)i−1)XTY

]
, (15.1)

where i denotes the number of m-block columns.

15.3 The method

Proposition 15.1
Given data matrices X ∈ RN×r and Y ∈ RN×m. Define the ath component Krylov
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matrix Ka ∈ Rr×am of the pair (XTX,XTY ) from Definition 15.1. Compute the
SVD of the compound matrix[

XTXKa X
TY

]
= USV T , (15.2)

where U ∈ Rr×r, S ∈ Rr×(a+1)m and V ∈ R(a+1)m×(a+1)m.

Chose the integer number 1 ≤ n ≤ r to define the number of singular values to
represent the signal part XTXKa, and partition the matrices S and V such that

[
XTXKa X

TY
]

= U
[
S1 S2

] [ V11 V12

V21 V22

]T
, (15.3)

where S1 ∈ Rr×n, S2 ∈ Rr×(a+1)m−n, V11 ∈ Ram×n, V21 ∈ Rm×n, V12 ∈ Ram×(a+1)m−n

and V22 ∈ Rm×(a+1)m−n.

The NTPLS solution is then computed as

BNTPLS = Kap
?, (15.4)

where p? ∈ Ram×m is defined as

p? = −V12V
†

22, (15.5)

or equivalently

p? = (V T
11)†V T

21. (15.6)

Furthermore, the residual XTY −XTXBNTPLS is determined by

ENTPLS = US2V
†

22. (15.7)

Proof 15.1 Proof of (15.5) and (15.7). We have from (15.3) that[
XTXKa X

TY
]

= US1

[
V T

11 V
T

21

]
+ US2

[
V T

12 V
T

22

]
. (15.8)

Postmultiplication with

[
V12

V22

]
gives

[
XTXKa X

TY
] [ V12

V22

]
= US2, (15.9)

because V is orthogonal. Postmultiplying with V †22 gives[
XTXKa X

TY
] [ V12V

†
22

Im

]
= US2V

†
22 (15.10)

where we have assumed that V22V
T

22 ∈ Rm×m is non-singular. Comparing this with

the normal equations shows that −V12V
†

22 is a solution and that US2V
†

22 is the resid-
ual.

Proof of (15.6). From the signal part we have that

US1V
T

21 = US1V
T

11p. (15.11)

Solving for p in a LS optimal sense gives (15.6) provided V11V
T

11 ∈ Rn×n is non-
singular. hence, the n singular values in S1 has to be non-zero. 2
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Hence, The n large singular values in S1 are representing the signal. Similarly, the
r−n smaller singular values in S2 are representing the residual. Furthermore, when
m = 1 and a = n = r, the algorithm results in the OLS solution. The algorithm can
equivalently be computed as presented in the following proposition

Proposition 15.2
Given data matrices X ∈ RN×r and Y ∈ RN×m. Furthermore, assume given the
number of components a and the number n of singular values. Define the Krylov
matrix Ka+1 ∈ Rr×(a+1)m of the pair (XTX,XTY ) from Definition 15.1. Compute
the SVD of Ka+1, i.e.

Ka+1 = USV̄ T , (15.12)

where U ∈ Rr×r, S ∈ Rr×(a+1)m and V ∈ R(a+1)m×(a+1)m. Partition the matrix of
left singular vectors as

V̄ =

[
V̄11 V̄12

V̄21 V̄22

]T
, (15.13)

V̄11 ∈ Rm×n, V̄21 ∈ Ram×n, V̄12 ∈ Rm×(a+1)m−n and V̄22 ∈ Ram×(a+1)m−n. The
NTLS solution is then computed as

BNTPLS = Kap
?, (15.14)

where p? ∈ Ram×m is defined as

p? = −V̄22V̄
†

12, (15.15)

or equivalently

p? = (V̄ T
21)†V̄ T

11. (15.16)

Furthermore, the residual XTY −XTXBNTPLS is determined by

ENTPLS = US2V̄
†

12. (15.17)

15.4 Truncated total least squares

PLS may give a bias on the parameter estimates in case of an errors-in-variables
model, i.e. in the case when X is corrupted with measurements noise. Note also
that OLS and PCR gives bias in this case. An interesting solution to the errors-
in-variables problem is the Total Least Squares (TLS), Van Huffel and Vandevalle
(1991), and the Truncated Total Least Squares (TTLS) solution, De Moor et al
(1996), Fierro et al (1997) and Hansen (1992). The TTLS solution can be computed

asBTTLS = −V12V
†

22 where V12 ∈ Rr×r+m−a and V22 ∈ Rm×r+m−a are taken from the

SVD of the compound matrix
[
X Y

]
= USV T =

[
U1 U2

] [S1 0
0 S2

] [
V11 V12

V21 V22

]T
.

In MATLAB notation, V12 := V (1 : r, a + 1 : r + m) and V22 := V (r + 1 : r +
m, a + 1 : r + m). This is the solution to the problem of minimizing ‖

[
X Y

]
−[

XTTLS YTTLS
]
‖2F = ‖ X −XTTLS ‖2F + ‖ Y − YTTLS ‖2F with respect to XTTLS

and YTTLS where YTTLS = XTTLSBTTLS is the TTLS prediction.
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15.5 CPLS: alternative formulation

The CPLS solution can be defined as in the following Lemma.

Lemma 15.1 (CPLS: Controllability PLS solution)
Given output data from a multivariate system, Y =

[
y1 y2 . . . ym

]
∈ RN×m, and

input (predictor) data, X ∈ RN×r. The CPLS solution to the multivariate model
Y = XB + E where E is noise is given by

BCPLS =
[
K1
ap K

2
ap · · · Km

a p
]
∈ Rr×m (15.18)

where Ki
a ∈ Rr×a is the Krylov (reduced controllability) matrix for the pair (XTX,XT yi),

i.e.,

Ki
a =

[
XT yi X

TXXT yi (XTX)2XT yi · · · (XTX)a−1XT yi
]
, (15.19)

and the coefficient vector p ∈ Ra is defined from the single linear equation

(

m∑
i=1

(Ki
a)
TXTXKi

a)p =
m∑
i=1

(Ki
a)
TXT yi. (15.20)

The CPLS solution is defined as a function of a single coefficient vector p ∈ Ra.
the coefficient vector is found as the minimizing solution to the prediction error.
In order to illustrate the difference between the CPLS solution and the common
strategy of using PLS1 on each of the m outputs we give the following Lemma.

Lemma 15.2 (PLS1 used on multivariate data)
Given output data from a multivariate system, Y =

[
y1 y2 . . . ym

]
∈ RN×m, and

input (predictor) data, X ∈ RN×r. The PLS1 solution to the multivariate model
Y = XB + E where E is noise is given by

BPLS1 =
[
K1
ap1 K

2
ap2 · · · Km

a pm
]
∈ Rr×m (15.21)

where Ki
a ∈ Rr×a is the Krylov (reduced controllability) matrix for the pair (XTX,XT yi)

as in (15.19) and the coefficient vectors pi ∈ Ra are defined from the m linear equa-
tions

((Ki
a)
TXTXKi

a)pi = (Ki
a)
TXT yi ∀ i = 1, · · · ,m. (15.22)

15.6 Efficient implementation of CPLS

The bi-linear, possibly multivariate, model Y = XB +E has the univariate eqviva-
lent

y = X b+ e, (15.23)
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where

y = vec(Y ) ∈ RNm, (15.24)

X = (Im ⊗X) ∈ RNm×rm, (15.25)

b = vec(B) ∈ Rrm, (15.26)

e = vec(E) ∈ RNm. (15.27)

The univariate model (15.23) can be solved for b = vec(B) by, e.g. the PLS1
algorithm, and B ∈ Rr×m can be reshaped from b ∈ Rrm afterhand. The PLS1
algorithm can be used directly. However, this strategy is time consuming due to the
size of X . It is a lot more efficient to utilize the structure in X in the computations.
As we will show, this strategy is even faster than the fastest PLS2 algorithm, i.e.
when N > r the Kernal algorithm. One reason for this is that the CPLS method
does not need eigenvalue or singular value problem computations, which is needed
in PLS2, in order to compute the solution.

The normal equations for the model (15.23) are

X T y = X TX b. (15.28)

The symmetric matrix X TX ∈ Rrm×rm and the vector X T y ∈ Rrm are of central
importance in the PLS1 algorithm. Using that xT = (Im ⊗X)T = (Im ⊗XT ) is a
m-block diagonal matrix with XT on the diagonal, (i.e., there are m blocks on the
diagonal, each block is equal to XT ), we have that

X T y = (Im ⊗XT )y =

(Im⊗XT )︷ ︸︸ ︷
XT 0 · · · 0
0 XT · · · 0
...

...
. . .

...
0 0 · · · XT


y︷ ︸︸ ︷
y1

y2
...
ym

 =


XT y1

XT y2
...

XT ym

 . (15.29)

Note that the zeroes in (15.29) denotes (r × N) zero matrices. Hence, a lot of
multiplications are saved by taking the structure of X into account when computing
the correlation X T y. The term X T y given by Equation (15.29) is a basis for the
first PLS1 weighting vector. We can choose w1 = X T y directly as the first PLS1
weighting vector or we can choose a normalized version, e.g., w1 = X T y/‖X T y‖F .

The matrix product X TX is also a m-block diagonal matrix, but in this case with
m diagonal blocks equal to XTX, i.e.,

X TX = (Im ⊗XT )(Im ⊗X) = (Im ⊗XTX) =


XTX 0 · · · 0

0 XTX · · · 0
...

...
. . .

...
0 0 · · · XTX

 .(15.30)

In order to compute the next weighting vector we have to compute X TXw1. In
general, we have to compute terms of the type, X TXwi or X TXdi in the CGM,
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during each iteration. We have that

X TXdi = (Im ⊗XTX)di =

XTX=(Im⊗XTX)︷ ︸︸ ︷
XTX 0 · · · 0

0 XTX · · · 0
...

...
. . .

...
0 0 · · · XTX


di︷ ︸︸ ︷
di1
di2
...
dim

 =


XTXdi1
XTXdi2

...
XTXdim

 .(15.31)

where the search direction vector is

di =


di1
di2
...
dim

 ∈ Rrm, (15.32)

and where dij ∈ Rr.

The PLS1 algorithm can now be effectively modified by using (15.29) and (15.31).

15.7 Conjugate gradient method of optimization and
PLS1

The equivalence between the PLS1 algorithm and the Conjugate Gradient Method
(CGM) by Hestenes and Stiefel (1952) used for calculating generalized inverses is
presented in Wold et al (1984). Each step in the conjugate gradient method gives
the corresponding PLS1 solution. However, the strong connection between the PLS1
algorithm and the CGM can be clarified further. The conjugate gradient method
by Hestenes and Stiefel (1952) is also known as an important iterative method for
solving univariate least squares problems, solving linear equations, as well as an
iterative optimization method for finding the minimum of a quadratic and non-
quadratic functions.

We will show that the the method of Hestenes and Stiefel (1952) and further an-
alyzed, among others, in Golub (1983), (1996) for iterativeley solving univariate
LS problems gives identical results as the PLS1 algorithm. Furthermore, we will
show that the conjugate gradient optimization method presented and analyzed in
Luenberger (1968) §10.8 for solving quadratic minimization problems is identical to
the PLS1 algorithm for solving the possibly rank deficient LS problem. See also
Luenberger (1984) §8.3 and 8.4.

By iterative, we mean as in Luenberger (1984), that the algorithm generates a series
of points, each point being calculated on the basis of the points preceding it. Ideally,
the sequence of points generated by the iterative algorithm in this way converges in
a finite or infinite number of steps to a solution of the original problem. The conju-
gate gradient method can be regarded as being somewhat intermediate between the
Stepest Descent Method (SDM) and Newtons’ method. Newtons method converges
in one step for quadratic problems if the solution exists, and this solution is identical
to the OLS solution to the corresponding normal equations. The CGM converges
to the OLS solution in at most r, where r is the number of regressor variables.
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The SDM converges to the OLS solution in a finite number of steps, but the rate
of convergence may be slow. For ill-posed and ill-conditioned problems where the
OLS solution is unreliable or does not exist, then, a number of iterations, a < r, of
the CGM can be evaluated in order to obtain a regularized and stabilized solution.
Hence, an optimization and LS algorithm may be iterative even if it converges in a
finite number of steps. The definition of iterative does not depend on the number
of iterations.

Proposition 15.3 (LS and quadratic minimization problems)
The LS problem

B∗ = arg min
B∈B

V (B), (15.33)

where B is the parameter space and where

V (B) =
1

2
‖Y −XB‖2F , (15.34)

is similar to the quadratic minimization problem

B∗ = arg min
B∈B

VQ(B), (15.35)

where

VQ(B) =
1

2
BTXTXB −BTXTY. (15.36)

Furthermore, with the definitions Q = XTX and b = XTY we have the normal
equations

QB = b. (15.37)

Proof 15.2 In LS problems the usual criterion to be minimized can be written as

V =
1

2
‖Y −XB‖2F =

1

2
(Y −XB)T (Y −XB) =

1

2
Y TY +

1

2
BTXTXB −BTXTY.(15.38)

The 1st term on the right hand side is independent of the solution. Hence, a linear LS
problem is equivalent to a quadratic minimization problem, i.e., minimizing ‖Y −
XB‖2F with respect to B is equivalent to minimizing BTXTXB − 2BTXTY with
respect to B. 2.

Note that the parameter space which gives the PLS1 solution coincide with the
column (range) space of the Krylov matrix, i.e., B ∈ R(Ka). A standard recursion
for the solution B∗ which is used in minimization methods, e.g., as in Newtons
method, the stepest descent (gradient direction) method and in conjugate direction
methods, is defined as follows

Definition 15.2 (Recursive equation for the solution)
Define k as the iteration index. Define the solution update equation as

Bk+1 = Bk + αkdk, (15.39)

where dk ∈ Rr is the search direction and αk is a line search scalar parameter.
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In the stepest descent algorithm the search direction vector dk at a given point Bk
is taken to be the negative of the gradient of VQ at Bk. In order to speed up the
convergence of the stepest descent algorithm, and avoiding evaluation and inversion
of the Hessian matrix as in Newtons method, the use of conjugate direction methods
can be motivated. A version of this is the conjugate gradient method (CGM). The
CGM and the connection with PLS is developed in the following. However, in order
to proceede properly the gradient is first defined and presented in the following
proposition with proof.

Proposition 15.4 (The gradient)
The gradient of VQ at the point Bk is defined by

gk = QBk − b. (15.40)

An alternative recursion scheme for the gradient is

gk+1 = gk + αkQdk. (15.41)

Proof 15.3 The gradient of VQ with respect to Bk is given by

∂VQ
∂Bk

= QBk − b. (15.42)

Hence, we have definition (15.40).

Evaluate the expression gk+1 − gk and using Bk+1 = Bk + αkdk, i.e.,

Bk+1 −Bk = QBk+1 −QBk = Q(Bk + αkdk)−QBk = αkQdk. (15.43)

This gives the alternative gradient update (15.41). 2

Note that the residual of the normal equations for a solution Bk is identical to the
negative gradient. This is clarified with the following definition.

Definition 15.3 (Residual of the normal equations)
The residual of the normal equations evaluated with a point Bk is defined as

wk
def
= b−QBk = −gk. (15.44)

Hence, in the SDM the search for a minimum is done in the direction of the residual
of the normal equations. The scalar line search parameter in the solution update
Equation (15.39), will now defined in the following proposition.

Proposition 15.5 (Line search parameter)
The line search scalar parameter αk in (15.39) is given by

αk = −
dTk gk

dTkQdk
(15.45)

when dTkQdk > 0.
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Proof 15.4 The parameter αk is taken as the value which analytically is minimizing
the quadratic function VQ(Bk+1) in the search direction, dk. Hence,

∂VQ(Bk+1)

∂αk
=

∂

∂αk
[
1

2
(Bk + αkdk)

TQ(Bk + αkdk)− (Bk + αkdk)
T b]

= dTkQ(Bk + αkdk)− dTk b = dTk

gk︷ ︸︸ ︷
(QBk − b) +αkd

T
kQdk. (15.46)

Solving
∂VQ(Bk+1)

∂αk
= dTk gk + αkd

T
kQdk = 0 for αk gives (15.45). Furthermore, the

minimum is unique when
∂2VQ(Bk+1)

∂α2
k

= dTkQdk > 0. 2

We will now discuss and present the search direction which is used in the CGM.
The first search direction in the CGM is equal to the negative gradient direction,
i.e., d1 = −g1. Hence, for one component (or one iteration) the CGM is identical
to the SDM. A new point B2 is then evaluated from the solution update equation.
The next search direction is choosen as a linear combination af the new negative
gradient, −g2, and the old direction d1. Hence, d2 = −g2 +β1d1 where β1 is a scalar
parameter. The parameter β1 is choosen such that d2 is Q-orthogonal (or conjugate)
to d1, i.e., so that dT1 Qd2 = dT2 Qd1 = 0. Hence, d2 is in the space spanned by −g2

and d1 = −g1 but Q-orthogonal to d1. In general, the search direction , dk+1, in the
CGM is a simple linear combination of the current residual, wk+1 = −gk+1 and its
predecessor dk.

Proposition 15.6 (CGM search direction)
The search direction in CGM is initialized with d1 = −g1 = b = XTY . The CGM
search direction update equation is given by

dk+1 = −gk+1 + βkdk, (15.47)

where

βk =
gTk+1Qdk

dTkQdk
. (15.48)

Proof 15.5 The search directions dk+1 and dk are Q-orthogonal, or conjugate with
respect to Q, if dTk+1Qdk = 0. Hence,

dTk+1Qdk = −gTk+1Qdk + βkd
T
kQdk = 0. (15.49)

Solving this for βk gives (15.48). 2

Remark 15.1 There are two other expressions for αk and βk which may be usefull
when implementing the CGM. The alternatives are (Luenberger (1984) p. 245)

αk =
gTk gk

dTkQdk
, (15.50)

βk =
gTk+1gk+1

gTk gk
. (15.51)

Hence, a number of multiplications can be saved by using the alternatives.
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Based on the theory developed so far we state the following implementation of the
CGM.

Algorithm 15.7.1 (PLS1: Conjugate gradient implementation)
Given X ∈ RN×r and Y ∈ RN and possibly an initial guess B0 ∈ Rr for the solution.
Note that B0 = 0 gives PLS1. We have

b = XTY Vector and right hand side matrix
Q = XTX in the normal equations, XTY = XTXB.
g1 = QB0 − b The gradient (1st weight vector)
d1 = −g1 The 1st search direction
for k = 1, a Loop for all components 1 ≤ a ≤ r.

Gk =
[
g1 · · · gk

]
Store present gradient vector.

Dk =
[
d1 · · · dk

]
Store present direction vector.

αk = − gTk dk
dTkQdk

Coeff. for bidiagonal matrix.

Bk := Bk−1 + αkdk The PLS1 solution at step k.
if k < a
gk+1 = gk + αkQdk The gradient, (weighting vector).

βk =
gTk+1Qdk

dTkQdk
Coeff. for bidiagonal matrix.

dk+1 = −gk+1 + βkdk Update the search direction.
end

end

This results, after a iterations, in the LS solution Ba, in the gradient or weighting
matrix G ∈ Rr×a, and a direction matrix D ∈ Rr×a. The matrices are defined as
follows

Ga =
[
g1 · · · ga

]
, Da =

[
d1 · · · da

]
. (15.52)

4

Note that we have used the alternative solution update equation Bk = Bk−1 +αkdk
instead of (15.39) in order for the actual implementation in Algorithm (15.7.1 to
be more readable. The first search direction, d1, in the algorithm is equal to the
negative gradient, −g1 = XTY . Hence, the first step is a stepest descent step, and
the first weighting vector, w1, in the PLS1 algorithm is identical to the first search
direction, i.e., w1 = d1 = −g1. This shows that the choice w1 = XTY is higely
motivated. This is in contrast to the statement in Helland (1988) p. 588. The
algorithm may be implemented with a test on the gradient which is equal to the
negative residual, i.e., the algorithm should be terminated when ‖gk‖ = ‖wk‖ is less
than a tolerance for zero.

Theorem 15.7.1 (Equivalence between PLS1 and CGM)
From Algorithm 15.7.1 we obtain

Bk ∈ B0 +R(Kk(X
TX, d1)) (15.53)

Dk ∈ Gk ∈ R(Kk(X
TX, d1)). (15.54)
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where d1 = b−QB0 = XTY −XTXB0.

Furthermore, if the initial guess for the solution is zero, i.e., B0 = 0, then the
k-component PLS1 solution is given by

BPLS = Bk ∈ R(Kk(X
TX,XTY )). (15.55)

Proof 15.6 The fact that the CGM solution, Bk, is the minimizing LS solution in
the subspace spanned by B = B0 +R(Kk(X

TX, d1)) is prooved in Luenberger (1984)
§8.2 and §8.4.. Se also Golub and Van Loan (1984) pp. 366-367 and Golub and Van
Loan (1996) §10.2.

The fact that BPLS ∈ R(Kk(X
TX,XTY )) is prooved in Helland (1988), Di Ruscio

(1998).

Since both the PLS1 solution and the CGM solution (with B0 = 0) is the minimizing
LS solution of the same subspace, i.e. the column (range) space of the Krylov matrix
Kk(X

TX,XTY ). 2

Based on the above theory we state the following new results concerning the PLS1
solution.

Theorem 15.7.2 (PLS1: alternative expression for the solution)
The PLS1 solution for a components is identical to the CGM solution obtained after
a iterations. The solution can be expressed as

BPLS = Da(D
T
aX

TXDa)
−1DT

aX
TY, (15.56)

where it is important to recognize that DT
aX

TXDa ∈ Ra×a is diagonal. Furthermore,

BPLS = Ga(G
T
aX

TXGa)
−1GTaX

TY, (15.57)

where we have that GTaX
TXGa ∈ Ra×a is tri-diagonal.

Proof 15.7 A parameterized candidate solution which belong to the Krylov subspace
is

Ba = Dap. (15.58)

Furthermore, the LS solution

p∗ =Y −X
Ba︷︸︸︷
Dap

2
F (15.59)

gives

p∗ = (DT
aX

TXDa)
−1DT

aX
TY. (15.60)

Using p∗ instead of p in the parametreized solution gives the PLS solution (15.56).

The fact that DT
aQDa follows from the Q-orthogonal (or Q-conjugate) properties of

the CGM.
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.2 2nd effective implementation of CPLS
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.8 CGM implementation of CPLS



Appendix A

Notation

A.1 Notations used

The special structure of a Hankel matrix as well as some matching notations, which
are frequently used throughout the paper, are defined in the following.

Given a vector

sk ∈ Rnr ∀ k = 0, 1, 2, . . . , (A.1)

where nr is the number of rows in sk.

Define integer numbers j and i and define the vector sj|i ∈ Rinr as follows

sj|i
def
=


sj
sj+1
...
sj+i−1

 ,
which is defined as an extended vector.

The integer numbers j and i have the following interpretations:

• j start index or initial time in the sequence used to form sj|i, i.e., sj , is the
upper vector element in the extended vector sj|i.

• i is the number of nr-rows in sj|i.

Examples of such vector processes, sk, to be used in the above definition, are the
measured process outputs, yk ∈ Rm, inputs, uk ∈ Rr and references, rk ∈ Rm.

The extended observability matrix, Oi, for the pair (D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (A.2)
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where the subscript i denotes the number of block rows.

The reversed extended controllability matrix, Cdi , for the pair (A,B) is defined as

Cdi
def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (A.3)

where the subscript i denotes the number of block columns.

The lower block triangular Toeplitz matrix, Hd
i ∈ Rim×(i+g−1)r , for the quadruple

matrices (D,A,B,E).

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E


where the subscript i denotes the number of block rows and i+ g− 1 is the number
of block columns, and where 0m×r denotes the m× r matrix with zeroes.
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Linear Algebra and Matrix
Calculus

B.1 Trace of a matrix

The trace of a n×m matrix A is defined as the sum of the diagonal elements of the
matrix, i.e.

tr(A) =

n∑
i=1

aii (B.1)

We have the following trace operations on two matrices A and B of apropriate
dimensions

tr(AT ) = tr(A) (B.2)

tr(ABT ) = tr(ATB) = tr(BTA) = tr(BAT ) (B.3)

tr(AB) = tr(BA) = tr(BTAT ) = tr(ATBT ) (B.4)

tr(A±B) = tr(A)± tr(B) (B.5)

B.2 Gradient matrices

∂
∂X tr[X] = I (B.6)
∂
∂X tr[AX] = AT (B.7)
∂
∂X tr[AXT ] = A (B.8)
∂
∂X tr[AXB] = ATBT (B.9)
∂
∂X tr[AXTB] = BA (B.10)
∂
∂X tr[XX] = 2XT (B.11)
∂
∂X tr[XXT ] = 2X (B.12)
∂
∂X tr[Xn] = n(Xn−1)T (B.13)
∂
∂X tr[AXBX] = ATXTBT +BTXTAT (B.14)
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∂
∂X tr[eAXB] = (BeAXBA)T (B.15)

∂

∂X
tr[XAXT ] = 2XA, if A = AT (B.16)

∂
∂XT tr[AX] = A (B.17)

∂
∂XT tr[AXT ] = AT (B.18)

∂
∂XT tr[AXB] = BA (B.19)

∂
∂XT tr[AXTB] = ATBT (B.20)

∂
∂XT tr[eAXB] = BeAXBA (B.21)

B.3 Derivatives of vector and quadratic form

The derivative of a vector with respect to a vector is a matrix. We have the following
identities:

∂x
∂xT

= I (B.22)

∂
∂x (xTQ) = Q (B.23)
∂
∂x (Qx) = QT (B.24)

(B.25)

The derivative of a scalar with respect to a vector is a vector. We have the following
identities:

∂
∂x (yTx) = y (B.26)
∂
∂x (xTx) = 2x (B.27)
∂
∂x (xTQx) = Qx+QTx (B.28)
∂
∂x (yTQx) = QT y (B.29)

Note that if Q is symmetric then

∂

∂x
(xTQx) = Qx+QTx = 2Qx. (B.30)

B.4 Matrix norms

The trace of the matrix product ATA is related to the Frobenius norm of A as
follows

‖A‖2F = tr(ATA), (B.31)

where A ∈ RN×m.
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B.5 Linearization

Given a vector function f(x) ∈ Rm where x ∈ Rn. The derivative of the vector f
with respect to the row vector xT is defined as

∂f

∂xT
=


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fm
∂x1

∂fm
∂x2
· · · ∂fm∂xn

 ∈ Rm×n (B.32)

Given a non-linear differentiable state space model

ẋ = f(x, u), (B.33)

y = g(x). (B.34)

A linearized model around the stationary points x0 and u0 is

˙δx = Ax+Bu, (B.35)

δy = Dx, (B.36)

where

A =
∂f

∂xT
|x0,u0 , (B.37)

B =
∂f

∂uT
|x0,u0 , (B.38)

D =
∂g

∂xT
|x0,u0 , (B.39)

and where

x = x− x0, (B.40)

u = u− u0. (B.41)

B.6 Kronecer product matrices

Given a matrix X ∈ RN×r. Let Im be the (m×m) identity matrix. Then

(X ⊗ Im)T = XT ⊗ Im, (B.42)

(Im ⊗X)T = Im ⊗XT . (B.43)


