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Abstract

A simple view of the state observer and the equivalence with the problem of specifying the
observer polynomial, e.g., as Butterworth filter polynomials is presented.
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1 Introduction

The problem of state estimation of linear dynamic systems is addressed in this paper. Often linear
quadratic optimal state estimation is used. It may be shown that there exists weighting matrices
in the linear quadratic performance objective that corresponds to a set of prescribed eigenvalues of
the observer, se. e.g., Di Ruscio and Balchen (1990).

The classical Luenberger type of observer where the observer gain matrix is chosen directly so
that the eigenvalues are prescribed may be a simple choice in some circumstances. We will in this
paper concentrate on state estimation by using Luenberger type observers. See Kailath (1980) for
a view on observers.

It a classic result that the observer gain matrix, K, may be chosen so that the eigenvalues of the
observer may be located arbitrarily in the left half part of the complex plane (continuous systems).
But how to locate the eigenvalues is an intricate question in many circumstances. This problem is
addressed.

2 State estimation and the observer

2.1 State observer for continuous time systems

A problem description is presented in the following.
Given a system described by the linear or linearized state space model

ẋ = Ax + Bu + v, (1)
y = Cx + Du + w. (2)
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A state observer for the system in (1) and (2) have the following structure

˙̂x = Ax̂ + Bu + K(y − ŷ), (3)
ŷ = Cx̂ + Du. (4)

The response of the observer (filter) from the inputs y and u to the output ŷ is described by

˙̂x = (A−KC)x̂ + (B −KD)u + Ky, (5)
ŷ = Cx̂ + Du. (6)

The system matrix of the observer, i.e. A −KC, is of central importance in the observer. The
eigenvalues of this matrix may be placed arbitrarily by sufficiently choosing the observer gain matrix.
The eigenvalues should be placed in the left part of the complex plane in order for the observer
to be stable and to ensure that the estimate x̂(t) converges to the true state x(t) in a mean sense
as time approach infinity, i.e. t → ∞. The problem of finding the gain matrix K such that the
eigenvalues of the matrix A−KC is prescribed is equivalent to finding the observer gain matrix K
so that the coefficients in the characteristic equation |λIn − (A−KC)| is prescribed.

Consider the special case in which all poles are specified to be −λi ∀ i = 1, 2, . . . , n, i.e.,

|λIn − (A−KC)| = Πn
i=1(λ + λi) = λn + c1λ

n−1 + · · · cn−1λ + cn (7)

The problem addressed in this paper is to find the observer gain matrix K so that the characteristic
polynomial in (7) is prescribed, i.e. with fixed polynomial coefficients

ci ∀ i = 1, . . . , n (8)

without specifying the eigenvalues.

2.2 State observer for discrete time systems

Given a system described by the linear or linearized state space model

xk+1 = Axk + Buk + vk, (9)
yk = Cxk + Duk + wk. (10)

A state observer for the system in (9) and (10) have the following structure

x̄k+1 = Ax̄k + Buk + K(yk − ȳk) (11)
ȳk = Cx̄k + Duk. (12)

3 Observer canonical form

3.1 How to transform a model to observer canonical form

Assume given a state space model

ẋ = Ax + Bu, (13)
y = Cx + Du. (14)
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This model may be transformed to observer canonical form by the state transformation

x = Toxo, (15)

where xo is the state in the observer form canonical state space model, and the transformation
matrix T is given by

To = (MT On)−1 = O−1
n (MT )−1 (16)

where On is the observability matrix of the pair (A,C) and M is an upper triangular Toepeliz
matrix defined in terms of the coefficients, ai ∀ i = 1, . . . , n, of the characteristic polynomial, i.e.,

|λIn −A| = λn + a1λ
n−1 + · · ·+ an−1λ + an. (17)

The matrix M in the transformation is defined as

M =




1 a1 · · · an−2 an−1

0 1
. . . an−2

...
...

. . . . . .
...

0 0 · · · 1 a1

0 0 · · · 0 1




. (18)

The transformed model

ẋo = Aoxo + Bou, (19)
y = Coxo + Dou. (20)

where

Ao = T−1
o ATo, Bo = T−1B, Co = CT, Do = D, (21)

is now on so called observer canonical form.
The observer canonical form of an n-th order observable state space model is given by

Ao =




−a1 1 · · · 0 0
−a2 0 · · · 0 0

...
...

. . .
...

...
−an−1 0 · · · 0 1
−an 0 · · · 0 0




, Co =
[

1 0 · · · 0 0
]
. (22)

Matrix Bo is a matrix in general full of parameters. This algorithm for computing the observer
canonical form is simply implemented in MATLAB as described in the following m-file function

function [Ao,Bo,Co,T]=ss2ocf(A,B,C)
% ss2cof
% [Ao,Bo,Co,T]=ss2ocf(A,B,C)
% Transform a state space model
% dot(x)=Ax + Bu, y=Cx
% with the transformation, x=T xo
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% to observer canonical form
% dot(xo)=Ao xo + Bo u, y=Co xo
%
a=poly(A);
n=length(a);
On=obsv(A,C);
M=triu(toeplitz([1,a(2:n-1)]))
T=inv(M’*On);
Ao=inv(T)*A*T;
Bo=inv(T)*B;
Co=C*T;
% END SS2OCF

Often the subscript o on A is omitted. Hence, we only use A as a symbol for the system matrix Ao

on observer form. The algorithm presented in this section works for single output systems. However,
it is possible to extend the algorithm to multi output systems. A method for the transdormation
of a MIMO system to observable canonical form is implemented in the DSR Toolbox for MATLAB
function ss2cf.m

3.2 How to design the observer gain for a system on observer form

Consider now a state observer constructed from a model on observer form, i.e., the observer,

˙̂xo = (Ao −KoCo)x̂o + (Bo −KoDo)u + Koy, (23)
ŷ = Cox̂o + Du. (24)

The stability of the observer is given by the matrix A−KC which simply is given by

Ao −KoCo =




−(a1 + k1) 1 · · · 0 0
−(a2 + k2) 0 · · · 0 0

...
...

. . .
...

...
−(an−1 + kn−1) 0 · · · 0 1
−(an + kn) 0 · · · 0 0




, Ko =




k1

k2
...

kn−1

kn




. (25)

One advantage of the observer canonical form is that the characteristic polynomial of the observer
system matrix A−KC simply is given by

|λIn − (A−KC)| = λn + (k1 + a1)λn−1 + (k2 + a2)λn−2 + · · ·+ (kn−1 + an−1)λ + kn − an. (26)

One point of the above is that it is in particular simple to find the observer gain matrix Ko (and
thereafter K) which results in a specified prescribed characteristic polynomial, |λIn − (A −KC)|,
of the observer system matrix A−KC.

Assume that a prescribed characteristic polynomial of the observer is specified as

|λIn − (A−KC)| = λn + c1λ
n−1 + · · ·+ cn−1λ + cn, (27)
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where ci ∀ i = 1, . . . , n are the prescribed coefficients of the observer characteristic polynomial. The
observer gain matrix is then simply defined as

Ko =




c1 − a1

c2 − a2
...

cn−1 − an−1

cn − an




. (28)

The observer gain Ko is the gain for an observer constructed for a system on observer form as
in (5) and (6). As we see the observer gain, Ko, is purely defined in terms of the coefficients of
the characteristic polynomial of the system matrix A, i.e., |λIn − A|, and the coefficients of the
prescribed characteristic polynomial of the observer, i.e., |λIn − (A−KC)| = 0.

It is interesting that Ko may be found through the use of the Cayley Hamiltin theorem. We have
the following Lemma,

Lemma 3.1
The observer gain in the observer canonical form model is given by

Ko = CP (A)On−1 (29)
Ko = rot90(Ko) (30)

where P (A) is the evaluation of A of the characteristic equation of the prescribed characteristic
polynomial |λIn − (A−KC),

P (A) = An + c1A
n−1 + · · ·+ cn−1A + cnIn (31)

where ci ∀ i = 1, . . . , n is the prescribed coefficients of the characteristic polynomial.

Proof 3.1
Evaluation of the system matrix A through the prescribed charateristic matrix of the observer is
defined as

P (A) = |λI − (A−KC)| = An + c1A
n−1 + · · ·+ cn−1A + cnIn (32)

= An + (k1 − a1)An−1 + · · ·+ (kn−1 − an−1)A + (kn − an) (33)

Evaluate A in its own characteristic polynomial gives, i.e. using the Cayley Hamilton theorem

An + a1A
n−1 + · · ·+ an−1A + anIn = 0 (34)

which gives

An = −a1A
n−1 − · · · − an−1A− anIn = 0 (35)

Substitute (35) into (33) gives

P (A) = −a1A
n−1 − · · · − an−1A− anIn + c1A

n−1 + · · ·+ cn−1A + cnIn (36)
= k1A

n−1 + · · ·+ kn−1A + knIn (37)

5



Multiply (37) with the output matrix C gives

CP (A) = KoOn, (38)

and finally

Ko = CP (A)O−1
n , (39)

Finally we have to rotate the results 90 degrees in order to obtain the correct column vector Ko. It
is also possible to multiply with the inverse of the reversed observability matrix in order to get the
observer gain correct in the first instance.

4 The observer gain

The observer gain, Ko, for the observer canonical form model may be found as in the above section.
If it is necessary to scale the gain matrix Ko in the observer form back to the original coordinate
system, i.e., for an observer for the system in (13) and (14), we simply use the transformation

K = TKo, (40)

which then is the observer gain for an observer constructed for a model as in (9) and (10), i.e. the
observer gain in the observer (23) and (24).

This may with advantage be formulated more compact as follows

c =




c1

c2
...

cn−1

cn




, a =




a1

a2
...

an−1

an




. (41)

Then we have

K = T (c− a) = O−1
n M−T (c− a). (42)

It should be noted with interest that this formula for the observer gain matrix is the dual of a well
known formula for the state feedback gain matrix, se Kailath (1980) p. 199.

The algorithm presented in this section is implemented in the MATLAB lpe function given as

function [K,Ao,Co,Ko,T]=lpe(A,C,c)
% LPE Linear Polynomial Estimator
% [K,Ao,Co,Ko,T]=lpe(A,C,c)
% Purpose: Compute the observer gain matrix K which results
% in a prescribed characteristic polynomial of the observer.
% On input
% A, C - matrices in the linear state space model
% c - an n dimensional vector with the coefficients of polynomial
% On output
% K - The observer gain matrix
%
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n=size(A,1);
% Observer canonical form
B=C’; % Dummy B
[Ao,Bo,Co,T]=ss2ocf(A,B,C);
a=poly(A);
Ko=c(2:n+1)’-a(2:n+1)’; % Observer gain in observer form
K=T*Ko; % Scale to observer gain in original coordinate system
% END lpe

Note that the eigenvalues and the poles of the observer is given by the roots of the characteristic
equation, i.e., |λIn − (A − KC)| = 0. We will in the next chapter show that it with the use of
this is in particular simple to find the observer gain matrix K so that the observer have the same
characteristic polynomial as the Butterworth filter polynomial, Bn. Note also that the observer
gain matrix then is constructed without any eigenvalue computations.

It is worth noticing that the observer gain K is obtained directly as the last column of O−1
n times

the P (A) matrix. This is an estimator version of Ackermans formula for feedback gain. We have
the following Lemma

Lemma 4.1
Given specified observer polynomial coefficients, ci, ∀, i = 1, . . . , n. The corresponding observer gain
K is given by,

P (A) = An + c1A
n−1 + · · ·+ cn−1A + cnIn, (43)

Oi = O−1
n , (44)

K = POi(:, n). (45)

This may be implemented in MATLAB as shown in the lpe2.m function.

function [K,Ko,P]=lpe2(A,C,c)
% LBE Linear Butterworth observer and Estimator
% [K,Ko,P]=lpe2(A,C,c)
[m,n]=size(C);
% Compute the polynomial evaluation, P(A)
P=polyvalm(c,A);
On=obsv(A,C);
% Observer gain in observer form model..
Ko=C*P*inv(On);
Ko=rot90(Ko); % Gain in observer form (not needed)
Oi=inv(On);
K=P*Oi(:,n ); % Estimator gain in original coordinate system.

5 The state observer pole polynomial

We will here suggest a simple choice for the pole polynomial of the observer. The location of the
poles and in particular the coefficients, ci ∀ i = 1, . . . , n, in this polynomial is essential. We suggest
for the reason of simplicity and in order to have nice smooth set-pint responses without overshoot
to locate all n poles, i.e., s = − 1

T as a function of only one prescribed time constant T .
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Assume that a prescribed characteristic polynomial of the observer is specified as

Cn = |λIn − (A−KC)| = (s +
1
T

)n = λn + c1λ
n−1 + · · ·+ cn−1λ + cn, (46)

For the different orders, n = 2, n = 3 and n = 4 we have

C2 = |λI2 − (A−KC)| = (s +
1
T

)2 = s2 +
2
T

s +
1
T 2

(47)

C3 = |λI3 − (A−KC)| = (s +
1
T

)3 = s3 +
3
T

s2 +
3
T 2

s +
1
T 3

(48)

C4 = |λI4 − (A−KC)| = (s +
1
T

)4 = s4 +
4
T

s3 +
6
T 2

s2 +
4
T 3

s +
1
T 4

(49)

It is well known that working with polynomials and in particular polynomials with multiple roots
is an ill conditioned problem due to rounding off errors. In case of numerical problems the above
simple choice may be modified so that the time constants (eigenvalues) are spread somewhat around
the prescribed time constant T .

6 State observer and the Butterworth filter

We will in this section show that the coefficients, ci, ∀, i = 1, . . . , n may be chosen equal to the
coefficients in an n-th order Butterworth filter polynomial. Those Butterworth filter coefficients are
taken from Haugen (2009).

6.1 2nd order system

The observer canonical form of an 2nd order observable state space model is given by

A =
[

a1 1
a2 0

]
, C =

[
1 0

]
. (50)

The observer gain matrix is

K =
[

k1

k2

]
, (51)

and the stability of the observer is given by the matrix

A−KC =
[

a1 − k1 1
a2 − k2 0

]
. (52)

The characteristic equation of the observer is then given by

|λI2 − (A−KC)| =
[

λ + k1 − a1 −1
k2 − a2 λ

]
= λ2 + (k1 − a1)λ + k2 − a2. (53)

A 2nd order Butterworth filter have the characteristic polynomial

B2(s) = T 2s2 +
√

2Ts + 1 = T 2(s2 +
√

2
T

s +
1
T 2

). (54)
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Simply comparing the characteristic equation of the state observer, Equation (53) and the 2nd order
Butterworth filter polynomial, Equation (54), shows that they are equivalent if

k1 − a1 =
√

2
T

, k2 − a2 =
1
T 2

(55)

This gives the equivalent observer gain without any eigenvalue computations, i.e.,

K =
[

k1

k2

]
=

[
a1 +

√
2

T
a2 + 1

T 2

]
(56)

6.2 3rd order system

The observer canonical form of an 3rd order observable state space model is given by

A =




a1 1 0
a2 0 1
a3 0 0


 , C =

[
1 0 0

]
. (57)

The observer gain matrix is

K =




k1

k2

k3


 , (58)

and the stability of the observer is given by the matrix

A−KC =




a1 − k1 1 0
a2 − k2 0 1
a3 − k3 0 0


 . (59)

The characteristic equation of the observer is then given by

|λI3 − (A−KC)| =



λ + k1 − a1 −1 0
k2 − a2 λ −1
k3 − a3 0 λ


 = λ3 + (k1 − a1)λ2 + (k2 − a2)λ + k3 − a3. (60)

A 3rd order Butterworth filter have the characteristic polynomial

B3(s) = (Ts + 1)(T 2s2 + Ts + 1) = T 3s3 + 2T 2s2 + 2Ts + 1 = T 3(s3 +
2
T

s2 +
2
T 2

s +
1
T 3

). (61)

Simply comparing the characteristic equation of the state observer, Equation (53) and the 2nd order
Butterworth filter polynomial, Equation (54), shows that they are equivalent if

k1 − a1 =
2
T

, k2 − a2 =
2
T 2

, k3 − a3 =
1
T 3

. (62)

This gives the equivalent observer gain without any eigenvalue computations, i.e.,

K =




k1

k2

k3


 =




a1 + 2
T

a2 + 2
T 2

a3 + 1
T 3


 . (63)
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7 Examples

Example 7.1
Given a system described by

ẋ = ax + bu, (64)
y = x + y0, (65)

where a = −2, b = 1 and y0 is an unknown slowly varying trend parameter.
The problem addressed in this example is to use a state estimator in order to both estimate the

state, x, and the unknown slowly varying trend, y0.
The constant or slowly varying parameter may be modeled by

ẏ0 = 0. (66)

An equivalent augmented model for this system is then
[

ẋ
ẏ0

]
=

[
a 0
0 0

] [
x
y0

]
+

[
b
0

]
u. (67)

Hence, the augmented model is of the form

ẋ = Ax + Bu, (68)
y = Cx (69)

where

x :=
[

x
y0

]
, A =

[
a 0
0 0

]
, B =

[
b
0

]
, C =

[
1 1

]
. (70)

The time constant in the system model is given by Tc = − 1
a = 0.5

1. Specify that the time constants in the observer should be 4 times faster than the open loop
system.

2. Find the state estimator polynomial coefficients so that the polynomial is similar to a 2nd
order Butterworth polynomial. Find the corresponding observer gain, K.

3. Find the state estimator polynomial coefficients so that the polynomial is similar to a 2nd
order polynomial with double eigenvalues in λ1 = 1

T λ2 = 1
T . Find the corresponding observer

gain, K.

4. Simulate the system with the state observer in parallel.

8 Concluding remarks

It is shown that the observer gain matrix simply may be constructed from prescribed observer
polynomial coefficients.
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