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Suggested Solutions 2024 

 

 

Problem 1 
 
MPC can also be used as an optimal controller to control a process where multiple objectives have to be 
taken into consideration simultaneously. Let us assume that you are working with a process where there 
are three objectives functions that are conflicting to each other. 
Let us denote the three objectives as 𝐹1(𝑥), 𝐹2(𝑥) and 𝐹3(𝑥). Here 𝑥 are the decision variables. Assume 
that objective function 𝐹2(𝑥) is the most important objective function, 𝐹3(𝑥) is the second most important 
objective, and 𝐹1(𝑥) is the least important objective function among these three conflicting objective 
functions. 

Tasks: 

i) [15%]  How would you used the hierarchical method to solve this multi objective control 
problem? Explain and show mathematical formulation. 

Suggested Solution: 

With the lexicographic or hierarchical method, the objective functions are arranged in the order of 
importance with the highest prioritized objective at the top. From the problem description this will be 
[𝐹2(𝑥), 𝐹3(𝑥), 𝐹1(𝑥)]. One after the other, each objective function is minimized starting with the most 
important one and proceeding forward according to the order of importance. At any given step, the 
prioritized objectives form inequality constraints in order not to sacrifice its performance. 

Step1: 

Since 𝐹2(𝑥) is the most important objective, in the first step, this objective function is minimized as, 
𝑚𝑖𝑛
𝑥
     𝐹2(𝑥) 

 

𝑠. 𝑡       
          < 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 > 

(1) 

 

 

 

(2) 

Here <process constraints> denote any equality or inequality constraints associated with the problem. 
Now after solving this optimization problem of step (1) we obtain optimal values 𝑥∗ and corresponding 
optimal functional value 𝐹2(𝑥

∗)  

Step2: 

Now since 𝐹3(𝑥) is the second most important objective, in the second step, this objective function is 
minimized. However, an extra constraint (equation (5)) must be added so that all the prioritized objective 
function appearing above it (in this case 𝐹2(𝑥)) do not have to sacrifice it’s optimal performance. 
𝑚𝑖𝑛
𝑥
     𝐹3(𝑥) 

 

𝑠. 𝑡       
          < 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 > 

           𝐹2(𝑥) ≤ 𝐹2(𝑥
∗) 

(3) 

 

 

 

(4) 

(5) 
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After solving this optimization problem given by equations (3), (4) and (5), we will get a new optimal values 
of the decision variable 𝑥∗ and corresponding optimal functional value 𝐹3(𝑥

∗). 

Step3: 

Finally since 𝐹1(𝑥) is the least important objective, in the last step, this objective function is minimized. 
However, two extra constraint (equation (5), and equation (6)) must be added so that all the prioritized 
objective function appearing above it (in this case 𝐹2(𝑥) and 𝐹3(𝑥)) do not have to sacrifice their optimal 
performance. 
𝑚𝑖𝑛
𝑥
     𝐹3(𝑥) 

 

𝑠. 𝑡       
          < 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 > 

           𝐹2(𝑥) ≤ 𝐹2(𝑥
∗) 

           𝐹3(𝑥) ≤ 𝐹3(𝑥
∗) 

(6) 

 

 

 

(7) 

(8) 

(9) 

Finally after solving the last optimization problem given by equations (6), (7), (8) and (9), we will once again 
get a new optimal value of the decision variable 𝑥∗. This will be the final optimal value of the whole multi-
objective optimization problem. To make an MPC, all these three steps should be re-evaluation at each 
sampling time and the standard receeding horizon strategy has to be used. 

ii) [5%] Explain briefly a potential drawback or disadvantage of this method. 

Suggested Solution: 

A potential drawback of this method is that normally objectives with lower priorities will not be properly 

satisfied. Further, we obtain one optimum for a given lexicographic order. 

Problem 2 

With the Kronecker product formulation of an LQ optimal control problem, the size of the control problem 
can easily become very large.  The size of the control problem can be reduced by elimination of the equality 
constraints.  

Let us consider an LQ optimal control problem expressed in the standard QP form as, 

𝑀𝑖𝑛
𝑧
   
1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 

subject to                     
𝐴𝑒𝑧 =  𝑏𝑒
𝐴𝑖𝑧 ≤  𝑏𝑖
𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻

          

}
 
 

 
 

 (1) 

The problem given by equation (1) can be converted into a QP problem of the reduced form as, 

𝑚𝑖𝑛
𝑧2
   
1

2
 𝑧2
𝑇  𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖

      } (2) 

Tasks 
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(i) [15%] Explain and show in detail how QR factorization can be used to eliminate the equality 
constraints in order to reduce the size of the optimal control problem. Include all necessary 
calculations and equations. 

Suggested solution: 

The idea here is to use the linear equality constraint 𝐴𝑒𝑧 =  𝑏𝑒 present in the original problem to split the 
unknown variables 𝑧 into two parts: "basic variables" and "non-basic variables". Using the equality 
constraint, the basic variables are expressed in terms of the non-basic variables. The basic variables (which 
are the functions of non-basic variables) are then substituted in the objective function of equation. The 
objective function will then only have the non-basic variables. This will also result in the elimination of the 
linear equality constraint & we will obtain the reduced problem. 

Let us consider the linear equality constraint as, 

𝐴𝑒𝑧 =  𝑏𝑒  (15) 

Let us assume equation (15) has 𝑛 number of equations i.e. it is a compact form of 𝑛 linear equality 
constraints. Then, 𝐴𝑒𝜖𝑅

𝑛×𝑛𝑧  , where 𝑛𝑧 is the total number of unknown variables that are listed in vector 
𝑧.  Let the rank of 𝐴𝑒 be 𝑟 i.e. 𝑟 =  rank(𝐴𝑒). Rank of a matrix gives you the number of linearly independent 
rows of the matrix, here in this case, the number of independent linear equality constraints. 

Now, let us decompose 𝐴𝑒 into the product of 𝑄 and 𝑅 as, 

𝐴𝑒 = 𝑄𝑅 

where 𝑄 = orthogonal matrix i.e. 𝑄𝑇𝑄 = 𝐼 and 𝑄ϵℝ𝑛×𝑛,  𝑅 = upper triangular matrix, 𝑅𝜖ℝ𝑛×𝑛𝑧. 

Furthermore, 𝑅 can be written as, 

𝑅 = [
𝑅1 𝑅2
0 0

] (16) 

where, 𝑅1𝜖ℝ
𝑟×𝑟 is full rank i.e. rank (𝑅1) =  𝑟 =  rank(𝐴𝑒) and 𝑅2𝜖ℝ

𝑟×(𝑛𝑧−𝑟) is the upper right 
submatrix of 𝑅. 

Note that the 0’s under 𝑅1 has the size of (𝑛 − 𝑟) × 𝑟 and the 0’s under 𝑅2 has the size of (𝑛 − 𝑟) × (𝑛𝑧 −
𝑟). So, we can write the linear equality constraints of equation (15) as, 

𝐴𝑒𝑧 =  𝑏𝑒 

𝑄𝑅𝑧 =  𝑏𝑒 

Multiplying both sides by 𝑄𝑇 we get, 

𝑄𝑇𝑄⏟
𝐼

𝑅𝑧 = 𝑄𝑇  𝑏𝑒⏟  
𝑏̅∈

 

𝑅𝑧 =  𝑏̅𝑒 (17) 

Now let us split the vector of unknowns 𝑧 into 𝑧 = [
𝑧1
𝑧2
] or 𝑧𝑇 = (𝑧1

𝑇  , 𝑧2
𝑇) 

where, 𝑧1 are the basic variables of size (𝑟 × 1) and 𝑧2 are the nonbasic variables of size (𝑛𝑧 − 𝑟) × 1. 
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Also let us split be into two parts as, 

𝑏𝑒 = [
𝑏𝑒,1

𝑏𝑒,2
] (18) 

where, 𝑏𝑒,1𝜖ℝ
𝑟×1  and 𝑏𝑒,2𝜖ℝ

(𝑛−𝑟)×1 

Then we have from equations (4.24, 4.25 & 4.26) we get, 

[
𝑅1 𝑅2
0 0

] [
𝑧1
𝑧2
]= [

𝑏𝑒,1

𝑏𝑒,2
] (19) 

From equation 19 we get, 

𝑅1𝑧1 + 𝑅2𝑧2 = 𝑏𝑒,1 

Since 𝑅1 is full ranked, it is invertible. Then we can express 𝑧1 (the basic variables) in terms of 𝑧2 (the non-
basic variables) as, 

𝑧1 = 𝑅1
−1 (𝑏𝑒,1 − 𝑅2𝑧2) (20) 

So, in summary we have, 

𝑧 = [
𝑧1
𝑧2
] =  [𝑅1

−1 (𝑏𝑒,1 − 𝑅2𝑧2)
𝑧2

] =  [
𝑅1
−1 𝑏𝑒,1 − 𝑅1

−1𝑅2𝑧2
0 + 𝑧2

] 

↓ 

 𝑧 = [
𝑧1
𝑧2
] =  [𝑅1

−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 (21) 

The sizes of zeros and identity matrix in equation (21) are: 0 → (𝑛𝑧 − 𝑟) × 1 and  𝐼 →  (𝑛𝑧 − 𝑟) ×
(𝑛𝑧 − 𝑟). 

Now let us substitute 𝑧 from equation (21) in the original problem given by equation (4.13) i.e. 

 
1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 can be written as, 

1

2
 ([𝑅1

−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2)
𝑇

 𝐻 ([𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2)

+ 𝑐𝑇 ([𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) 

(22) 

We can see that equation (22) has only the non-basic variable 𝑧2.  

Comment: Many students do not show the intermediate calculations for 𝑯̃, 𝒄̃ and 𝑲̃ as shown below 
from equation (22a) to (22e).  

To solve equation (22) we can make use of the matrix transpose properties. If for example 𝐴 and 𝐵 are 
two matrices then, matrix transpose properties say that (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 and (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇. 

Then we have from equation (22), 
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1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

+ 𝑧2
𝑇 [−𝑅1

−1 𝑅2
𝐼

]
𝑇

)𝐻 ([𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) + 𝑐
𝑇 [𝑅1

−1 𝑏𝑒,1
0

]

+ 𝑐𝑇 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 

(22a) 

We can further solve equation 22(a) as, 

1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

] + [𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 + 𝑧2
𝑇 [−𝑅1

−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

]

+ 𝑧2
𝑇 [−𝑅1

−1 𝑅2
𝐼

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) + 𝑐
𝑇 [𝑅1

−1 𝑏𝑒,1
0

] + 𝑐𝑇 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 

(22b) 

 Then we can further go on solving 22(b) as, 

1

2
(𝑧2

𝑇 [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) +
1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

]) + 𝑐𝑇 [𝑅1
−1 𝑏𝑒,1
0

]

+
1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 + 𝑧2
𝑇 [−𝑅1

−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

])

+ 𝑐𝑇 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 

(22c) 

We know that 𝐻 is a symmetric diagonal matrix, i.e. 𝐻𝑇 = 𝐻. Then if 𝐴 and 𝐵 are any two matrices, then 
from matrix transpose property, we get, 𝐴𝑇𝐻 𝐵 = 𝐵𝑇𝐻 𝐴. Thus the second term of the “green coloured” 

expression 𝑧2
𝑇 [−𝑅1

−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

] can also be written as [𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2. Then we have 

from equation (22c), 

1

2
(𝑧2

𝑇 [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) +
1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

]) + 𝑐𝑇 [𝑅1
−1 𝑏𝑒,1
0

]

+ [𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 + 𝑐
𝑇 [−𝑅1

−1 𝑅2
𝐼

] 𝑧2 

(22d) 

From the “green coloured” part of equation 22(d) we have 𝑧2 as common. Then we have, 

1

2
(𝑧2

𝑇 [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

]
⏟                

𝐻̃

 𝑧2) +
1

2
([𝑅1

−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

]) + 𝑐𝑇 [𝑅1
−1 𝑏𝑒,1
0

]
⏟                            

𝐾̃

+ ([𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] + 𝑐𝑇 [−𝑅1
−1 𝑅2
𝐼

]
⏟                          

𝑐̃𝑇

 ) 𝑧2 

(22e) 

 

In compact form, equation (22e) can be expressed as, 

𝑚𝑖𝑛
𝑧2
,   
1

2
 𝑧2
𝑇  𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2 + 𝐾 (23) 

where, 
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𝐻̃ =  [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1𝑅2
𝐼

]  (24) 

 

𝑐̃𝑇 = [𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [−𝑅1
−1 𝑅2
𝐼

] + 𝑐𝑇 [−𝑅1
−1 𝑅2
𝐼

]  

Or by using transpose property of matrices (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇  and (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇   

𝑐̃ =  [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

]  + [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝑐 

(25) 

 

𝐾 =
1

2
[𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

] + 𝑐𝑇𝑅1
−1 [ 𝑏𝑒,1

0
] = constant (26) 

Since  𝐾 is constant, it can be safely removed from the optimization problem. Then the objective of the 
reduced problem is, 

𝑚𝑖𝑛
𝑧2
   
1

2
 𝑧2
𝑇  𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2 

At this stage we have eliminated the equality constraint. But the original optimization problem also has 
linear inequality constraints and bounds. 

For the inequality constraints we have, 

𝐴𝑖𝑧 ≤ 𝑏𝑖 

Substituting 𝑧 from equation (21) in this above equation we get, 

𝐴𝑖  ([
𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) ≤ 𝑏𝑖 

𝐴𝑖 [
−𝑅1

−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑏𝑖 − 𝐴𝑖 [
𝑅1
−1 𝑏𝑒,1
0

] (27) 

For the bounds, we have , 

𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻 

Substituting 𝑧 from equation (21) in this above equation we get, 

𝑧𝐿 ≤ [
𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻 

𝑧𝐿 − [
𝑅1
−1 𝑏𝑒,1
0

] ≤ [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

] (28) 

Equation (28) can be written separately using two equations (i.e. bounds can be expressed as two 
inequality constraints) as, 
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− [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ −𝑧𝐿 + [
𝑅1
−1 𝑏𝑒,1
0

] (29) 

[−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

] (30) 

Equations (28), (29) & (30) can be written in compact form as,  

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖 

where, 

𝐴̃𝑖 = 

[
 
 
 
 
 𝐴𝑖 [

−𝑅1
−1 𝑅2
𝐼

]

− [−𝑅1
−1 𝑅2
𝐼

]

[−𝑅1
−1 𝑅2
𝐼

]
]
 
 
 
 
 

  ,  𝑏̃𝑖 = 

[
 
 
 
 
 
 𝑏𝑖 − 𝐴𝑖 [

𝑅1
−1 𝑏𝑒,1
0

]

−𝑧𝐿 + [
𝑅1
−1 𝑏𝑒,1
0

]

𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

]
]
 
 
 
 
 
 

 

 

(31) 

Thus, the original problem has been formulated as the reduced problem as, 

𝑚𝑖𝑛
𝑧2
   
1

2
 𝑧2
𝑇  𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2 (32) 

subject to,  

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖 (33) 

where 𝐻̃ is given by equation (24), 𝑐̃ is given by equation (25), 𝐴̃𝑖 and 𝑏̃𝑖 are given by equation (31). 

The reduced problem given by equations (32 & 33) does not have equality constraints but it is equivalent 
to the original problem. We can solve the reduced problem of equations (32 & 33) using qpOASES solver 
in Simulink or quadprog solver in MATLAB.  

Let us assume that the optimal values returned by the solver be denoted by 𝑧2
∗ . After finding the optimal 

values 𝑧2
∗ of the reduced optimization problem of (32 & 33), we can find the optimal values of the basic 

variables as, 

𝑧1
∗ = 𝑅1

−1( 𝑏𝜖,1 − 𝑅2𝑧2
∗) (34) 

Finally, we have the optimal values of the unknown variables as,  z∗ = [
z1
∗

z2
∗] 

(ii) [5%] What are the advantages and the disadvantages of reducing the size of an optimal control 
problem. 

Suggested Solution: 

When the size of an optimal control problem is reduced the control problem becomes compact and is 
usually solved faster by an optimization solver which does not support sparsity. For embedded systems, 
such a compact optimal control problem is advantageous. This is because of the lack of higher 
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computational power on embedded systems. So the compact is the LQ optimal control problem, the faster 
it can be solved in an embedded system. However, reduced control problem size loses sparsity, and solvers 
that support sparsity will not be able to take the benefit of it. 

 

Problem 3 
The design of a standard MPC formulation cannot guarantee feasibility, i.e. it cannot be guaranteed that 
a feasible solution always exists. However, problems caused by infeasibility can be improved. A 
mathematical formulation of a linear MPC problem with output constraints is shown below,  
𝑚𝑖𝑛
𝑧
     

1

2
𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧, 

 

𝑠. 𝑡       
          𝐴𝜀𝑧 = 𝑏𝜀,   
          𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝐻 

(3) 

 

 

 

(4) 

(5) 

where 𝑧 is a vector that contains the unknowns or decision variables. Equation (3) is the objective 

function, equation (4) is the linear equality constraints and equation (5) is the output constraints or bounds 

on the outputs. 

Tasks: 

i) (15%) Explain in details how you can make use of slack variables to improve the feasibility of the 

control problem. Show also the mathematical formulation of the relaxed problem. 

Suggested solution: 

The presence of output constraints in an optimization problem may lead to the problem being infeasible 

under certain operating conditions. When problem becomes infeasible, the optimizer will not be able to find 

out any solution to the optimization problem and hence may either crash or produce garbage results. A 

simple way to handle infeasibility due to the presence of output constraints is to make use of the slack 

variables to formulate a more relaxed problem. For this the lower and the upper bounds of the output 

variables can be dynamically changed or adjusted to bring the problem back to feasibility. Thus equation 

(5) from the problem description which is the output constraint can be modified as, 

          𝑦𝐿 − 𝑆𝐿 ≤ 𝑦 ≤ 𝑦𝐻 + 𝑆𝐻 (3a) 

Here the variables 𝑆𝐿 and 𝑆𝐻 are called the slack variables. The values for these slack variables cannot be 

chosen arbitrarily. Relaxation of the constraints should be avoided if possible, but if necessary then the 

constraints should be relaxed as gently as possible so that the constraint violation which often is temporary 

is as lower as possible. Thus the slack variables have to be adjusted dynamically. For this, these slack 

variables can be considered to be extra decision variables for the optimization problem in addition to the 

already existing decision variable 𝑧. 

In addition, the use of the slack variables should be penalized so that they are only used when it is utmost 

necessary, i.e. when the optimization problem tends to run into infeasibility. Under normal condition, the 

use of slack variables should be avoided. For this to happen, the objective function should contain the 

penalization of the slack variables as an additional term. 

Thus, to improve the feasibility, the original problem can be reformulated as shown below. 

𝑚𝑖𝑛
(𝑧, 𝑆𝐿 , 𝑆𝐻)

     
1

2
𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 + 𝛽𝐿𝑆𝐿 + 𝛽𝐻𝑆𝐻, 

(3b) 
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𝑠. 𝑡       
          𝐴𝜀𝑧 = 𝑏𝜀,   
          𝑦𝐿 − 𝑆𝐿 ≤ 𝑦 ≤ 𝑦𝐻 + 𝑆𝐻 

 

 

(3c) 

(3d) 

As can be seen from the reformulated problem, the slack variables are added to the list of decision variables. 

The objective function is modified to introduce penalty on the slack variables and the output constraints is 

relaxed using the slack variables. 𝛽𝐿 and 𝛽𝐻 are the weighting matrices for the slack variables. The optimizer 

will appropriately find a suitable value for 𝑆𝐿  and 𝑆𝐻 such that the constraints are violated in the most gentle 

manner. Usually, the values of 𝑆𝐿  and 𝑆𝐻 will be zero if no output constraints are being violated and the 

problem is feasible. The slack variables should be non-zero if and only if the problem tends to run into 

infeasibility. 

ii) (5%) Explain in your own words concept about hard and soft constraints. Give some examples of 

each. 

Suggested Solution: 
(i) Hard constraint: 

Constraints that have to be always obeyed strictly are the hard constraints. A system must adhere to hard 

constraints. Usually constraints on the input variables can be posed as hard constraints. For example: the 

opening of a choke valve in a pipeline should be within 0 & 100% i.e. 0≤ 𝑢 ≤ 100 is a hard constraint. This 

constraint cannot be violated at any cost. The valve cannot be opened more than 100% & cannot be closed 

below 0% (the physical structure & the operational condition of the choke valve strictly puts this limit). Any 

value of 𝑢 outside 0 ≤ 𝑢 ≤ 100 is simply not possible/feasible. Other examples of hard constraints can be: 

capacity of an equipment, limits on actuators, etc. 

 

(ii) Soft constraints: 

Constraints which are fulfilled if possible, but if it is not possible, disobeying or breaking the constraints is 

also allowed are the soft constraints. However, violating the constraint should be made as gentle as possible. 

With soft constraints, the system tries to adhere or stick to it, but the system can violate the constraints if 

necessary in order to find a feasible solution (but of course a solution that complies with the hard 

constraints). 

For example: Process outputs like flow rate, temperature, pressure etc. (unless they are too serious to disobey 

or too serious to violate) can be regarding as soft constraints depending on the operating conditions. Also 

note that when disobeying or breaking the constraints, you may have to compromise some other things like 

quality of the product. Violating the soft constraint is also known as relaxing the constraints. The goal during 

constraint relaxation is to minimize the total amount of violation of all the soft constraints 
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