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  Proposed solution MPC final exam 2023 
 

This exam counts 60% for the final grade. 

 

 

 

Problem 1 

Tasks: 

i) [15%]  For practical implementation, which one of the two controller design will you choose 
even though all 4 states are measurable? Why? Explain with proper justifications. 

Proposed Solution: 

It would be necessary or useful to choose the output feedback MPC for implementation on a real system. 
Output feedback MPC contains a state estimator. At first it may seem unnecessary to have a state 
estimator since all the states are already measured using sensors. However, there are two important 
reasons as to why for a practical implementation it may become necessary to have a state estimator (like 
a kalman filter). 

(a) For handling sensor failure situation: In circumstances where one or more of the sensors that are 
used for measuring the states fail, then the apriori state estimate obtained by the Kalman filter 
can be continued to be fed to the optimal control problem of MPC algorithm, without having to 
stop the MPC loop immediately. This may work out for some time before the close loop 
performance starts degrading significantly, which may be enough time for manual intervention to 
take place. If there was no kalman filter (state estimator), then a sensor failure situation would 
produce no measurement at all, and the MPC loop will immediately fail, and the closed loop 
response may become unstable. 

(b) For filtering out measurement noise: Another advantage of having a state estimator or Kalman 
filter is to act as a low pass filter allowing the measurement noises to be filtered out. Direct noisy 
measurements fed into the MPC will produce noisy control signals, and it may also affect the 
proper functioning of the optimization solver used for solving the MPC problem, usually in the 
form of increased computational time. 

 
ii) [5%] Explain briefly the difference between these two controller designs in general. 

Suggested solution: 

A state feedback MPC as the name implies is a controller where the states are directly fed back to the 
controller. This is only possible if all the states of the process being controlled are available or measurable 
i.e. full state information is a necessity. This makes the state feedback MPC an ideal case. However, in 
practice, it may not always be possible to measure all the state of the system. In such cases, the states of 
the system should be estimated. Estimation of the states can be performed by utilizing the available 
measurements. So in this case, the measurements (output) of the process is fed to an estimator (say a 
Kalman filter) which instead estimates the states. These estimated states are then fed to the MPC. 
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Problem 2 

Tasks 

i) [15%] Considering that the disturbance acting on the system is constant or slowly varying, and 
both the system states and the disturbances are perfectly known or measured, how will you 
formulate an LQ optimal control problem for achieving integral action? 

Suggested solution:  

The linear state space model of the process affected by disturbance is given as, 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐵𝑑𝑑𝑘 (8.19) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐶𝑑𝑑𝑘 (8.20) 

Now the process model of Equation 8.19 and 8.20 can be augmented with the disturbance model of Equation 

8.18 as, 

 

[
𝑥𝑘+1
𝑑𝑘+1

]
⏟  
𝑥̃𝑘+1

= [
𝐴 𝐵𝑑
0 𝐼

]
⏟    

𝐴̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

+ [
𝐵
0
]

⏟
𝐵̃

𝑢𝑘 
(8.21) 

𝑦𝑘 = [𝐶 𝐶𝑑]⏟    
𝐶̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

 
(8.22) 

The augmented model is in a standard linear state space form as, 

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃𝑢𝑘  (8.23) 

𝑦𝑘 = 𝐶̃𝑥̃𝑘  (8.24) 

 

Here, 𝑑𝑘 ∈ ℝ
𝑛𝑑  with 𝑛𝑑 = 𝑛𝑦 being the number of unmeasured disturbance variables and equal 

to the number of available measurement. The matrices 𝐵𝑑 ∈ ℝ
𝑛𝑥×𝑛𝑑 and 𝐶𝑑 ∈ ℝ

𝑛𝑦×𝑛𝑑  are chosen 

appropriately such that the following condition holds true for detectability. 

𝑟𝑎𝑛𝑘 [
𝐼 − 𝐴 −𝐵𝑑
𝐶 𝐶𝑑

] = 𝑛𝑥 + 𝑛𝑦 
(8.24) 

Here 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑑 are the number of states, outputs and disturbance variables of the system. 

The linear MPC (LQ optimal control structure + receeding horizon strategy) should be constructed 

with the augmented model of Equation 8.23 and 8.24. If the conditions for detectability holds 

true, then the resulting model predictive controller should produce offset free outputs i.e. integral 

action. 

ii) [5%] Now if we assume that the disturbances acting on the system are unknown and not 
directly measurable, can we still design an MPC with integral action? If yes, describe how this 
can be done.  

Suggested solution: 

Yes we can still design an MPC with integral action even if the disturbances acting on the system are not 

measured or are unknown. From equation 8.23 and 8.24 it is clear that if one or some of the elements of the 

extended states 𝑥̃𝑘 are not measurable, then they should be estimated assuming that they are observable. 

Here a standard Kalman filter algorithm for linear system can be used to estimate the augmented states 𝑥̃𝑘 =

[
𝑥𝑘
𝑑𝑘
] which also includes the disturbances as the added states to the system. The estimated extended states 

can then be fed to the MPC. 

Problem 3 

Tasks: 

i) (15%) Explain it in details how Lagrange multipliers can be used to reduce the size of the optimal 

control of equation (3). 
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Suggested solution: 

The optimal control problem taken into consideration is, 
𝑚𝑖𝑛
𝑧
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(70) 

 

 

where 𝑧 is a vector that contains the unknowns. The Lagrangian function 𝐹(𝑧, 𝜆) is defined as, 

F(z, λ) = f(z) + λT(Aϵz − bϵ) (71) 

where λ is known as Lagrange multiplier. The reduced optimal control problem (without equality 

constraints) is then, 

𝑚𝑖𝑛
(𝑧, 𝜆)
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1
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𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 + λT(Aϵz − bϵ) 

(72) 

To find the minimum of unconstrained problem of equation (72), we simply take the first derivative and 

equate them to zero. Also note that equation (72) has two unknown variables to be optimized which are z 

and λ so we need to take partial derivative as, 

∂F(z, λ)
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(74) 

Equating (73) and (74) to zero for minimum we get, 
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Aϵz + 0λ = b∈, 

(75) 

(76) 

 

 

Arranging (75) and (76) in compact form we get, 
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(77) 

 

Equation (77) is a linear algebraic equation and can be solved to find the optimal solution of the original 

problem of (70). Assuming that M is invertible, optimal solution  z̃∗ = M−1b̃∈. In another form (which is 

also an accepted answer) is, z̃∗ = (MTM)−1MTb̃∈. 

  

ii) (5%) What happens to the size of the unknowns to be optimized after the reduction? Comment about 

it. 

Suggested solution: 

The size of the unknowns to be optimized is increased. Originally, the variables to be optimized were only 

z. Using Lagrangian functions, the variables to be optimized are z and λ (in addition). 

 

 

 


