Excel-øvelser i sannsynlighetsregning

av

Peer Andersen

© Peer Andersen 2010

Innhold

Innledning	3
Øvelse 1. Binomiske og hypergeometriske sannsynligheter	4
Øvelse 2. Konfidensintervall om gjennomsnittet	7
Øvelse 3. Hypoteser om gjennomsnittet når standardavviket er kjent	. 12
Øvelse 4. Hypoteser om gjennomsnittet når standardavviket er ukjent	. 17
Øvelse 5. Hypoteser i en binomisk situasjon	. 20
Øvelse 6. Test på forskjell i populasjonsgjennomsnitt	. 23
Øvelse 7. Regresjon	. 28

Innledning

Dette heftet inneholder 7 øvelser i sannsynlighetsregning. Øvelsene er primært rettet mot fordypningskurs i allmennlærerutdanningen. Øvelsene forutsetter at en har grunnleggende kjennskap til Excel og kjennskap til de fagområdene som øvelsene berører. I boken Excel-øvelser i matematikk av Peer Andersen er det beskrevet mer grunnleggende øvelser med hvordan Excel kan brukes i matematikken. Her finnes det også beskrivelser av hvordan Excel kan brukes i blant annet ulike simuleringsforsøk. Dette heftet går et steg videre. I øvelse 1 ser vi først på hvordan en kan jobbe med binomiske og hypergeometriske sannsynligheter. I øvelse 2 ser vi på hvordan vi kan generere 1000 stikkprøver, hver på 10 elementer og deretter bruke dette til å lage konfidensintervall. Øvelse 3 går på å gjennomføre hypotesetest om gjennomsnittet når standardavviket er kjent. I øvelse 4 gjennomfører vi tilsvarende hypotese når standardavviket er ukjent. I øvelse 5 ser vi på hypoteser i en binomisk situasjon. Sammenligning mellom to populasjoner er tema for øvelse 6. Til slutt i øvelse 7 ser vi på hvordan Excel kan brukes i arbeidet med regresjon.

Øvelse 1. Binomiske og hypergeometriske sannsynligheter

I denne øvelsen skal vi se på hvordan Excel kan benyttes til å beregne binomiske og hypergeometriske sannsynligheter. Vi ser først på hvordan vi kan bruke Excel til å beregne binomiske sannsynligheter. Vi skal konstruere regnearket slik at vi oppgir antall forsøk og sannsynligheten for suksess i hvert enkelt forsøk. Regnearket skal deretter regne ut hele fordelingen og også fremstille det i et diagram. Vi skal konstruere regnearket slik at vi tar høyde for inntil 20 forsøk. Regnearket kan se ut som vist under.

	1	(°1 ~) +				Øvelse 1. I	Binomisk og I	nypergeometr	isk fordeli	ng - Microsoft	Excel				-	σx
	Hjem	Sett inn S	ideoppsett	Formler	Data Seig	jennom Visn	iing									. = x
ľ	ے ا	libri +	11 - A A	= =	-	📑 Bryt tekst		Standard	-	1		+	* 🔳	Σ Autosummer	· A	æ
lir	im n • 🛷 F	K <u>U</u> -	- 🗞 - 🗛			🙀 Slå sammen o	g midtstill 🔻	- % 000	00,00 00,00	Betinget F formatering * so	Formater Cellesti	er Sett	Slett Format		Sorter og S filtrer * o	iøk etter og merk *
Utki	ppst 🖻	Skrift	r	ā _	Just	ering	G.	Tall	5		Stiler		Celler	Re	digering	
	C38	- (•	f_{x}													×
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	
1	Binomialf	ordelingen														
2																
3	Antall forsøk		15													
4	Sannsynlighet	for suksess	0,4													
5		-														
7	×	P(X=X)			0,25											
8	1	0.00470185														
9	2	0.02194197			0,2											
10	3	0,0633879														=
11	4	0,1267758			0,15											
12	5	0,18593784					1.1									
13	6	0,20659761			0,1						-1					
14	7	0,17708366														
15	8	0,11805577			0,05			-								
10	10	0,05121411						10 C								
18	11	0.00741989			0						1					
19	12	0,00164886			0	1 2 3 4 5	678	9 10 11 12 1	3 14 15							
20	13	0,00025367							-							
21	14	2,4159E-05														
22	15	1,0737E-06														
23																
24																
25																
26																
14 4	▶ ► Binon	nialfordelinger	Hypergeo	metrisk forde	ing / Ve	ledning for bruk	av regneark	/ 2	1	1			ш.			
Klar													I	100 % 🤆)	-+

Du kan starte med å skrive inn teksten og verdiene som står i cellene fra A1 til C6. Vi skal deretter ta fatt på beregningen av sannsynlighetene. Vi må først lage oss en tellekolonnene som starter på 0 og går opp til så mange forsøk vi skal gjøre. Her kommer vår første lille utfordring. Problemet er hvordan vi skal få stoppet *x* på akkurat 15. Løsningen på dette er å bruke HVIS funksjonen som ligger inne i Excel. Først kan du skrive inn 0 i celle A7. I celle A8 skal vi bruke HVIS setningen. Du kan åpne funksjonsveiviseren og finne HVIS funksjonen. Den fyller du ut som vist under

Funksjonsargumenter	
HVIS	
Logisk_test	A7<\$C\$3
Sann	A7+1 💽 = 1
Usann	···· 📧 = ···
Kontrollerer om vilkår er til ste	= 1 de, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. Usann er verdien som returneres hvis logisk <u>t</u> est er USANN. Hvis argumentet utelates, returneres USANN.
Formelresultat = 1	
<u>Hielp med denne funksjonen</u>	OK Avbryt

Det denne funksjonen gjør er at den tester om verdien i foregående celle er mindre enn antall forsøk. Dersom det er tilfelle tar den verdien fra foregående celle og plusser på 1. Dersom den ikke er mindre enn antall forsøk lar den cellen stå blank. For å få frem en blank celle i Excel skriver en inn "". Du kan nå kopiere cellen ned til og med celle A27. I B kolonnen skal vi beregne sannsynligheten for de enkelte utfallene. Vi ser først på celle B7. I Excel er det en funksjon som regner ut binomialfordelingen som vi skal bruke. Imidlertid er det slik at hvis den tilhørende verdien i A kolonnen er blank, ønsker vi at tilsvarende verdi i B kolonnen også skal være blank. Vi må derfor bruke en HVIS setning slik vi gjorde for verdiene i A kolonnen. I celle B7 kan du fylle ut HVIS setningen som vist under

Funksjonsargumenter	? 🛛									
HVIS										
Logisk_test	A7="" USANN									
Sann	···· (FF) = ····									
Usann	BINOM.FORDELING(A7;\$C\$3;\$C\$ 🔣 = 0,000470185									
Kontrollerer om vilkår er til ster	= 0,000470185 Kontrollerer om vilkår er til stede, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. Usann er verdien som returneres hvis logisk_test er USANN. Hvis argumentet utelates, returneres USANN.									
Formelresultat = 0,00047018 <u>Hielp med denne funksionen</u>	5 OK Avbryt									

I skjermbilde har litt av teksten etter USANN ikke kommet med. Det som skal stå i feltet etter USANN er

BINOM.FORDELING(A7;\$C\$3;\$C\$4;USANN)

Det funksjonen gjør er at den først tester om celle A7 er blank eller ikke. Dersom den er blank lar den celle B7 også være blank. Hvis den ikke er blank skal vi regne ut sannsynligheten for 0 suksesser. Formelen som er vist over gjør denne beregningen. Verdien A7 indikerer antall suksesser, \$C\$3 er antall forsøk og \$C\$4 er sannsynligheten for suksess på et enkelt forsøk. USANN har vi skrevet for å angi at det er punktsannsynligheten vi skal beregne. Vi har brukt dollartegn rundt C3 og C4 slik at disse ikke skal forandre seg når vi kopierer formelen. Formelen du har skrevet inn i celle B7 kan du nå kopiere ned til og med celle B27.

Til slutt skal vi lage et diagram over sannsynlighetsfordelingen. Du kan starte med å merke celle B7 til og med celle B27. Klikk deretter på Sett inn og velg Stolpe. Velg deretter et passende diagram. Du vil se at enhetene på *x*-aksen ikke stemmer. I figuren starten den på 1, mens den burde startet på 0. Her er det Excel som legger inn verdiene på *x*-aksen, slik den tror det skal være. Men som vi ser så stemmer ikke dette helt. Vi kan imidlertid endre dette slik at det blir riktig. Høyreklikk med musen en plass i diagrammet og velg Merk data. Velg Rediger under der hvor det står Vannrette akseetiketter. Merk området fra A7 til A27 og trykk ok.

Regnearket skal da være klart til bruk. Test det ut på noen kjente problemstillinger og se at det virker som det skal.

Regnearket for hypergeometrisk fordeling skal vi lage på samme måte. På neste side er det vist hvordan det kan se ut. I celle C3 angir vi størrelsen på populasjonen. I celle C4 angir vi antall spesielle i populasjonen og til slutt i celle C5 skriver vi inn hvor stort utvalget skal være. Tellekolonnen lager vi på akkurat samme måte som vi gjorde i det binomiske tilfelle. Vi skal også ta høyde for at vi kan ha et utvalg på inntil 20. I celle B8 skal vi beregne sannsynligheten. I Excel finnes det en funksjon som regner ut hypergeometriske sannsynligheter som vi skal bruke. Som i det binomiske tilfelle ønsker vi at cellene i B kolonnen skal være blanke om tilsvarende celler i A kolonnen er blank. Vi bruker derfor HVIS funksjonen. Du kan fylle den ut som vist under

Funksjonsargumenter									
HVIS									
Logisk_test	A8="" [56] = USANN								
Sann	····								
Usann	HYPGEOM.FORDELING(A8;\$D\$5;: 🔣 = 6,88813E-09								
Kontrollerer om vilkår er til ste	= 6,88813E-09 Kontrollerer om vilkår er til stede, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN.								
	Usann er verdien som returneres hvis logisk_test er USANN. Hvis argumentet utelates, returneres USANN.								
Formelresultat = 6,88813E-0	9								
<u>Hjelp med denne funksjonen</u>	OK Avbryt								

Teksten etter USANN er ufullstendig i skjermbilde, men det som skal stå der er

HYPGEOM.FORDELING(A8;\$D\$5;\$D\$4;\$D\$3)

Du kan nå kopiere funksjonen ned til celle B28. Diagrammet lager du på akkurat samme måte som i det binomiske tilfelle.

C		2	Ŧ	Øvelse 1. Binomisk og hypergeometrisk fordeling - Microsoft Excel – 🗖 🗙													-	σx
-	Hiem		Sett inn Sideonp	sett Formler	P	ata Segi	ennom Vist	ung										. = x
	۳.	Cal	bri • 10 •	A* A* =	= =		Bryt tekst		Standard	-	≤\$				* 🔳	Σ Autosumme		A
	Lim 🚽	F	K U - 3	• <u>A</u> • 🔳	83		💽 Slå sammen o	g midtstill *	3 ~ % 000	00,00,00,00,00,00,00,00,00,00,00,00,00,	Betinget F formatering * so	ormater Co n tabell *	ellestiler	Sett :	Slett Format	∠ Fjern ▼	Sorter og S filtrer * o	iøk etter a merk *
Utklippst 😼 Skrift 🖼		Just	ering	G.	Tall	G	S	tiler		Celler		Redigering						
	D49		, (°	fx .														×
	А		B (D		E	F	G	н	1	J	K		L	М	N	0	
1	Hyperg	eor	netrisk fordeli	ng														
2				-														
3	Størrelse p	a po	pulasjonen		50													
4	Antall spe	sielle	i populasjonen		30													
5	Størrelse p	a ut	alget		15													
6																		
7		x	P(X=x)	0,3	_													
8		0	6,8881E-09															
9		1	5,1661E-07	0,25	-													
10		2	1,4982E-05															
11		3	0,00022722	0,2								-						
12		4	0,002045	0.45														
13		5	0,01169739	0,15														
14		6	0,04430831	01														
15		7	0,11393565	0,1														
16		8	0,20157845	0,05					_			_						
1/		9	0,24637367															
18		10	0,20695388	0			• . • . •		و کر کر کر		0.0.0.0	S						
19		11	0,11/58/43		0 :	1 2 3	4 5 6 7	8 9 10	11 12 13 1	4 15								
20		12	0,04380708															
21		15	0,01010933															
22		10	6,00129217															
20		15	0,09100-05									1						
25																		_
26																		U
27																		
28																		
20			M I P				1		1									
14 4	I P PI E	Inom	laifordelingen Hy	pergeometrisk	torde	ling / Vei	edning for bruk	av regneark	<u> </u>			_	-	11				
Klai																U 20 100 % (+

Øvelse 2. Konfidensintervall om gjennomsnittet

La oss anta at vi har en populasjon som er normalfordelt med gjennomsnitt μ og standardavvik σ . Gjennomsnittet μ er ukjent. Ved hjelp av statistiske metoder kan en lage et intervall der en med en viss prosent sikkerhet kan si at den ukjente μ vil ligge. Denne prosenten er vanligvis 90, 95 eller 99. Et slikt intervall kalles gjerne for et konfidensintervall.

Hvis vi antar at vi har n uavhengige observasjoner X_1 , X_2 , ..., X_n fra populasjonen kan en vise at et 95 % konfidensintervall for gjennomsnittet vil være angitt ved

$$\left[\overline{X} - 1,96 \frac{\sigma}{\sqrt{n}} \right]$$
 , $\overline{X} + 1,96 \frac{\sigma}{\sqrt{n}}$

Det vil si at den ukjente μ med 95% sikkerhet vil ligge innenfor dette intervallet. Dersom vi skal konstruere et 90% eller 99% konfidensintervall erstatter vi 1,96 med henholdsvis 1,645 og 2,58.

La oss se på et lite eksempel. Vi kjøper inn 10 pakker med kjøttdeig fra Gilde og måler fettinnholdet i hver av dem. La oss anta at fettinnholdet er:

14,3	14,6	13,5	13,9	14,6
14,3	15,1	14,3	12,8	13,6

På dette grunnlaget ønsker vi å finne et anslag for hva det gjennomsnittlige fettinnholdet er i alle kjøttdeiger som Gilde produserer. Vi antar at fettinnholdet er normalfordelt og at standardavviket er lik 1. Gjennomsnittet i stikkprøven er 14,1. Ved å bruke formelen over finner vi at konfidensintervallet blir

[13,48 , 14,72]

Det forteller oss at det gjennomsnittlige fettinnholdet for alle kjøttdeigene til Gilde med 95% sikkerhet vil ligge mellom 13,48 og 14,72. En annen måte å tolke dette på er å tenke seg at vi trekker ut en rekke ulike stikkprøver, og for hver stikkprøve beregner vi gjennomsnittlig fettinnhold. Da vil ca. 95 % av de konstruerte intervallene omslutte den ukjente fettprosenten.

Konstruksjon av regnearket

Excel er et glimrende verktøy for å lage simuleringer av konfidensintervall. Vi skal her se på hvordan vi kan konstruere et 95% konfidensintervall for gjennomsnittet μ når vi tar en stikkprøve på 10 observasjoner fra et normalfordelt materiale der $\mu = 100$ og standardavviket $\sigma = 15$. Vi skal totalt ta 1000 stikkprøver og for hver og en av disse stikkprøvene skal vi beregne gjennomsnittet og tilhørende konfidensintervall. Vi skal også summere opp hvor mange ganger den virkelige μ ligger innenfor konfidensintervallet og hvor mang ganger den ligger utenfor. Regnearket kan se ut omtrent som vist på neste side

6		ר ה (ד	÷					(Övelse 2. K	onfidensinte	ervall - M	crosoft Excel						_ =	x
E	Hier	sett ir	nn Side	oppsett	Formler	Data	Se gjennom	visnir	g									0	⁵ X
		Calibri	T 10			- Ser	Bry	t takst		Standard						Σ	Autosummer *	AT A	4
		Cumpri	10			= *				Standard	1(± <u>%</u> 1				Fyll *	Au un	
i	nn * 🝼	FK	<u>a</u> . # .				E Sla	sammen og	midtstill *	- %	000 300 4	formaterin	ig * som tabell *	Cellestiler	inn * *		Fjern 🔻	filtrer * og me	erk *
Utk	lippst 🛱		Skrift		G .		Justering		G.	Tal	1	Gi I	Stiler		Celler		Redi	gering	
	B10		- (•	<i>f</i> _x 114	4,12079200	2359													×
-	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	
1	Simule	ring av l	confider	sinterva	all														
2																			
3									Antall	Prosent		Angi konfiden	sintervallet i pr	rosent :	95				
4	Hvor ofte	konfidensir	tervallet or	nslutter det	virkelige gj	ennomsnitt	et		955	95,50									- 1
5	Hvor ofte	konfidensin	tervallet ik	ke omslutte	r det virkeli	ge gjennom	snittet		45	4,50									
6																			
7												Snitt	N. grense	Ø. grense	Omslutter				
8	84,94191	110,7929	107,1032	111,2316	92,00189	114,9483	115,3807	98,58248	102,4777	94,08717		103,15	93,86	112,45	ja				-8
9	97,18423	93,72701	96,50024	100,6491	100,4608	88,14034	102,741	70,19704	114,7946	85,50667		94,99	85,69	104,29	Ja				-8
10	101,418	114,1208	114,5318	98,40602	94,22087	111,7627	97,74071	89,07587	85,2241	84,99876		99,15	89,85	108,45	Ja				
11	87,02326	95,95663	89,83831	107,9994	104,4495	101,6171	111,6957	98,20855	98,0721	97,12936		99,20	89,90	108,50	ja				-8
12	84,28952	119,433	109,8748	110,0724	79,24435	108,6215	95,15926	114,0388	97,07909	104,8976		102,27	92,97	111,57	ja				
13	124,5115	118,343	108,8104	106,8513	108,9224	101,877	101,877	98,46487	99,19121	89,86861		105,87	96,57	115,17	ja				
14	109,3576	101,3311	122,339	84,5532	93,11936	105,4113	108,4327	94,32948	102,/1//	117,6089		103,92	94,62	113,22	Ja				-
10	96,9234	114,/48	108,1015	101,4971	112,0948	77,90501	110,8063	107,4985	101,4752	105,4432		103,65	94,35	112,95	ja				-
10	92,09165	88,7684	116,1665	116,4086	87,37831	99,7986	84,19587	109,1287	97,90654	86,54793		97,84	88,54	107,14	ja				-
10	126,733	83,92138	/3,5968	104,7924	111,7019	113,5449	123,7059	83,74083	101,353	110,5079		103,36	94,06	112,66	ja				
10	89,79786	104,8033	99,90762	109,2048	96,34441	67,73868	101,49/1	104,414/	110,5902	110,7513		99,50	90,21	108,80	Ja				-
20	91,05445	/8,59258	88,2054	70,05852	88,05179	90,00978	90,2927	100,8002	85,58518	75,45510		80,91	77,62	96,21	. nei				-
20	64,5552	110,0929	98,09001	99,59088	105,4520	05,97019	115,7504	92,82482	102,9244	75,95056		97,12	07,02	100,41	Ja				-
21	112,9684	72.2004	102,0105	129,2504	79,11809	85,20094	92,08814	94,97393	85,04622	88,91518		99,41	90,12	108,71	ja				
22	111,8593	/5,20051	102,2129	102,5509	80,08588	99,97647	115,0085	95,48952	105,5800	90,04097		97,85	88,55	107,14	Ja				- 1
23	100,5882	102,0494	107,6567	100,1205	104,6307	105.0200	92,44554	105,1295	119,8522	104,122		103,81	94,51	113,10	ja ie				-
24	103,8545	98,9026	90,25805	09,22048	104,6297	103,9309	66,00942	08,74558	90,5839	120,9183		102,37	93,07	111,67	ja				
25	01 6770	104 1005	102 6151	05 55201	120,0480 E0 95745	74 60005	97 71401	100 9207	100/677	00 51465		01.00	90,11	100.00	ja ja				
20	0/ 9/39/	107,11995	01 00661	114 5492	04 41 810	79 50449	100 5147	100,0587	105 2184	74 27691		91,00	86.05	105,90	ja ja				-1
14	(► ► K	onfidensin	tervall	Veiledning	for bruk av	regneark	100,5147 /\$]	100,920	105,2154	/4,2/001		90,24	00,95	105,54	, a				
Klai																	🔟 100 % 😑		•

Vi skal nå se på hvordan vi kan konstruere regnearket. Det første vi skal gjøre er å generere de 1000 stikkprøvene. Vi velger å generere stikkprøvene ut i fra en normalfordeling med gjennomsnitt på 100 og standardavvik på 15. For å gjøre dette må vi bruke en funksjon som heter dataanalyse. Hvis den ikke er installert så må du gjøre det først. For å installere den klikker du på Office-knappen oppe i venstre hjørne. Deretter velger du Alternativer for Excel. I menyen du da får opp velger du Tillegg. I listen du får opp så klikker du på Analyseverktøy og deretter på start. I vinduet du da får opp velger du Analyseverktøy og trykker ok. Analyseverktøyet vil da bli installert. Hvis du velger Data fra menyen på øverste linje, skal Dataanalyse ligge helt til høyre. Ved å klikke på Dataanalyse starter du opp dataanalyseverktøyet. Velg der Generering av tilfeldige tall. Følgende vindu vil da dukke opp.

Generering av tillet	dige tall			?
Antall <u>v</u> ariabler:				ОК
Antall <u>t</u> ilfeldige tall:				Avbryt
Eordeling:	Diskret		~	Hjelp
Parametre				
Inndataområde for ve	rdi og sanns	synlighet:		
		<u>()</u>		
Tilfeldig <u>s</u> tarttall:				
Tilfeldig <u>s</u> tarttall: Utdataalternativer				
Tilfeldig starttall: Utdataalternativer Qutdataområde:				
Tilfeldig <u>s</u> tarttall: Utdataalternativer O <u>U</u> tdataområde: O <u>N</u> ytt regnearklag:				

I ruten Antall_variabler skriver du inn hvor mange observasjoner hver stikkprøve skal bestå av. Vi velger 10, men det er selvsagt ikke noe i veien for å velge et annet antall observasjoner. Antall tilfeldige tall vil si hvor mange stikkprøver vi skal ha. Vi velger her 1000. På Fordeling velger du normalfordeling og setter gjennomsnitt til 100 og standardavvik til 15. På Utdataområde skriver du A8. Stikkprøvene vil da komme fra A8 og nedover. Vi velger å la stikkprøvene gå fra rad 8 og nedover slik at vi kan bruke feltene over til å beregne hvor mange ganger konfidensintervallet omslutter μ . Du kan gjerne merke kolonne A til K og sette kolonnebredden til 8. Det gjør du ved å velge Format og så Kolonnebredde.

Det neste vi skal gjøre er å beregne gjennomsnittet og øvre og nedre grense for konfidensintervallet for hver av stikkprøvene. Gjennomsnittet skal vi beregne i L kolonnen. Flytt markøren til rute L8 og skriv inn formelen =GJENNOMSNITT(A8:J8). Du kan alternativt bruke funksjonsveiviseren. I rute L7 kan du skrive inn en liten overskrift, f. eks Snitt. I rute M8 skal vi beregne nedre grense for konfidensintervallet. Den nedre grensen finner vi ved å regne ut følgende uttrykk.

Nedre grense = $\overline{X} - 1,96 \frac{\sigma}{\sqrt{n}}$

Når vi skal beregne dette i Excel er det en funksjon som heter Konfidens som vi kan bruke. Den hjelper oss med å beregne siste leddet i uttrykket over. Når vi skal beregne nedre grensen flytter du først musen til rute M8. Start med å skrive inn =L8-. Klikk deretter på funksjonsveiviseren og hent frem funksjonen Konfidens. Du får da opp følgende vindu

Funksjonsargumenter	? 🛛
KONFIDENS	
Alfa	🚺 = tall
Standardavvik	🔣 = tall
Størrelse	🐹 = tall
Returnerer konfidensintervallet	til populasjonens gjennomsnitt. Alfa er signifikansnivået som brukes ved beregningen av konfidenskoeffisienten, et tall større enn 0 og mindre enn 1.
Formelresultat =	

Alfa er signifikansnivået og siden det er et 95% konfidensintervall vi skal beregne settes den til 0,05. Standardavviket er i vårt tilfelle 15 og størrelsen på utvalget er 10. Trykk deretter på ok. Den øvre grensen beregnes på tilsvarende måte. Du har nå fått beregnet konfidensintervallet for den første stikkprøven. Du kan nå kopiere cellene L8 til N8 nedover til og med rad 1007, slik at vi får beregnet konfidensintervallet for alle 1000 stikkprøvene. Du kan gjerne sette inn en overskrift i rute M7 og N7 som f. eks N. grense og Ø. grense.

Det neste vi skal gjøre er at vi O kolonnen skal lage en funksjon som kartlegger om konfidensintervallet omslutter det virkelige gjennomsnittet som vi har satt til å være 100. Til det bruker vi HVIS funksjonen som vi skal kombinere med en OG funksjon. Start med å flytte musen til rute O8. Deretter åpner du funksjonsveiviseren og finner frem HVIS funksjonen. Den fyller du ut som vist på neste side

Funksjonsargumenter	? 🗙									
HVIS										
Logisk_test	OG(M8<100;N8>100)									
Sann	"ja" 💽 = "ja"									
Usann	"nei" = "nei"									
Kontrollerer om vilkår er til ste	= "ja" Kontrollerer om vilkår er til stede, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. Usann er verdien som returneres hvis logisk_test er USANN. Hvis argumentet utelates, returneres USANN.									
Formelresultat = ja										
Hjelp med denne funksjonen	OK Avbryt									

La oss se litt nærmere på første linjen. Det vi sjekker der er om nedre grense (M8) er mindre enn 100 og om øvre grense (N8) er større enn 100. Hvis begge disse er oppfylt vil konfidensintervallet omsluttet gjennomsnittet og det blir skrevet ja i rute O8. I motsatt fall blir det skrevet nei i rute O8. Til slutt kopierer du formelen ned til linje 1007. Det som nå gjenstår er å telle opp hvor mange ganger konfidensintervallet omslutter gjennomsnittet. For å gjøre det skal vi bruke ANTALL.HVIS funksjonen. Du kan flytte musen til rute I4 og åpne ANTALL.HVIS funksjonen med funksjonsveiviseren. Du får da opp følgende bilde

Funksjons	argumenter	?×
ANTALLIHV		
Område	🔚 = referanse	
¥ilkår	🐹 = Alle	
Teller antall o	eller som oppfyller det gitte vilkåret, i et område. Område er området du vil telle antall utfylte celler i.	
Formelresult	at =	
Hjelp med de	nne funksjonen OK Av	vbryt

I Området angir du det området vi skal søke i. Det er O8:O1007. I linjen med Vilkår angir du det vi skal se etter, i vårt tilfelle "ja". Trykk ok når du har gjort dette. I rute I5 skal vi kartlegge hvor mange ganger vi får nei. Det kan gjøres ved å ta antall forsøk minus antall "ja". Det vil si du kan skrive inn =1000-I4 i rute I5. I rute J4 og J5 kan du beregne hva dette blir i prosent.

Til slutt kan du skrive inn en passende overskrift i rute A1 og en passende tekst i rute A4 og A5.

Andre typer konfidensintervall

En kan lett modifisere regnearket slik at det kan beregne et vilkårlig konfidensintervall. Det gjør vi ved at vi angir hvilke konfidensintervall vi skal finne. Vi lar rute O3 være cellen der vi angir hvilke konfidensintervall vi skal beregne. Hvis det er et 95% konfidensintervall skriver vi 95. Hvis det f. eks er 90 skriver vi inn 90 i ruten. I rute L3 kan du skrive inn en liten tekst som f. eks Angi konfidensintervallet i prosent:

Vi må også modifisere formlene våre i rute M8 og N8. I formelen konfidens har vi angitt signifikansnivået til å være 0,05. Når vi henter størrelsen på konfidensintervallet fra rute O3 må vi erstatte 0,05 med (100-O3)/100 for å finne signifikansnivået.

Spørsmål til ettertanke

Se på regnearket ditt, hvor mange ganger omslutter konfidensintervallet det virkelige gjennomsnittet? Ligger det i nærheten av 95% ? Når du skal kjøre en ny simulering går du til Dataanalyse og fyller ut samme vindu som i sted. Du vil da få 1000 nye stikkprøver. Prøv dette noen ganger og se hvilke resultater du får. Prøv også med andre typer konfidensintervall enn 95%, f. eks 90% og 99%. Hvordan blir resultatene i disse tilfellene?

La oss se på noen av stikkprøvene som ikke omslutter det virkelige gjennomsnittet, f. eks en stikkprøve der den nedre grensen er over 100. Hvis vi ser på stikkprøven vil vi oppdage at de fleste verdiene ligger godt over 100, mens på stikkprøver som omslutter det virkelige gjennomsnittet så er det mer jevnt fordelt på begge sider av 100. Når vi genererer tilfeldige tall fra et normalfordelt materiale, vil de fleste observasjonene være i nærheten av gjennomsnittet som i vårt tilfelle er 100. Når vi lager konfidensintervall vil i 95% av tilfelle intervallet omslutte det virkelige gjennomsnittet. Men av og til vil vi få stikkprøver der hovedtyngden av observasjonene ligger på ene siden av gjennomsnittet, og i rundt 5% av tilfellene vil observasjonene ligger så skjevt at konfidensintervallet ikke vil omslutte det virkelige gjennomsnittet.

Øvelse 3. Hypoteser om gjennomsnittet når standardavviket er kjent

Vi skal i denne øvelsen se på hvordan vi kan bruke Excel til å utføre hypotesetesting om gjennomsnittet. I denne øvelsen skal vi ta for oss situasjonen der standardavviket er kjent. I neste øvelse ser på situasjonen der standardavviket ikke er kjent.

En utførlig beskrivelse av hvordan en utfører hypoteseprøving om gjennomsnittet finnes i flere bøker. Et godt alternativ er Sannsynlighetsregning og statistisk metodelære av Knut Ole Lysø. Før vi ser på hvordan vi utfører dette i Excel, så tar vi et lite eksempel som viser gangen i hypoteseprøvingen.

Fettinnholdet i kjøttdeigen til et firma skal i gjennomsnitt ligge på 14%. Vi antar at fettinnholdet er normalfordelt og at standardavviket er 1. Du har lenge hatt mistanke om at fettinnholdet er høyere enn 14%, og bestemmer deg for å sjekke dette. Det gjør du ved å plukke ut 10 forskjellige pakker med kjøttdeig for deretter å registrere fettinnholdet er i hver enkelt pakke. Vi setter opp følgende hypoteser

$$H_0: \mu = 14 \mod H_1: \mu > 14$$

Ved hjelp av sentralgrenseteoremet kan en vise at \overline{X} (stikkprøvegjennomsnittet) er normalfordelt med gjennomsnitt på 14 og standardavvik på $\frac{1}{\sqrt{10}}$. Det vi søker nå er en grense slik at

$$P(\bar{X} \ge grense | \mu = 14) = 0.05$$

En kan da vise at

grense =
$$14 + 1,645 \cdot \frac{1}{\sqrt{10}} = 14,52$$

Forutsatt at fettinnholdet i snitt faktisk er på 14% så betyr dette at sjansen for at gjennomsnittet på en tilfeldig valgt stikkprøve skal ligge under 14,52% er 95%. Hvis vår stikkprøve har et fettinnhold som er på over 14,52% forkaster vi H_0 , og konkluderer med at fettinnholdet er for høyt.

Konstruksjon av regnearket

Vi skal nå konstruere et regneark som vi kan bruke til å gjennomføre en hypotesetest. Vi skal ta utgangspunkt i eksempelet med fettinnholdet til kjøttdeig, men vi skal lage det generelt slik at det kan brukes på andre hypoteser også. Vi skal lage tre regneark, et for tosidig test, et for de to typene med ensidige tester. Vi skal først ta for oss hypotesen

 $H_0: \mu = \mu_0 \quad \text{mot} \quad H_1: \mu > \mu_0$

Vi tenker oss at vi tar en stikkprøve på 10 kjøttdeiger med følgende resultat

15,2	14,6	13,5	14,4	14,6
14,3	15,1	14,3	14,6	13,6

Regnearket vi skal konstruere skal se ut omtrent som vist under.

	2	•		Service D		Ø	velse 3. Hypo	itesetest Z ford	eling - N	licrosoft Exce	ł					-	с х с х
	H Cal	ibri -	11 • A A		Y Se gire	Bryt tekst	N	Standard	Ŧ				-	2	Σ Autosummer	· A7	A
Lim inn • 📢	F	K <u>U</u> -	· <u>* A</u> ·		建建	Slå sammen (og midtstill *	- % 000	00,00,00, 00,00,00,	Betinget formatering *	Formater som tabell	Cellestiler	Sett inn *	Slett Format	∠ Fjern ▼	Sorter og S filtrer * o	iøk etter Ig merk *
Utklippst	G	Skrift	6	۹	Juste	ring	G.	Tall	6		Stiler			Celler	Re	digering	
	F4	- (*	f_{x}														×
4	A	В	C	D	E	F	G	Н	1	J		К	L	М	N	0	
1 Hype	oteset	est om gj	ennomsnitt	tet når sta	ndardavv	iket er kje	nt. Tosidi	g test									
2																	
3							1										
4 SURR	12.3	12 S	14.5	13.4	12.9		4										
6	13.5	13,5	14,5	14.2	13.6												
7																	
8																	
9																	
10																	
11																	
12			-														
13																	
14																	
16 Stikke	orøvegie	nnomsnitt	13.58														
17 Antall	leleme	nter	10														
18																	
19 Stand	ardavvil	k for pop.	1														
20 Signif	ikansniv	/å	5														
21 Påståt	tt verdi		14														
22																	
23			12 200205														
24 iveore	rense arense		14 619795														— U
26	grense		14,015755														
27 Konkl	usjon :		Hypotesen H0	beholdes													-
14 4 F FI	Ensidi	g test µ > µ0	/ Ensidig test	: μ < μ0 🚶 Τα	sidig test /	Veiledning f	for bruk av re	gneark 🏑 🐑	7		1	1		ш	1. I.		
Klar															100 % 🤆		

De grå feltene er felter vi skal fylle ut, mens de hvite feltene er felter som maskinen beregner for oss. Vi starter med å lage grunnstrukturen i regnearket. Det vi si at du lager et regneark som vist under.

6		(°1 ~) =				Øve	lse 3. Hyp	otesetest Z for	deling - N	vicroso	oft Excel							x
C	Hjem	Sett inn	Sideoppsett	Formler	Data Se gj	ennom Visni	ng									0	_ =	x
No	rmal Sideoppse	ett Sideskiftvi Arbeidsbo	isning Egendefi visning kvisninger) Full ger skjerm	Linjal Rutenett Meldingsfe Vi	Formellinje Overskrifte elt is/skjul	r Q Zoom	100 Zoom % merket Zoom	inn på område	Nytt vindu	Ordne Fry alle rute	Del Skjul r Vis	Uis side ved s III Synkron rulli III Dakestill vi Vindu	ilde ng ndusplassering	Lagre arbeidsområd	Bytt le vinduer *	Makroe	r
	161	- (f_x															2
	A	В	С	D	E	F	G	Н	1		J	K	L	М	N	0		
1	Hypotese	test om	gjennomsn	ittet når s	tandardav	/iket er kjer	t. Tosid	lig test										Π
2																		
3																		
4	Stikkprøvev	erdier				-												
5				_														
5						-												
8					_													
9																		
10																		
11																		
12																		
13																		
14																		
15																		
16	Stikkprøveg	jennomsnit	tt															
1/	Antall elem	enter																
19	Standardaw	ik for non																
20	Signifikansn	ivå																
21	Påstått verd	i																
22																		
23																		
24	Nedre grens	e																
25	Øvre grense																	
26																		
27	Konklusjon		0 / 5 - 11 - 1			(N. 1. 1 1		1 //								_		•
NIN	Ensic	big test µ >	μυ 📈 Ensidig t	test µ < µ0]	losidig test	Veiledning fo	r bruk av re	egneark 📈 🞾					Ш	THE	100 st (e
Kid															1 200 28 (C

Når du skal skrive symbolet μ klikker du på Sett inn og velger deretter symbol. Du vil der finne symbol for μ . Vi er nå klare til å starte konstruksjonen av selve regnearket. Først fyller du inn verdiene på stikkprøven i eksempelet i det grå feltet. Regnearket skal konstrueres slik at det kan håndtere stikkprøver med inntil 50 elementer. Når stikkprøveverdiene er fylt inn fyller vi inn standardavvik, konfidensnivå og hva påstanden H_0 er i det nederste grå feltet. I vårt tilfelle har vi satt standardavviket til 1. Vi kan sette signifikansnivået til 5 % og påstanden er at $\mu = 14$. I rute C19 skriver vi inn 1, i rute C20 skriver vi inn 5 og i rute C21 skriver vi inn 14. I rute C16 skal vi regne ut gjennomsnittet. Klikk først på Formler i menyen og klikk deretter på knappen f_x helt til venstre i menyen. Du får da opp følgende vindu.

Sett inn funksjon	? 🔀
<u>S</u> øk etter en funksjon:	
Gi en kort beskrivelse av hva du vil gjøre og klikk Gå til	<u>G</u> å til
Eller velg en <u>k</u> ategori: Sist brukte	
<u>V</u> elg en funksjon:	
ANTALLHVIS KONFIDENS NORMALFORDELING HVIS SUMMER GJENNOMSNITT ANTALLHVIS(område;vilkår) Teller antall celler som oppfyller det gitte vilkåret, i et område.	
Hielp med denne funksjonen OK	Avbryt

Velg Alle istedenfor Sist brukte og blad deg nedover til du finner funksjonen Gjennomsnitt. Dobbeltklikk på denne. Merk deretter området vi skal finne gjennomsnittet av, det vil si cellene A5 til og med celle E14 og klikk på ok. Selv om vi merker alle 50 cellene ignorerer Excel de blanke cellene når den regner ut gjennomsnittet. Det neste vi skal gjøre er å telle opp hvor mange elementer stikkprøven inneholder. Flytt først markøren til rute C17. Vi bruker deretter funksjonsveiviseren slik vi gjorde for gjennomsnitt og leter oss frem til en funksjon som heter Antall. Dobbeltklikk på denne og merk det samme området som i sted og trykk ok.

Det som nå gjenstår er å beregne grensen. I vårt tilfelle vil grensen bli

grense =
$$14 + 1,645 \cdot \frac{1}{\sqrt{10}} = 14,52$$

I regnearket skal vi gjøre dette generelt ved at vi bruker verdien i rute C21 i stedet for 14 og i stedet for 1,645 bruker vi en formel til å beregne hva z_{α} skal bli på bakgrunn av signifikansnivået vi har satt. Du kan nå flytte musen til rute C24 og starte med å skrive inn formelen

=C21+NORMSINV((100-C20)/100)*C19/ROT(C17)

NORMSINV beregner z_{α} verdien på bakgrunn av signifikansnivået som vi har skrevet inn i rute C20. Formelen NORMSINV finner z_{α} på ved at vi bruker 1-signifikansnivået som argument. Siden vi har oppgitt signifikansnivået som heltall i regnearket må vi først ta 100 minus signifikansnivået og deretter dele det på 100. Grensen i vårt eksempel skal da bli 14,52.

Vi ser at gjennomsnittet til stikkprøven vår ligger under grensen vi har funnet. Det betyr at vi beholder hypotesen H_0 . Vi har ikke på dette nivået grunnlag for å beskylde kjøttdeigprodusenten for å ha et for høyt fettinnhold i kjøttdeigene. I rute C27 skal vi skrive inn hva konklusjonen blir. Hvis gjennomsnittet på vår stikkprøve ligger over grensen skal vi forkaste H_0 . Hvis gjennomsnittet derimot ligger under grensen beholder vi H_0 . For å avgjøre dette bruker vi HVIS funksjonen. Du finner HVIS funksjonene ved å bruke funksjonsveiviseren. Når du åpner HVIS funksjonen får du opp følgende vindu.

Funksjonsargumenter	2 🛛
HVIS	
Logisk_test	📻 = logiske
Sann	📻 = Alle
Usann	😥 = Alle
Kontrollerer om vilkår er til sted	= ie, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. jisk_test er enhver verdi eller ethvert uttrykk som kan returnere SANN eller USANN.
Formelresultat =	
<u>Hielp med denne funksjonen</u>	OK Avbryt

I feltet etter Logisk_test skriver du inn hva vi skal teste. I vårt tilfelle blir det om C16>C24. Hvis det er sant skal hypotesen forkastes og vi skriver i feltet etter Sann "Hypotesen H0 forkastes". I feltet etter Usann skriver vi "Hypotesen H0 beholdes". Trykk deretter på ok.

Regnearket ditt skal nå se ut slik det er vist innledningsvis i denne øvelsen. Sett nå signifikansnivået til 1%. Hva blir konklusjonen på testen? Prøv deretter med 10%. Hva blir resultatet nå?

<u>Hypotesetest når $\mu < \mu_0$ </u>

Vi skal nå se på situasjonen når $\mu < \mu_0$. Vi kan også her bruke eksempelet med fettinnholdet i kjøttdeig. Vi kan tenke oss at lederen for bedriften har mistanke om at fettinnholdet er for lavt i forhold 14% som det skal være. Hvis fettinnholdet blir for lavt vil det påføre bedriften større kostnader siden kjøtt er dyrere enn fett. La oss anta at vi tar en stikkprøver på 10 kjøttdeiger og får følgende verdier.

12,3	13,5	14,5	13,4	12,9
13,5	13,8	14,1	14,2	13,6

Vi ønsker nå å teste

 $H_0: \mu = 14 \mod H_1: \mu < 14$

Grensen vil være gitt ved

grense =
$$14 - 1,645 \cdot \frac{1}{\sqrt{10}} = 13,48$$

forutsatt at signifikansnivået er 5 %.

Når vi skal konstruere regnearket kan vi bruke det vi gjorde i sted. Kopier hele arket som du laget i sted og kopier det inn i ark2. Du kan gjerne endre navnet på ark2 til noe som er mer beskrivende som for eksempel Ensidig test $\mu < \mu_0$. Stikkprøveverdien endrer du slik at de stemmer med tabellen over. Vi må endre litt på formelen for grense. I stedet for + etter C21 skriver du – slik at formelen blir

=C21-NORMSINV((100-C20)/100)*C19/ROT(C17)

Vi må også endre litt på rute C27 der vi har konklusjonen. I stedet for C16>C24 skal vi skrive C16<C24. Ellers er formelen lik.

Prøv også dette regnearket for ulike signifikansnivåer og se hva du får.

Tosidig test

Det siste vi skal se på i denne øvelsen er tosidig test. I en tosidig test søker vi både en nedre grense og en øvre grense for hva vi kan akseptere. Hypotesen vil teste vil i dette tilfelle være

$$H_0: \mu = 14 \mod H_1: \mu \neq 14$$

Den nedre grensen vil da være gitt ved

nedre grense =
$$14 - 1,96 \cdot \frac{1}{\sqrt{10}} = 13,38$$

mens den øvre grensen vil være

øvre grense =
$$14 + 1,96 \cdot \frac{1}{\sqrt{10}} = 14,62$$

forutsatt at signifikansnivået er 5%.

Ved konstruksjon av dette regnearket kan vi bruke det vi allerede har gjort. Det enkleste er å kopiere det forrige arket du laget over til ark3. (Ark3 endrer du navn på til tosidig test.) Vi må gjøre noen små modifikasjoner på arket for å tilpasset det til en tosidig test. Rute A24 hvor det står grense endrer du til nedre grense. I rute A25 kan du skrive øvre grense. Formelen for grense må vi modifisere litt og det er det som står i NORMSINV vi må justere. Det som =NORMSINV(0,95) beregner er z_{α} i uttrykket

$$P(Z < z_{\alpha}) = 0.95$$

I dette tilfelle vil $z_{\alpha} = 1,645$. I en tosidigtest søker vi imidlertid en z_{α} som oppfyller kriteriet

$$P(Z < z_{\alpha}) = 0,975$$

Noe som gir $z_{\alpha} = 1,96$. Generelt kan vi modifisere formelen i rute C24 ved å erstatte (100-C20)/100 med (100-C20/2)/100. Formelen som skal stå i rute C24 blir da

=C21-NORMSINV((100-C20/2)/100)*C19/ROT(C17)

Formelen i rute C25 blir helt tilsvarende bare at vi har setter + etter C21 istedenfor -. Også rute C27 der vi avgjør om hypotesen beholdes eller forkastes må vi endre på. Det er feltet etter Logisk_test som må endres. I en tosidig test skal H_0 forkastes hvis gjennomsnittet er under nedre grense eller over den øvre grensen. Det betyr at vi i feltet etter Logisk_test må skrive ELLER(C16<C24;C16>C25) istedenfor C16<C24.

Når dette er gjort skal regnearkene være klare til bruk. Test ut regnearkene med noen oppgaver fra læreboken du bruker og se hvordan de fungerer.

Øvelse 4. Hypoteser om gjennomsnittet når standardavviket er ukjent

I denne øvelsen skal vi se på hypotesetest om gjennomsnittet når standardavviket er ukjent. Denne øvelsen forutsetter at Øvelse 3 er gjort først, da vi i denne øvelsen kopierer store deler av dette regnearket. Når standardavviket σ til populasjonen er ukjent kan vi estimere standardavviket på bakgrunn av en stikkprøve. Det estimerte standardavviket betegnes gjerne med $\hat{\sigma}$. En kan nå vise at \bar{X} i dette tilfelle følger en såkalt student t-fordeling. Når standardavviket var kjent brukte vi en faktor på 1,645 for en ensidig test på 5% nivå. Når \bar{X} er t-fordelt må vi bruke en annen faktor. Denne faktoren er avhengig av hvor stor stikkprøven er. Generelt snakker vi om antall frihetsgrader og antall frihetsgrader er størrelsen på stikkprøven minus 1. Med andre ord, hvis vi har en stikkprøve på 10 observasjoner vil vi ha 9 frihetsgrader. Det er utarbeidet tabeller som gir den kritiske verdien når signifikansnivået og antall frihetsgrader er kjent.

Konstruksjon av regnearket

Selve regnearket er svært likt det vi allerede har konstruert for tilfelle der standardavviket er kjent. Det enkeleste er nok å lagre dette regnearket som et nytt regneark som vi kan kalle for hypotesetest t-fordeling. Når det er gjort skal vi modifisere regnearket slik at det blir tilpasset situasjonen med at standardavviket er ukjent. Vi starter med regnearket der vi ser på testen

$$H_0: \mu = \mu_0 \quad \text{mot} \quad H_1: \mu > \mu_0$$

Vi tar utgangspunkt i det samme eksempelet med fettinnhold i kjøttdeigpakker som vi brukte i forrige oppgave. På forrige regnearket var imidlertid standardavviket kjent, men her er det ukjent. I rute A19 skal vi beregne det estimerte standardavviket. Det gjør vi ved først å flytte markøren til ruta A19 og deretter åpne funksjonsveiviseren. Der leter du deg frem til funksjonen STDAV. Du får da opp følgende vindu

Funksjonsargumenter	
>STDAV Tall1 Tall2	Es = tall
Estimerer standardavvik ba	= sert på et utvalg (ignorerer logiske verdier og tekst i utvalget). Tall1: tall1;tall2; er 1 til 255 tall som svarer til et utvalg fra en populasjon, og kan være tall eller referanser som inneholder tall.
Formelresultat = Hielp med denne funksione	OK Avbryt

La musen stå i hvite feltet etter Tall1 og merk deretter det grå feltet hvor stikkprøveverdiene står. Husk å merke hele feltet slik at regnearket vil fungere for stikkprøver på opptil 50 observasjoner.

Det neste formelen vi må modifisere er formelen som gir oss grensen. Vi kan vise at grensen er gitt ved

$$grense = \mu_0 + t_\alpha \cdot \frac{\hat{\sigma}}{\sqrt{n}}$$

For å finne faktoren t_{α} kan vi bruke en formel som heter TINV. Flytt først musen til rute C20. Der skriver vi inn

=C21+

Deretter klikker du på funksjonsveiviseren og åpner funksjonen TINV. Du får da opp følgende vindu

Funksjonsargumenter	? 🛛
TINV	📷 = tall
Frihetsgrader	(internet internet in
Returnerer den inverse av Student t-ford Frihetsgrader	= eingen. er et positivt heltall som indikerer antall frihetsgrader som karakteriserer fordelingen.
Formelresultat = Hielp med denne funksjonen	OK Avbryt

På sannsynlighet skal vi skrive inn signifikansnivået. Nå er denne funksjonen basert på en tosidig test. Siden vi har en ensidig test må vi gange verdien med 2. Det betyr at der hvor det står Sannsynlighet skriver du inn 2*C20/100 og på Frihetsgrader skriver du inn C17-1. Trykk deretter på ok. Du har nå fått formelen

=C21+TINV(2*C20/100;C17-1)

Det siste vi skal gjøre er å multiplisere TINV med uttrykket $\frac{\hat{\sigma}}{\sqrt{n}}$, det vil si med C19/ROT(C17). Vi får da formelen

=C21+TINV(2*C20/100;C17-1)*C19/ROT(C17)

Regnearket skal nå se ut som vist under.

G		The P				Ø	else 4. Hypo	otesetest t ford	deling - M	icrosoft Exce	l.				-	σx
e	Hiem	Sett inn	Sideonpsett	Formler D	ata Se gjen	nom Visr	ing								0 -	. = x
		Calibri	- 10 10			j U	<u>v</u>	Chandrad	_				-	Σ Autosummer	- A	(iii)
		Calibri	• 10 • A A			* DIVE LEKSE		standard		- 25		-		📑 Fyll *	AT	uru
i	Lim nn * 🝼 📗	F K U -	🖽 • 🙆 • 🛕			Slå sammen o	g midtstill *	- % 000	00, 00, 00, 00,	Betinget formatering	Formater Cellesti	er Sett	Slett Format		Sorter og S filtrer * o	øk etter a merk *
Utk	lippst 😼	S	krift	G.	Justeri	ng	G.	Tall	5		Stiler		Celler	Re	digering	
	138	- (● ƒ _x													×
	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	
1	Hypote	setest om	gjennomsnit	ttet når sta	ndardavvi	ket er ukj	ent. Ensi	dig test de	er μ > μ0)						<u>п</u>
2																
3																
4	Stikkprøv	everdier														
5	1	5,2 14	4,6 13,5	14,4	14,6											
6	1	4,3 1	5,1 14,3	14,6	13,6											
7		_	_													
8		_														
9		-	-													
10		_														
10			-													
12																=
14																
15		_														
16	Stikkprøv	egiennomsni	tt 14.42													
17	Antall ele	menter	10													
18																
19	Estimert s	standardavvik	0,54934304													
20	Signifikar	nsnivå	5													
21	Påstått ve	erdi	14													
22																
23																
24	Nedre gre	ense	14,3184438													
25																
26																
27	Konklusjo	on :	Hypotesen H	0 forkastes				1. 14								-
14 4	(► ►I En	sidig test µ >	• µ0 / Ensidig te	st µ < µ0 🖉 T	osidig test 📈	Veiledning f	or bruk av re	gneark 📝 🞾								
Klai													E	C 200 % C		+

Regnearkene for situasjonene for den andre ensidige testen og for den tosidige testen modifiseres på helt tilsvarende måte.

Øvelse 5. Hypoteser i en binomisk situasjon

I denne øvelsen skal vi se på hvordan vi kan bruke Excel til å utføre hypotesetester om en binomisk *p*. I boken Sannsynlighetsregning og statistisk metodelære av Knut Ole Lysø er det beskrevet et utmerket eksempel der en tester om en terning gir for mange seksere. Dette vil være en ensidig test og vi kan sette opp følgende hypoteser for denne situasjonen.

$$H_0: p = \frac{1}{6} \mod H_1: p > \frac{1}{6}$$

Det vi søker er en grense som oppfyller kravet

$$P\left(X \ge grense \mid p = \frac{1}{6}\right) \le 0.05$$

Vi kan bruke binomialfordeling og regne dette eksakt. Imidlertid vil ofte normalfordelingen bli brukt i praksis, og i de fleste tilfeller gir den akseptable resultater. Når vi bruker normalfordelingen kan vi vise at hvis vi har hypotesen

$$H_0: p = p_0 \quad \text{mot} \quad H_1: p > p_0$$

vil grensen være gitt ved

grense =
$$np_0 + 0.5 + z_{\alpha}\sigma_0$$

Uttrykket np_0 og σ_0 er forventningen og standardavviket forutsatt at H_0 er riktig. Tallet 0,5 er yates korreksjon.

Hvis vi i vårt eksempel med terningen tenker oss at vi kaster en terning 100 ganger og setter signifikansnivået til 5% vil grensen bli

grense =
$$100 \cdot \frac{1}{6} + 0.5 + 1.645 \cdot \sqrt{100 \cdot \frac{1}{6} \cdot \frac{5}{6}} = 23.3$$

Dette betyr at det er 5% sjanse for å 23,3 eller flere seksere på 100 kast. Siden vi ikke kan få 23,3 seksere er det mest korrekt å runde oppover til 24. Hvis vi i vårt forsøk får 23 eller færre seksere beholder vi H_0 hvilket betyr at ikke har grunnlag for å påstå at det er noe galt med terningen. Hvis vi derimot får 24 eller flere seksere forkaster vi H_0 og trekker konklusjonen at her er det noe galt med terningen. Sjansen for at vi feilaktig trekker denne konklusjonen vil være under 5%.

Konstruksjon av regneark

Vi skal nå se på hvordan vi kan konstruere et regneark som utfører denne hypotesetesten. Vi starter også her med et regneark for den ensidige hypotesen

$$H_0: p = p_0 \quad \text{mot} \quad H_1: p > p_0$$

Regnearket kan se ut omtrent som vist på neste side

Pyer Sett nn Sideopsett Formate: Data Se ginnom Yuning Image: Control of the set of	0		* (% *) *				Ø	velse 5.Hypot	esetesting bind	omisk - N	licrosoft Excel						_	σx
Image: Display and the second seco		Hjem	Sett inn	Sideoppsett	Formler D	ata Segj	ennom Vis	ning									۲	- 🗝 x
Imm I		٦ 🐇	Calibri	- 11 - A /	. = = <u>-</u>	· · ·	Bryt tekst		Standard	Ŧ	<u></u>				*	∑ Autosumme	Â	A
Ubbilight G Tail G Stiter Celler Redgering 1 A B C D F G H J K L M N O Image: Stite in the stite in	ir	lim 🚽	F K U -	🗉 • 🔕 • 🗛			Slå sammen	og midtstill 👻		*,0 ,00 ,00 *,0	Betinget formatering * 1	Formater Ce	llestiler !	Sett SI	lett Format	∠ Fjern ▼	Sorter og filtrer *	Søk etter og merk *
D37 A B C D E F G H I J K L M N O 1 Hypotesset at minimisk p - ensidig test p>po Image: Strate in the	Utk	lippst 🕞	Skr	ift	G	Juste	ering	G,	Tall	6		Stiler		Co	eller	R	edigering	
A B C D E F G H I J K L M N O T 1 Hypotesetest om binomisk p - ensidig test p>p <t< td=""><td></td><td>D37</td><td>- (0</td><td>f_X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td></t<>		D37	- (0	f_X														×
1 Hypotesetest om binomisk p - ensidig test p>po Image: Specific and Speci		А	В	С	D	E	F	G	Н	I.	J.	K		L	М	N	0	
2 -	1	Hypotes	setest om b	inomisk p -	ensidig te	st p>po												
3 Image: control of the start of the	2																	
4 Total antali forsøk 100 5 Antal suksesser 24 6 pverdi som vi vil teste 0,16666667 7 Signifikansnå 5 8 100 10 10 10 10 11 Grense 23,2966742 12 Signifikansnansynligheten 0,033385 13 10 10 14 10 10 15 Konklusjon Hypotesen H0 forkastes 16 10 10 17 10 10 18 10 10 19 10 10 10 10 10 13 10 10 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10 19 10 10 10 19 10 10 10 10 19 10 10 10 1	3																	1
5 Antil sukesser 24 0 6 pverdi som vil teste 0,1666667 0 7 Signifikansnivå 5 8 2-alfa 1,64485863 0 10 0 11 Grense 23,2966742 0 12 Signifikansannsynligheten 0,033385 0 13 I 14 15 Konklusjon Hypotesen H0 forkastes 0 15 Konklusjon Hypotesen H0 forkastes 0 16 0 17 0 18 0 19 0 10 0 10 0 11 0 12 Signifikansannsynligheten 0,033855 0 13 0 14 0 15 Konklusjon Hypotesen H0 forkastes 0 16 0 17 0 18 0 19 0 10	4	Totalt anta	all forsøk		100													
6 p verd som vivileste 0,0666667 7 Signifikansiwå 5 8 jarafa 1,64485363 10 c 1 Grense 23,2966742 11 Grense 23,2966742 12 Signifikansansynligheten 0,033385 13 4 14 5 15 Konklusjon Hypotesen H0 forkastes 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	Antall suk	sesser		24													
/ significansinva 0 9 2-alfa 10 1 11 Grense 23,2966742 12 Significansiansynligheten 0,033585 13 14 15 15 16 17 18 19 19 20 21 22 23 24 25 26 27 10	6	p verdi soi	m vi vil teste		0,16666667													_
	/	Signifikan	sniva		5													
Dama	0	z-alfa			1 64495262													
11 Grense 23,2966742 12 Signifikanssannsynligheten 0,033585 13 0,033585 14	10	2-0110			1,04405505													_
12 Signifikanssannsynligheten 0,0333585 13	11	Grense			23,2966742													
13 13 14	12	Signifikan	ssannsynlighe	ten	0,0333585													
14 Hypotesen H0 forkastes 15 Konklusjon 16 Hypotesen H0 forkastes 17 Image: Stand Stan	13																	
Liss Konklugion Hypotesen H0 forkastes 16 1	14																	
16 1 17 1 18 1 19 1 20 1 21 2 23 2 23 2 24 2 25 1 25 1 27 1 Eniskig test p>p0 ∫ Eniskig test p <p0 av="" buk="" for="" regneark="" td="" test="" toskig="" veledning="" ↓?♪<="" ∫=""><td>15</td><td>Konklusjo</td><td>n</td><td></td><td>Hypotesen H</td><td>0 forkastes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></p0>	15	Konklusjo	n		Hypotesen H	0 forkastes												1
17 18 19 20 21 22 23 24 25 26 27 19 10 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 14 15 16 17 18 19 10 10 10 11 12 12 13 14 15 16 17 18 19 10 10 10 10 11 11 12 13 14 14 15 16 17 16 17 <td>16</td> <td></td> <td>_</td>	16																	_
18 19 20 21 22 23 24 25 26 27 10 10 10 10 11 12 13 14 15 16 17 10 10 10 10 10 10 10 11 11 12 12 13 14 15 16 17 17 18 19 10 <td>17</td> <td></td>	17																	
20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	18																	
22 22 23 24 24 25 26 27 26 26 27 27 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	20																	- U
22 23 24 25 26 27 4	21																	
23 24 25 26 27 Enisidig test p>p0 / Enisidg test p <p0 2="" <="" av="" bruk="" for="" regneark="" td="" test="" tostig="" veledning=""><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p0>	22																	
24 25 26 27 4 4 D Enisidig test p>p0 / Enisidg test p <p0 27<="" av="" bruk="" for="" regneark="" td="" test="" tosidg="" veledning=""><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p0>	23																	
25 26 27 4 (+ + +) Enisidig test p>p0 / Enseig test p <p0 27<="" av="" bruk="" for="" regneark="" td="" test="" tostig="" veledning=""><td>24</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p0>	24																	
26 27 • • • • Enisidig test p>p0 / Enisidig test p <p0 27<="" av="" bruk="" for="" regneark="" td="" test="" tostig="" veleding=""><td>25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p0>	25																	
27 4 • • • » Enisidig test p>p0 / Enisidig test p <p0 1="" 1<="" 2="" av="" bruk="" for="" regneark="" td="" test="" tosidig="" veledning=""><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p0>	26																	
Childing cac p/po / choog cac p/po / roong cac / veneuring roone aviegnank / g/	27	► N Eni	icidia test non	0 Enisidia te	st n < n0 To	eidia teet	Veiledning fo	r bruk av regn	eark 🕅		14							× 1
Kiar (1) 100 % (-) (+)	Klar	En	ising test p>p	o _ Enisiuig te	асркро <u>/</u> 10	and cest 2	veleuning 10	r bruk av regn	CON Cal					ill.	m	III 100 % (*		(H)

I regnearket vi skal konstruere skal vi skrive inn antall forsøk, hvor mange suksesser vi har, hva vi vil teste og signifikansnivået. På grunnlag av dette skal regnearket beregne grensen for oss og trekke en konklusjon på testen. Du kan starte med å skrive inn teksten og fylle inn verdiene i de grå rutene. Vi bruker samme eksempel som tidligere med terningkast og vi ser for oss at vi gjør 100 forsøk med 24 suksesser. Antall forsøk kan være vilkårlig, men helst ikke for få forsøk siden vi bruker normaltilnærmelsen. I vårt eksempel setter vi p-verdien vi skal teste til $\frac{1}{6}$. (Husk at du må skrive =1/6 i rute D6). Vi velger i førsteomgang å sette signifikansnivået til 5%.

For å kunne beregne grensen må vi først beregne z_{α} . Vi skal beregne z_{α} i rute D9. For å beregne z_{α} bruker vi NORMSINV funksjonen. Dette gjøres på tilsvarende måte som i øvelse 3. I vårt tilfelle blir formelen

=NORMSINV((100-D7)/100)

Det neste vi skal gjøre er å beregne grensen i rute D11. Fra i sted så vi at formelen

grense =
$$np_0 + 0.5 + z_{\alpha}\sigma_0$$

gir oss grenseverdien, der σ_0 er standardavviket som er gitt ved $\sqrt{np_0(1-p_0)}$ Formelen som vi skal skrive inn i rute D11 blir

=D4*D6+0,5+D9*ROT(D4*D6*(1-D6))

Det siste vi skal gjøre er å avgjøre om hypotesen skal forkastes eller ikke. Dette skal vi gjøre i rute D15. Til det må vi bruke HVIS funksjonen for å sjekke om antall suksesser vi har fått ligger over eller under grensen. Vi åpner HVIS funksjonen med funksjonsveiviseren og fyller den ut som vist under.

Funksjonsargumenter	?X
HVIS	
Logisk_test	D5>D11 💽 = SANN
Sann	"Hypotesen H0 forkastes" 🛛 🙀 = "Hypotesen H0 forkastes"
Usann	"Hypotesen H0 beholdes" 🛛 💽 = "Hypotesen H0 beholdes"
Kontrollerer om vilkår er til ste	 "Hypotesen H0 forkastes" de, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. Usann er verdien som returneres hvis logisk_test er USANN. Hvis argumentet utelates, returneres USANN.
Formelresultat = Hypotesen	H0 forkastes
Hjelp med denne funksjonen	OK Avbryt

Vi kan gjerne regne ut signifikanssannsynligheten også. Det kan vi gjøre i rute D13. Når vi regner ut signifikanssannsynligheten er det uttrykket

$$P\left(X \ge S \mid p = \frac{1}{6}\right)$$

der S er antall suksesser. Hvis vi bruker normaltilnærmelsen kan vi vise at dette uttrykket kan omformes til

$$1 - P\left(Z \le \frac{S - 0.5 - np_0}{\sigma_0}\right)$$

Dette utrykket kan vi legge inn i rute D13. Start med å skrive =1- i rute D13. Deretter åpner du funksjonsveiviseren og åpner normalfordelingen. Du får da opp et vindu som fyller ut som vist under

Funksjonsargum	enter 🤶 🔀
NORMALFORDELIN	s
x	D5-0,5 💽 = 23,5
Median	D4*D6 🚺 = 16,66666667
Standardavvik	ROT(D4*D6*(1-D6)) = 3,726779962
Kumulativ	SANN SANN
Returnerer den kumu	= 0,966641502 Ilative normalfordelingen for angitt gjennomsnitt og standardavvik. Kumulativ er en logisk verdi. For kumulativ fordeling bruker du SANN, for punktsannsynlighet bruker du USANN.
Formelresultat = 0,1	033358498
Hielp med denne fun	ksjonen OK Avbryt

Regnearkene for den andre ensidige testen og for den tosidige testen kan konstrueres på helt tilsvarende måte.

Øvelse 6. Test på forskjell i populasjonsgjennomsnitt

I denne øvelsen skal vi teste om to populasjonsgjennomsnitt kan påstås å være like eller ikke. Datamaterialet henter vi fra en tilfeldig stikkprøve fra hver av populasjonene. Vi antar at stikkprøvene er uavhengig av hverandre. Vi antar også at populasjonene er normalfordelte. Det vi ønsker å teste ut er om gjennomsnittene μ_1 og μ_2 i de to populasjonene er like eller ikke. Dette kan vi formulere som en hypotese

$$H_0: \mu_1 = \mu_2 \quad \text{mot} \quad H_1: \mu_1 \neq \mu_2$$

Ofte velger vi heller å se på differansen $D = \mu_1 - \mu_2 \,$ og formulere hypotesen slik

$$H_0: D = 0 \quad \text{mot} \quad H_1: D \neq 0$$

La oss se på et lite eksempel. Vi tenker oss at en bedrift har to maskiner som begge produserer samme type vare. Varen skal i prinsippet veie 100 gram uavhengig av hvilken maskin som varen produseres av, men det vil likevel være noe variasjon. Vi kan imidlertid anta at vekten er normalfordelt. Vi vil nå undersøke om det er signifikant forskjell i gjennomsnittet til disse to populasjonene. Vi antar nå at vi tar en stikkprøve fra produksjonen til hver av maskinene. Resultatet er vist i tabellen under.

Maskin 1	102	101	99	98	100	97	103	102	100
Maskin 2	101	99	98	97	101	100	101		

Dersom standardavviket til populasjonene er kjent kan vi vise at $\hat{D} = \bar{X} - \bar{Y}$ er normalfordelt med forventning D og standardavvik $\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}$ der σ_1 , σ_2 og n, m er standardavvik og antall observasjoner for henholdsvis stikkprøve 1 og 2. I praksis er som oftest standardavviket ukjent og vi må da estimere standardavviket og vi bør bruke t-fordelingen istedenfor. Den nedre grensen for hva vi kan akseptere vil derfor være

nedre grense =
$$-t_{\propto}\sqrt{\frac{\widehat{\sigma}_{1}^{2}}{n} + \frac{\widehat{\sigma}_{2}^{2}}{m}}$$

Den øvre grensen vil tilsvarende være

$$\emptyset vre \ grense = t_{\propto} \sqrt{\frac{\widehat{\sigma}_1^2}{n} + \frac{\widehat{\sigma}_2^2}{m}}$$

Faktoren t_{α} vil avhenge av antall observasjoner i stikkprøven og signifikansnivået. Dessverre er det ikke en enkel regel for å finne ut hvor mange frihetsgrader vi har. Men det finnes en metode som heter Welsh' metode. Vi må først beregne forholdet mellom stikkprøvevariansene dvs.

$$W = \frac{\hat{\sigma}_1^2/n}{\hat{\sigma}_2^2/m}$$

Antall frihetsgrader beregnes deretter ved hjelp av formelen

$$v = \frac{(1+W)^2}{\frac{W^2}{n-1} + \frac{1}{m-1}}$$

La oss nå se hva vi får i vårt eksempel. Vi finner at

 $\overline{X} = 100,22 \text{ og } \overline{Y} = 99,57 \text{ og}$ $\hat{\sigma}_1^2 = 3,94 \text{ og } \hat{\sigma}_2^2 = 2,62$

Dette gir at

$$\sqrt{\frac{\hat{\sigma}_1^2}{n} + \frac{\hat{\sigma}_2^2}{m}} = \sqrt{\frac{3,94^2}{9} + \frac{2,62^2}{7}} = 0,90$$

Vi finner videre at

$$W = \frac{\hat{\sigma}_1^2/n}{\hat{\sigma}_2^2/m} = \frac{3,94/9}{2,62/7} = 1,17$$

Antall frihetsgrader blir da

$$v = \frac{(1+1,17)^2}{\frac{1,17^2}{9-1} + \frac{1}{7-1}} = 13,94$$

Som vi runder ned til 13 frihetsgrader. Med signifikansnivå på 95% vil derfor $t_{\propto}=2,16$ slik at

 $nedre\ grense = -2,16 \cdot 0,90 = -1,95$

 $øvre\ grense = 2,16 \cdot 0,90 = 1,95$

Siden forskjellen på våre stikkprøver bare var 0,65 beholder vi H_0 .

Konstruksjon av regnearket

Vi skal nå se hvordan vi kan konstruere et regneark som gjennomfører denne hypotesetesten. Vi konsentrerer oss om å lage et regneark for situasjonen der standardavviket er ukjent og der vi bruker t-fordelingen. Et regneark basert på Z-fordelingen kan lages på helt tilsvarende måte. Målet vårt er å konstruere et regneark som vist på neste side.

G		T (ST) =				Øvel	se 6. Hypotese	test to popula	isjoner -	Microsoft Exe	el					-	. = x
	Hiem	Sett inn S	sideoppsett I	Formler Data	Se gje	nnom Visi	ning									0	- 🗝 X
		Calibri -	11 × A A	= = = *	>	Bryt tekst		Standard	-	 ≦5				2	Σ Autosummer		A
	Lim 🚽	F K U -	- 🕹 - 🗛 -	∎ ≡ ≡ i		🖥 Slå sammen (og midtstill *	9 ~ % 000	00,00 00 00	Betinget formatering *	Formater som tabell	Cellestiler	Sett	Slett Format	Q Fjern ▼	Sorter og filtrer *	Søk etter og merk *
Utk	lippst 🚱	Skrift	. 6	i l	Juste	ring	G	Tall	G,		Stiler			Celler	Re	digering	
	D38	- (9	f_{x}														×
-	A	В	С	D	E	F	G	Н	1	J		К	L	М	N	0	
1	Test på	forskjell i gje	ennomsnitt	i to populasj	oner												
2																	
3		Stikkprøve 1	Stikkprøve 2														
4		102	101	Sign	ifikansn	iva	5										
5		101	99	VV Anto	dl frihot	carador	1,1/13804/	-									
7		98	97	Fors	kiell snit	sgrauer H	0.65079365										
8		100	101				-,										
9		97	100														
10		103	101	Ned	re grens	e	-1,94723563										
11		102		Øvre	e grense		1,94723563										
12	-	100															
13				Kon	klusjon :		Hypotesen H	0 beholdes]
14																	
16																	
17																	
18																	
19																	
20																	
21	Antall	9	7														
22	Snitt	100,222222	99,5714286														
23	Est std.	1,98606255	1,61834719														
24																	- U
26																	
27																	-
н	To III	populasjoner	Veiledning for	bruk av regneark	/ 🕼 /	7					1				1		
Klai	r													•••	100 % 🤆		

Vi skal konstruere et regneark som håndterer stikkprøver på inntil 15 observasjoner fra hver stikkprøve. (Det er selvsagt ingenting i veien for å lage regneark som tar høyde for stikkprøver med flere observasjoner). Vi skal også her starte med å lage selve strukturen før vi fyller inn formlene. Start med å åpne et nytt regneark og skriv inn teksten som vist i regnearket under.

0) 🖬 🤊	- (° -) ∓				Øvels	e 6. Hypote	setest to popul	asjoner -	Microsoft Exce	el					-	σx
E	Hjem	Sett inn	Sideoppsett	Formler	Data Se g	jennom Visr	iing									۲	- = x
ſ	۵ 🏲	Calibri	- 11 - A A			📑 Bryt tekst		Standard	-				-	> 📰	Σ Autosummer	- 47	A
1	im im	F K II -	00 - A - A			Stå samman o	a midtetill x	· · · ·	•,0 ,00	Betinget	Formater	Cellestiler	Sett	Slett Format	🛃 Fyll 🕆	Sorter og	Søk etter
in	n - 🝼	• • <u>•</u>	······································		-	ing our summer e	ig initiation		,00 *,0	formatering ~ s	om tabell	• •	inn *	* *	∠ Fjern ▼	filtrer *	og merk *
Utkli	ppst 🛯	Skr	ift	^[4]	Just	ering	¥)	Tall	(a		Stiler			Celler	R	digering	
_	F48	- (0	f _x			-	-										*
	A .	B	С	D	E	F	G	Н		J	-	K	L	M	N	0	-
1	lest pa	forskjell i g	jennomsnit	t i to pop	ulasjoner												
2		Ctilduoratuo	1 Stikkorava 3														
3		Stikkprøve 10	1 Stikkprøve 2		Signifikans	oivå	-	-									
5		10	1 99		w	inva		-									
6		9	9 98		Antall frihe	tsgrader											
7		9	8 97		Forskjell sn	itt											
8		10	0 101														
9		9	7 100														
10		10	3 101		Nedre gren	se											
11		10	2		Øvre grens	e											
12		10	0														
13					Konklusjon	:											
14			-														
15																	
17																	
18																	
19																	
20																	
21	Antall																
22	Snitt																
23	Est std.																
24																	
25																	
20																	
14 4	► H To	populasioner	Veiledning fo	r bruk av reg	neark 🔗	/				1							
Klar	10	p - p													100 %) 0	•

Feltene som er markert med grått er felter der vi skal fylle inn verdier, mens de øvrige er felter der vi skal bruke formler for å beregne verdiene. Det første vi skal gjøre er å fylle inn stikkprøvene i det store grå feltet og signifikansnivået i det lille grå feltet. Signifikansnivået kan du sette til 5 %. (Skriv inn tallet 5 i rute G4) Det neste vi skal gjøre er å beregne antall observasjoner, gjennomsnitt og estimert standardavvik for stikkprøvene. I rute B21 og C21 skal vi beregne hvor mange observasjoner det er i hver av stikkprøvene. Det gjør vi ved å bruke ANTALL funksjonen. I rute B22 og C22 skal vi beregne gjennomsnittet ved hjelp av GJENNOMSNITT funksjonen. I rute B23 og C23 skal vi estimere standardavviket for hver av populasjonene. Det finnes en funksjon i Excel som gjør dette og det er funksjonen STDAV.

Neste skritt blir å beregne antall frihetsgrader. Som vi så i sted krever det noe regnearbeid. Vi skal først beregne

$$W = \frac{\hat{\sigma}_1^2/n}{\hat{\sigma}_2^2/m}$$

Det skal vi gjøre i celle G5. For å beregne W bruker du følgende formel

=(B23^2/B21)/(C23^2/C21)

Vi henter det estimerte standardavviket fra rute B23 og C23 og antall observasjoner fra rute B21 og C21. Det neste vi skal gjøre er å beregne antall frihetsgrader. Vi husker fra i sted at formelen

$$v = \frac{(1+W)^2}{\frac{W^2}{n-1} + \frac{1}{m-1}}$$

gir oss antall frihetsgrader. Formelen er ikke spesielt pen, og det blir heller ikke formelen i Excel. Vi ønsker også å runde svaret ned til nærmeste heltall. Vi starter med å åpne funksjonen for å avrunde tall. Bruk funksjonsveiviseren til å finne funksjonen AVRUND.NED. Du får da opp følgende vindu.

Funksjonsargi	imenter 🤶 🔀
AVRUND.NED	
Tall	🐹 = tall
Antall_sifre	💽 = tall
Runder av et tall r	edover mot null.
	Tall er et reelt tall du vil runde av nedover.
Formelresultat =	
Hjelp med denne f	unksjonen OK Avbryt

Etter Tall kan du fylle ut følgende uttrykk som beregner brøken over.

(1+G5)^2/(G5^2/(B21-1)+1/(C21-1))

Etter Antall_sifre kan du fylle ut 0 som angir at vi skal ha 0 desimaler i tallet vi skal runde ned. Du skal da ha fått følgende formel i rute G6:

```
=AVRUND.NED((1+G5)^2/(G5^2/(B21-1)+1/(C21-1));0)
```

I rute G7 skal vi beregne forskjellen mellom gjennomsnittene til de to populasjonene. Dersom vi ønsker at differensen skal være positiv bruker vi ABS funksjonen i Excel. Formelen som skal stå i rute G7 blir derfor =ABS(B22-C22)

Det som gjenstår da er å finne nedre og øvre grense. Den nedre grensen er gitt ved formelen

 $nedre \; grense = -t_{\propto} \sqrt{\frac{\hat{\sigma}_1^2}{n} + \frac{\hat{\sigma}_2^2}{m}}$

Verdien t_{α} finner vi ved å bruke TINV funksjonen. Ved å skrive inn signifikansnivået og antall frihetsgrader beregner Excel TINV for oss. Formelen for nedre grense som vi skriver i rute G10 blir derfor

=-TINV(G4/100;G6)*ROT(B23^2/B21+C23^2/C21)

Tilsvarende blir formelen for øvre grense

=TINV(G4/100;G6)*ROT(B23^2/B21+C23^2/C21)

Til slutt skal vi i rute G13 avgjøre om vi skal beholde hypotesen eller om vi skal forkaste den. Formelen

=HVIS(G7<G11;"Hypotesen H0 beholdes";"Hypotesen H0 forkastes")

Avgjøre dette spørsmålet. Siden vi rute G7 har brukt absoluttverdi er det tilstrekkelig å sjekke verdien i G7 mot den øvre grensen. Dersom G7 er mindre enn G11 beholder vi H_0 . I motsatt fall forkaster vi den.

Øvelse 7. Regresjon

I denne øvelsen skal vi se på hvordan Excel kan brukes i arbeidet med regresjon. Vi skal først se hvordan vi kan fremstille dataene i et diagram og også hvordan vi kan beregne regresjonslinjen. Vi skal deretter se på hvordan vi kan gjennomføre hypotesetesten

$$H_0: \beta_1 = 0 \mod H_1: \beta_1 > 0$$

der regresjonslinjen

$$Y = \beta_0 + \beta_1 X$$

beskriver en trend i datamaterialet.

Øvelse 7. Regresjon - Microsoft Excel Hiem Sett.in Se gjennom Visning Data Sideon A • 11 • A A ■ = = > → = Bryt tekst 45 🚽 🗄 🎽 🧾 ΣΑυ A Calibri Standard D. 😺 Fyll -F 🔏 🗓 🔹 🔛 🛪 🦄 🛪 📥 👅 🗮 🗐 📰 Slå sammen og idtstill - 🧐 - % 000 💏 🖧 Betinge Formater Cellestiler Sett Slett Format Sorter og Søk ett filtrer * og merk 1 2 Fjern f_X 0 D Gjennomsnitt X 52,53333333 100 Gjennomsnitt \ 54,06666667 90 Antall 15 y = 0,9093x + 6,2966 R² = 0,8401 80 Stigningstall regresjonslinje 0,90932946 Skjæringspunkt regresjonslinje Korrelasjonskoeffisient 6.296559029 70 0,916573521 60 50 Signifikansnivå 40 30 Estimert varians til e 100,5718645 15 16 17 Estimert varians til B 0.012105813 20 0,110026419 Estimert standarda ik til β . 10 18 19 Grense 0,194849458 20 40 60 80 100 20 Signifikanssannsynlighet 0,00000078 21 22 Konklusjon Hypotesen H0 forkastes 23 Konfidensint. 0.671631834 2 Konfidensint. Øg 1,147027086
 27

 H ← ▶

 Regresjon. Test på om β1>0

 Veledning for bruk av regneark

Målet vårt er å konstruere et regneark som vist under.

Jeg velger å bruke et konkret eksempel for å vise hva vi skal gjøre. Vi tenker oss at i et matematikkurs gis det to deleksamener, en til jul og en til sommeren. I tabellen under er poengsummen til 15 tilfeldige studenter gitt.

Χ	60	67	50	35	45	59	80	93	70	63	54	10	69	8	25
Y	70	56	60	30	52	50	90	88	60	74	50	30	75	12	14

Vi lar *X* symbolisere første deleksamen og *Y* den andre deleksamen. Vi skal nå legge dataene inn i Excel og behandle dem. Du kan starte med å skrive inn teksten og deretter verdiene til de to prøvene i det grå feltet. Vi lager regnearket slik at det kan ta hånd om inntil 25 observasjoner, selv om vi i vårt eksempel kun har 15. Regnearket vil da se omtrent slik ut

-		- (2	-) =					Øvelse	7. Regresjon	- Microso	ft Excel						-	σx
	Hjem	Se	tt inn Sideop	psett F	ormler [Data Se	gjennom Visn	ing									. 🕲	- x
ľ	×	Calibr	- 11	• (A° A*)	= = ;	*	📑 Bryt tekst		Standard	-	1				P 🗊	Σ Autosummer *	Â	A
Lir	- 🥩	F	r <u>u</u> - <u>-</u> -	🄄 - 🗛 -			Slå sammen o	g midtstill *	- % 0	00 500 400	Betinget formatering	* som tabell *	Cellestiler	Sett inn *	Slett Format	∠ Fjern ▼	Sorter og S filtrer * o	5øk etter og merk *
Utklip	pst 😡		Skrift	G		Ju	stering	G.	Tall	6		Stiler			Celler	Redig	ering	
	F43		- (0	f _x														×
	А		В	С		D	E	F		3	н	1		J	K	L	N	VI 🗖
1		×	У															
2		60	70		Gjen	nomsnitt	х											
3		67	56		Gjen	nomsnitt \	(
4		50	60		Anta	II												
5		35	30															
6		45	52		Stign	ingstall re	gresjonslinje											
7		59	50		Skjæ	ringspunk	t regresjonslinje											
8		80	90		Korre	elasjonsko	effisient											
9		93	88															
10		70	60						_									
11		63	/4		Signi	Tikansniva												
12		54	50															
10		10	50		Ectio	oort vorion	a til a											
15		05	12		Ectio	oort varian	is til B											
16		25	14		Estin	nert stand:	ardawik til ß											
17		20			Court	nere starrat	arouver (in p											
18																		
19					Gren	se												
20					Signi	fikanssanr	nsynlighet											
21																		
22					Konk	lusjon												
23																		
24					Konf	idensint. N	Ng											
25					Konf	idensint. Ø	Øg											
26																		
27																		-
14 4	► H Re	egresjo	n. Test på om (31>0 / V	/eiledning fo	r bruk av re	gneark 🏑 💱 🖊				1							
Klar																🔲 🛄 100 % 😑 –		

Vi skal nå plotte verdiene i et diagram og tegne opp regresjonslinjen. Start med å merke verdiene i det grå feltet og trykk deretter på Sett inn på menyen. Der velger du punktdiagrammet. Velg diagrammet øverst til venstre. Flytt diagrammet litt til høyre på skjermen slik at det kommer bort fra F kolonnen. Fjern også feltet der hvor det står Serie 1. Når vi skal legge inn regresjonslinjen høyreklikker du med musen på et av punktene og velger Legg til trendlinje. Velg Lineær og hak ut foran Vis formel i diagrammet og hak også ut Vis R kvadrat. Vi har nå fått tegnet opp regresjonslinjen, beregnet likningen for linjen og vi har også fått beregnet korrelasjonskoeffisienten opphøyd i annen. Metoden som Excel bruker for å beregne regresjonslinjen er minste kvadraters metode.

Selve regresjonslinjen kan en også beregne ved hjelp av formlene som finnes i Excel. Før vi gjør det skal vi beregne gjennomsnittet til X og Y i cellene F2 og F3. For å bergene gjennomsnittet bruker vi funksjonen GJENNOMSNITT. I rute F4 beregner vi antall observasjoner ved hjelp av ANATLL funksjonen. Vi trenger ikke disse tallene for å beregne regresjonslinjen, men vi har bruk for dem når vi skal gjennomføre hypotesetesten litt senere.

Vi skal nå se på hvordan regresjonslinjen kan beregnes. Det er ofte vanlig å skrive opp regresjonslikningen på denne måten

Y = a + bX

I rute F6 skal vi beregne *b*. Dette er forholdsvis tidkrevende om en skal gjøre det med kalkulator. I Excel finnes det en funksjon som gjør dette for oss. Den funksjonen heter STIGNINGSTALL. Bruk funksjonsveiviseren til å finne denne funksjonen. Du får da opp følgende vindu

Funksjonsargumenter	
STIGNINGSTALL	
Kjente_y	🛋 = matrise
Kjente_x	📷 = matrise
Returnerer stigningstallet for den lin	= eære regresjonslinjen gjennom de gitte datapunktene.
Kjen	te_x er settet med uavhengige datapunkter, og kan være tall eller navn, matriser eller referanser som inneholder tall.
Formelresultat =	
Hjelp med denne funksjonen	OK Avbryt

I feltet etter Kjente_y merker du av Y verdiene i det grå feltet. Det vil si celle B2 til B16. Etter Kjente_x merker du av tilsvarende X verdier, det vil si celle A2 til A16. Trykk deretter ok. For å beregne a bruker vi funksjonen SKJÆRINGSPUNKT. Den er bygget opp helt likt med funksjonen STIGNINGSTALL. Til slutt i denne delen skal vi beregne korrelasjonskoeffisienten. Funksjonen KORRELASJON hjelper oss med denne beregningen. Finn KORRELASJON i funksjonsveiviseren og merk av X verdiene i feltet Matrise 1 og Y verdiene i feltet Matrise 2. Trykk deretter på ok. Hvis du har gjort dette riktig skal regresjonslinjen vi har funnet samsvare med den som er fremkommet i diagrammet. Uttrykket R^2 som står i diagrammet under regresjonslikningen er korrelasjonskoeffisienten opphøyd i annen.

Hypotesetest

Vi tenker oss at vi har et datamateriale der linjen $Y = \beta_0 + \beta_1 X$ kan oppfattes som trenden i datamaterialet. Dette er linje som populasjonen av punkter vil være samlet omkring. Vi kan vanligvis ikke trekke opp denne linjen fordi β_0 og β_1 er ukjente størrelser. Den generelle regresjonslikningen kan skrives som

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

der en vilkårlig enkeltobservasjon Y_i er uttrykt ved den tilhørende X_i og der ε_i representerer enkeltobservasjoners avvik fra trenden. Som et estimat på trenden i datamaterialet brukes gjerne regresjonslinjen som er gitt ved

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X.$$

Størrelsen som knytter Y til X er β_1 . Dersom denne er lik 0 innebærer det at det ikke er noe sammenheng mellom X og Y. Vi ønsker derfor ofte å teste om β_1 er lik 0 eller ikke. Vi skal nå ta for oss hypotesen

$$H_0:\beta_1=0 \quad \text{mot} \quad H_1:\beta_1>0$$

Vi kan vise at $\hat{\beta}_1$ er normalfordelt med forventningsverdi β_1 . Vi betegner standardavviket til β_1 med σ_1 . Standardavviket er vanligvis ukjent og en størrelse vi må estimere. Vi kan videre vise at brøken

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_1}$$

er t fordelt med n - 2 frihetsgrader. Selve hypotesetesten gjennomføres på tilsvarende måte som hypoteser om gjennomsnittet. Det som gjenstår før vi kan gjøre det, er å beregne det estimerte

standardavviket til $\hat{\beta}_1$. Dette medfører litt utregning da vi først må estimere variansen til ε_i . Den estimerte variansen til ε_i er gitt ved

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{\sum (y_{i} - \bar{Y})^{2} - \hat{\beta}_{1}^{2} \sum (x_{i} - \bar{X})^{2}}{n - 2}$$

Variansen til $\hat{\beta}_1$ er gitt ved

$$\hat{\sigma}_1^2 = \frac{\hat{\sigma}_{\varepsilon}^2}{\sum (x_i - \bar{X})^2}$$

Som vi har tidligere har gjort skal vi i regnearket beregne en grense som er slik at

$$P(\hat{\beta}_1 \ge grense \mid \beta_1 = 0) = 0.05$$

Denne grensen er gitt ved

grense =
$$t_{\alpha} \cdot \hat{\sigma}_1$$

Vi skal nå legge disse verdiene inn i regnearket vårt. Vi starter med å spesifisere signifikansnivået i rute F11. Du kan i første omgang sette det til 5. I rute F14 skal vi beregne estimerte variansen til ε_i det vil si $\hat{\sigma}_{\varepsilon}^2$. I Excel er det en formel som beregner uttrykk som $\sum (y_i - \bar{Y})^2$ og den heter AVVIK.KVADRER. Den fungerer slik hvis en skal regne ut kvadratavvikene mellom den enkelte y_i og gjennomsnittet \bar{Y} , bruker en formelen AVVIK.KVADRERT(B2:B26). Hele uttrykket for $\hat{\sigma}_{\varepsilon}^2$ blir derfor

```
=(AVVIK.KVADRERT(B2:B26)-F6*F6*AVVIK.KVADRERT(A2:A26))/(F4-2)
```

l rute F15 skal vi beregne $\hat{\sigma}_1^2$. Vi bruker også her funksjonen AVVIK.KVADRERT og formelen som skal stå i rute F15 blir da

```
=F14/AVVIK.KVADRERT(A2:A26)
```

Til sist skal vi i rute F16 beregne standardavviket til $\hat{\beta}_1$. Dette er roten av variansen som vi beregnet i rute F15. Formelen som skal stå i rute F16 blir derfor

=ROT(F15)

Vi er nå klare for å beregne grensen. Som tidligere hjelper funksjonen TINV oss med det slik at formelen i rute F19 blir

=F12+TINV(F11/100*2;F4-2)*F16

Merk her at siden det er en ensidigtest så må vi gange signifikansnivået med 2 for at det skal bli riktig. Vi kan også beregne signifikanssannsynligheten. Funksjonen TFORDELING kan brukes til dette. Flytt musen til celle F20 og åpne når du åpner denne funksjonen i funksjonsveiviseren får du et vindu som du kan fylle ut som vist på neste side.

Funksjonsargur	nenter			? 🛛
x	(F6-F12)/F16	1	=	8,264646542
Frihetsgrader	F4-2		=	13
Ender	1	1	=	1
Returnerer Student	t-fordelingen.	X er den numeriske	= ver	7,8154E-07 dien du vil regne ut fordelingen ut for.
Formelresultat = 0	,00000078			
<u>Hjelp med denne fu</u>	nksjonen			OK Avbryt

I feltet etter X er det $\frac{\hat{\beta}_1 - \hat{\beta}_1}{\hat{\sigma}_1}$ vi har fylt inn. I neste feltet skriver du inn antall frihetsgrader. Siden dette er en ensidig test skriver du inn 1 i feltet etter Ender. Det neste vi skal gjøre er å avgjøre om hypotese skal forkastes eller ikke. Hvis F6 > F19 skal vi forkaste H_0 , hvis ikke skal vi beholde den. Vi bruker en HVIS funksjon slik vi tidligere har gjort. Etter at du har funnet den i funksjonsveiviseren fyller du den ut som vist under.

Funksjonsargumenter	28							
HVIS								
Logisk_test	F6>F19 🐹 = SANN							
Sann	"Hypotesen H0 forkastes" 🔣 = "Hypotesen H0 forkastes"							
Usann	"Hypotesen H0 beholdes" = "Hypotesen H0 beholdes"							
Kontrollerer om vilkår er til ste	 "Hypotesen H0 forkastes" Kontrollerer om vilkår er til stede, og returnerer en verdi hvis SANN, og en annen verdi hvis USANN. Usann er verdien som returneres hvis logisk_test er USANN. Hvis argumentet utelates, returneres USANN. 							
Formelresultat = Hypotesen H0 forkastes Hielp med denne funksionen OK Avbryt								

Vi skal også beregne konfidensintervallet for β_1 . Det vil være gitt ved

$$\hat{\beta}_1 \pm t_{\alpha} \cdot \hat{\sigma}_1.$$

Den nedre grensen som vi skriver i rute F24 vil derfor være gitt ved

=F6-TINV(F11/100;F4-2)*F16

Den øvre grensen til konfidensintervallet beregnes ved tilsvarende formel bare at en erstatter – tegnet med + tegn.