
1

Lecture notes for the course IIA 4117: Model Predictive Control

Roshan Sharma

October 2019

2

Foreword

This lecture note is intended for the master students for the course IIA4117, Model Predictive

Control at the University College of Southeast Norway. I have tried to explain the main concepts

in a simple way so that the students can follow them well. The lecture note is far from being

complete and will be continuously updated throughout the semester. It is therefore highly

recommended that students attend the lectures regularly to follow up the updates. It may contain

errors and typos. If the students find any, it would be useful if you can point it out during the

lecture or let me know by email.

Roshan Sharma

Associate Professor, Department of Electrical Engineering, IT and Cybernetics

University of South-Eastern Norway, Porsgrunn

Email: roshan.sharma@usn.no

3

Mathematical model of a
process

Simulation
(without control)

Openloop simulaiton
(usually performed to

observe/study dynamic
behavior of the process
with changes in control

inputs and/or other
parameters)

Linear Quadratic
optimal control

(LQ)

Nonlinear optimal
control

(NL)

Mathematical
Optimization

problems

Kronecker product
formulation

Nonlinear optimization
problem formulation

Solved using
 qpOASES solver

in Simulink

Solved using
 fmincon solver

in MATLAB

Linear model of
the process is

used

Nonlinear
model of the

process is
used

Apply:
Receding/Sliding
horizon strategy

Linear MPC:
Linear process model
Quadratic objective

Linear Constraints

Nonlinear MPC:

nonlinear process
model
objective

Constraints

at least one
(or more)
are
nonlinear
functions

Project:
Linear MPC:
Quadratic objective
Linear Constraints

Development and
implementation of linear
MPC to real process

Tree diagram of the main ingredients of the course

State estimation:
Why and how can we
use state estimators
along with MPC

(Kalman filter)

4

Lecture 1

1.1 Fore Word:

If you split the term "Model based predictive control" into its meaningful parts, we obtain the

following two distinctive meanings.

(i) Model based:

As the name implies, a model of the process is needed. The model of the process can be

developed and represented in various forms suitable for control.

(ii) Predictive control:

Prediction of the future values of the process outputs and the states from the current time

is performed. For the prediction, of course, the real plant/process cannot be made to operate

in the future time steps from the current time, but the model of the process being controlled

can be easily simulated to obtain the process outputs and the states for the future time steps.

Q) What to do with these future time step values?

The process outputs and the states predicted for the future time steps by using the process

model are used to formulate an optimization problem which is an optimal control problem.

The nature of the optimization problem can vary from tracking a set point to more complex

economic objectives. This optimization problem is then solved to obtain the optimal values

of the control actions. We can use these control actions to achieve the desired control

objective.

With MPC, the procedure of looking into the future using the process model followed by

formulation and solution of an optimization problem is repeated again and again for each

time step. This creates a feedback action and is commonly known as a sliding horizon

strategy.

In this course, we will talk about predictive control in detail throughout the semester. But at first,

let us look at the different kinds/types of models that are more often used for predictive control.

1.2 Model Types:

The algorithm for MPC is generally implemented in digital devices like computers,

microcontrollers and other forms of microprocessors. This ultimately leads us to the fact that the

model of the process (being controlled) should also be in discrete form. In general, discrete time

models (both linear and nonlinear) are expressed in many different ways.

For this course, we consider only a few of them. We do not go into details about the development

of these models using for e.g. conservation laws like mass, momentum, energy, specie balances

etc. (as this is not within the focus of the course) but simply see the possibilities of using these

models for designing a model predictive controller. Thus, we begin with the assumption that the

model of the process is already available to us.

5

A brief description of some of the model types that are well suited for MPC are given below.

a) Non-linear discrete time state space models:

𝑥𝑘+1 = 𝑓(𝑡𝑘, 𝑥𝑘, 𝑢𝑘) → State Equation

𝑦𝑘 = 𝑔(𝑡𝑘, 𝑥𝑘, 𝑢𝑘) → Measurment Equation

Here, 𝑥𝜖ℝ𝑛𝑥 = [𝑥1, 𝑥2, 𝑥3, ……………𝑥𝑛𝑥]
𝑇
 are the states of the system, 𝑢𝜖ℝ𝑛𝑢 =

[𝑢1, 𝑢2, 𝑢3, ……………𝑢𝑛𝑢]
𝑇

 are the control inputs and 𝑦𝜖ℝ𝑛𝑦 = [𝑦1, 𝑦2, 𝑦3, ……………𝑦𝑛𝑦]
𝑇

 are

the outputs of the system. The term 𝑛𝑥 represents the number of states, 𝑛𝑢 the number of control

inputs and 𝑛𝑦 the number of measurements of the system. For single input single output system

(SISO), 𝑛𝑢 = 1 and 𝑛𝑦 = 1. For MIMO1 (multi input multi output), 𝑛𝑢 > 1 and 𝑛𝑦 > 1. One of

the biggest advantage of using MPC is that it can be used for a MIMO system effectively.

 𝑓 = [𝑓1, 𝑓2, 𝑓3, ……………𝑓𝑛𝑥]
𝑇
 are the nonlinear state equations and 𝑔 =

[𝑔1, 𝑔2, 𝑔3, ……………𝑔𝑛]
𝑇 are the nonlinear measurement equations expressed as vectors. The

state equations and the measurement equations generally make up the mathematical model of the

process.

b) Linear discrete time state space model:

The linear discrete time state space model is written as,

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 + 𝑣𝑘 → State Equation

𝑦𝑘 = 𝐶𝑑𝑥𝑘 + 𝐷𝑑𝑢𝑘 + 𝑤𝑘 → Measurment Equation

Here, 𝐴𝑑 , 𝐵𝑑, 𝐶𝑑 and 𝐷𝑑 are the system matrices of appropriate sizes with the subscript 𝑑 meaning

discrete. 𝐴𝑑𝜖ℝ
𝑛𝑥×𝑛𝑥, 𝐵𝑑𝜖ℝ

𝑛𝑥×𝑛𝑢, 𝐶𝑑𝜖ℝ
𝑛𝑦×𝑛𝑥 and 𝐷𝑑𝜖ℝ

𝑛𝑦×𝑛𝑢. Here, 𝑣𝑘𝜖ℝ
𝑛𝑥 and 𝑤𝑘𝜖ℝ

𝑛𝑦 are

random variables with zero mean and certain variance. 𝑣𝑘 is the process noise and 𝑤𝑘 is the

measurement noise. In addition, it is assumed that 𝑣𝑘 and 𝑤𝑘 are uncorrelated (stochastically

independent) i.e. 𝑐𝑜𝑟𝑟[𝑣(𝑘),𝑤(𝑗) = 0 for all 𝑘 and 𝑗]. In other words, this implies that the

random disturbances affecting the measurements have nothing to do with the randomness in the

states (or the process) itself.

For designing a linear MPC, the linear discrete time state space model is used. This is the model

type that has the main focus in this course.

c) Input-output models/polynomial models.

Input-output models or the polynomial models are mathematical models for the outputs of a

process. As the name implies, with the polynomial models, the current output is dependent on the

values of the past outputs and/or the past inputs of the plant/process. The notion or concept of

states of a process are not valid or used with the input-output models. They can further be

categorized as:

1 A single PID controller can control only one output by using one control input at a time. A single MPC can be used

to control multiple outputs by using multiple inputs at a time.

6

(i) Non-linear input/output models:

The current output is some nonlinear combination of the past outputs and/or past inputs of

the process as,

𝑦𝑘 = ℎ (𝑦𝑘−1, 𝑦𝑘−2, ……………… . . 𝑦𝑘−𝑚𝑦 , 𝑢𝑘−1, 𝑢𝑘−2, ……………… . . 𝑢𝑘−𝑚𝑢)

(ii) Linear input/output models:

The current output is a linear combination of the past outputs and/or past inputs of the process.

An example is the ARX (Auto Regressive Exogenous) model which is written as,

𝑦𝑘 = −𝐴1𝑦𝑘−1−𝐴2𝑦𝑘−2 −⋯⋯⋯− 𝐴𝑚𝑦𝑦𝑘−𝑚𝑦+𝐵1𝑢𝑘−1 + ………+ 𝐵𝑚𝑢𝑢𝑘−𝑚𝑢

Here, 𝑚𝑦 is the number past outputs and 𝑚𝑢 is the number of past inputs. 𝐴1, 𝐴2, ⋯ , 𝐴𝑚𝑦

and 𝐵1, 𝐵2, ⋯ , 𝐵𝑚𝑢 are the coefficients of the past outputs and inputs respectively.

We can further express it in a compact way using a delay operator 𝑞 such that

 𝑞−1𝑦(𝑘) = 𝑦𝑘−1

 𝑞−2𝑦(𝑘) = 𝑦𝑘−2

⋮

and so on.

Similarly, 𝑞−1𝑢(𝑘) = 𝑢𝑘−1, 𝑞−2𝑢(𝑘) = 𝑢𝑘−2 and so on. Then we have,

𝑦𝑘 + 𝐴1𝑦𝑘−1+𝐴2𝑦𝑘−2 + ……… .+𝐴𝑚𝑦𝑦𝑘−𝑚𝑦 = 𝐵1𝑢𝑘−1 + ………+ 𝐵𝑚𝑢𝑢𝑘−𝑚𝑢

𝑦𝑘 + 𝐴1𝑞
−1𝑦(𝑘)+𝐴2𝑞

−2𝑦(𝑘) + …+ 𝐴𝑚𝑦
𝑞−𝑚𝑦𝑦(𝑘) = 𝐵1𝑞

−1𝑢(𝑘) + …+ 𝐵𝑚𝑢
𝑞−𝑚𝑢𝑢(𝑘)

𝐴(𝑞)𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘)

where,

𝐴(𝑞) = 1 + 𝐴1𝑞
−1 + 𝐴2𝑞

−2 +⋯+ 𝐴𝑚𝑦𝑞
−𝑚𝑦

𝐵(𝑞) = 𝐵1𝑞
−1 + 𝐵2𝑞

−2 +⋯+ 𝐵𝑚𝑢𝑞
−𝑚𝑢

d) Continuous time models

In general, if the model of the process is developed with the first principles modeling (using

conservation laws like mass balance, momentum balance and energy balance), then in most of the

cases, a non-linear continuous2 time state space model is obtained as,

𝑑𝑥

𝑑𝑡
= 𝑥̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) → State equations (1.1)

𝑦 = 𝑔 (𝑥, 𝑢, 𝑡) → Measurement equations (1.2)

Here, 𝑥𝜖ℝ𝑛𝑥 = [𝑥1, 𝑥2, 𝑥3, ………𝑥𝑛𝑥]
𝑇
 are the states, 𝑢𝜖ℝ𝑛𝑢 = [𝑢1, 𝑢2, 𝑢3, ……………𝑢𝑛𝑢]

𝑇

are the control inputs and 𝑦𝜖ℝ𝑛𝑦 = [𝑦1, 𝑦2, 𝑦3, ……………𝑦𝑛𝑦]
𝑇

 are the outputs of the process.

2 If the model of the process is in the continuous time domain, it should be discretized. One easy way of doing it in

Simulink is to use the integrator block. In MATLAB the ode solvers can be used or you can even make one of your

own integrator based on Euler backward/forward, Runge-Kutta 4 algorithm etc.

7

𝑓 = [𝑓1, 𝑓2, 𝑓3………𝑓𝑛𝑥]
𝑇
 is the vector with state equations and 𝑔 = [𝑔1, 𝑔2, ……………𝑔𝑛𝑦]

𝑇

 is

the vector with the measurement equations.

The continuous time linear state space model is of the form,

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) → State equations (1.3)

𝑦(𝑡) = 𝐶𝑐𝑥(𝑡) + 𝐷𝑐𝑢(𝑡) → Measurement equations (1.4)

Here, For a large part of this course, we will be using mechanistic models that is developed from

the first principles modeling technique. For designing linear MPC, the nonlinear mechanistic

model will be linearized to obtain a continuous time linear state space model. The continuous time

linear state space model will then be discretized to obtain the discrete time linear state space model.

Finally, model predictive control will be designed using the discrete time linear state space model.

Example:

e) Transfer function models

In addition, we can also have process models as transfer functions,

𝑦(𝑠) = 𝐻(𝑠)𝑢(𝑠) (1.5)

H(s) is the transfer function of the process with 𝑠 as the Laplace operator. The model of the process

given by (1.5) is a continuous time model in Laplace domain.

It is relatively easier and straightforward to handle a transfer function model. In MATLAB, the

Control Toolbox offers a wide range of functions to handle the transfer function model, which is

a linear model.

Example:

Let us consider the transfer function model of a distillation column as,

𝑦 = [

87.8

194𝑠 + 1
 ,

−(5227𝑠 + 432)

14550𝑠2 + 1045𝑠 + 5
108.2

194𝑠 + 1
 ,

−(9473𝑆 + 548)

14550𝑠2 + 1045𝑠 + 5

] 𝑢 (1.6)

The system taken into consideration has two inputs and two outputs. The MATLAB function 'tf'

allows us to form the transfer function of the model. There are other functions such as 'step',

'impulse', 'ss', 'c2d', 'ssdata' etc. in MATLAB. These can be used to handle and perform operations

with the transfer function model.

Illustration:

In MATLAB command window, the following commands can be entered to generate a transfer

function model.

8

>> num = {87.8, -[5227, 432]; 108.2, -[9473, 548]};

>> den = {[194, 1], [14550, 1045,5]; [194, 1], [14550, 1045, 5]};

>> dist = tf(num,den,'inputn',{'u1','u2'},'outputn',{'y1','y2'})

dist =

 From input "u1" to output...

 87.8

 y1: ---------

 194 s + 1

 108.2

 y2: ---------

 194 s + 1

 From input "u2" to output...

 -5227 s - 432

 y1: ----------------------

 14550 s^2 + 1045 s + 5

 -9473 s - 548

 y2: ----------------------

 14550 s^2 + 1045 s + 5

Continuous-time transfer function.

The step response of the transfer function model can be obtained as,

>> step(dist)

The step response plot is shown in Figure 1.

Figure 1: Step response plot of the transfer function model

9

From Figure 1, it can be understood that when there is a step change in the control input

𝑢1 (keeping 𝑢2 unchanged), both outputs 𝑦1 and 𝑦2 are increased. In contrast, when there is a

step change in the control input 𝑢1 (keeping 𝑢2 unchanged), both outputs 𝑦1 and 𝑦2 are

decreased.

The equivalent continuous time linear state space model of the transfer function model can be

obtained as,

>> SSdist = ss(dist)

SSdist =

 A =

 x1 x2 x3

 x1 -0.005155 0 0

 x2 0 -0.07182 -0.02199

 x3 0 0.01563 0

 B =

 u1 u2

 x1 1 0

 x2 0 2

 x3 0 0

 C =

 x1 x2 x3

 y1 0.4526 -0.1796 -0.9501

 y2 0.5577 -0.3255 -1.205

 D =

 u1 u2

 y1 0 0

 y2 0 0

Continuous-time state-space model.

Note: The students should try to use these functions to observe the step response, impulse response

and to convert continuous time model to discrete time model. Please see the MATLAB

documentation regarding the syntax for these functions. In addition, there are plenty of tutorials

and examples from Mathworks that the students can follow.

1.3 Conversion between Linear Model Representations:

For simpler cases or models, it is also possible to convert from one model representation to another

model representation analytically. Few examples are shown below:

Consider the linear time invariant state space model,

10

𝑥𝑘+1 =
1

2
𝑥𝑘 + 𝑢𝑘 (1.7)

𝑦𝑘 = 2𝑥𝑘 (1.8)

Let us consider a time shift operator 𝑞 such that 𝑞𝑥:= 𝑥𝑘+1, 𝑞
−1𝑥 = 𝑥𝑘−1 and so on.

The equivalent ARX model of (1.7 and 1.8) can be written as,

𝑞𝑥 =
1

2
𝑥 + 𝑢

𝑥 (𝑞 −
1

2
) = 𝑢

𝑥 =
1

𝑞 −
1
2

 𝑢

Then, 𝑦 = 2𝑥 =
2

𝑞 −
1
2

 𝑢 (1.9)

Equation (1.9) is an ARX model which can be easily converted to input-output model as,

(𝑞 −
1

2
) 𝑦 = 2𝑢

 𝑞𝑦 −
1

2
𝑦 = 2𝑢

𝑦𝑘+1 −
1

2
𝑦𝑘 = 2𝑢𝑘

 𝑦𝑘+1 =
1

2
𝑦𝑘 + 2𝑢𝑘

Similarly, an infinite impulse response model can also be developed from state-space model.

From (1.7) we have,

 𝑥𝑘 =
1

2
𝑥𝑘−1 + 𝑢𝑘−1

𝑥𝑘 =
1

2
 (
1

2
𝑥𝑘−2 + 𝑢𝑘−2) + 𝑢𝑘−1

𝑥𝑘 = (
1

2
)
2

𝑥𝑘−2 +
1

2
𝑢𝑘−2 + 𝑢𝑘−1

𝑥𝑘 = (
1

2
)
2

 (
1

2
𝑥𝑘−3 + 𝑢𝑘−3) +

1

2
𝑢𝑘−2 + 𝑢𝑘−1 = (

1

2
)
3

𝑥𝑘−3 + (
1

2
)
2

𝑢𝑘−3 +
1

2
𝑢𝑘−2 + 𝑢𝑘−1

 ⋮

 ⋮

𝑥𝑘 = (
1

2
)
𝑘

𝑥0 + ∑ (
1

2
)
𝑘−1−𝑖

 𝑢𝑖
𝑘−1
𝑖=0

When 𝑘 → ∞, 𝑥𝑘 ≈ ∑ (
1

2
)
𝑘−1−𝑖

 𝑢𝑖
𝑘−1
𝑖=0 and we get the infinite impulse response model.

From the output equation of (1.8) we have,

𝑦𝑘 = 2𝑥𝑘

𝑦𝑘 ≈ 2 ∑ (
1

2
)
𝑘−1−𝑖

 𝑢𝑖
𝑘−1
𝑖=0

11

yk ≈ 2uk−1 + 2(
1

2
) uk−2 + 2(

1

2
)
2

uk−3 +⋯+ 2(
1

2
)
k−1

𝑢0 (1.10)

1.4 Linearization of continuous time nonlinear model

For most of the real world processes, the models are dynamic, continuous time and nonlinear. Let

us first focus our attention to linear models. A nonlinear model can be linearized to obtain a linear

model around an equilibrium point.

Let the nonlinear model of the process be written as,

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (1.11)

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)) (1.12)

Here, 𝑥 are the states of the process, 𝑢 are the control inputs and 𝑦 are the outputs such that,

𝑥𝜖ℝ𝑛𝑥 = [𝑥1, 𝑥2, ……………𝑥𝑛𝑥]
𝑇

𝑢𝜖ℝ𝑛𝑢 = [𝑢1, 𝑢2, ……………𝑢𝑛𝑢]
𝑇

𝑦𝜖ℝ𝑛𝑦 = [𝑦1, 𝑦2, ……………𝑦𝑛𝑦]
𝑇

𝑓 = [𝑓1, 𝑓2, ……………𝑓𝑛𝑥]
𝑇
 are the state equations and 𝑔 = [𝑔1, 𝑔2, ……………𝑔𝑛𝑦]

𝑇

 are the

measurement equations.

We linearize the model around an assumed/given/known equilibrium point or operating point

(𝑥𝑜𝑝, 𝑢𝑜𝑝, 𝑦𝑜𝑝). Here, 𝑥𝑜𝑝 is the values of the states at the operating point, 𝑢𝑜𝑝 is the corresponding

control input values and 𝑦𝑜𝑝 is the corresponding value of the outputs. Let us assume that the actual

system dynamics are in the proximity of the nominal trajectories i.e. around the operating point.

i.e. 𝑥(𝑡) = 𝑥𝑜𝑝 + 𝛿𝑥(𝑡), 𝑢(𝑡) = 𝑢𝑜𝑝 + 𝛿𝑢(𝑡) and 𝑦(𝑡) = 𝑦𝑜𝑝 + 𝛿𝑦(𝑡)

Here, 𝛿𝑥(𝑡), 𝛿𝑢(𝑡) and 𝛿𝑦(𝑡) are small perturbations or changes.

Then, we have (𝑥(𝑡) − 𝑥𝑜𝑝) = 𝛿𝑥(𝑡) and (𝑢(𝑡) − 𝑢𝑜𝑝) = 𝛿𝑢(𝑡). The state equation is,

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (1.13)

Taylor series expansion of equation (1.13) about the operating point is,

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) +

𝜕𝑓

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

(𝑥(𝑡) − 𝑥𝑜𝑝) +
𝜕𝑓

𝜕𝑢
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

(𝑢(𝑡) − 𝑢𝑜𝑝) + 𝐻𝑂𝑇3

𝑑

𝑑𝑡
𝑥𝑜𝑝 +

𝑑

𝑑𝑡
𝛿𝑥(𝑡) = 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) +

𝜕𝑓

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑥(𝑡) +
𝜕𝑓

𝜕𝑢
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑢(𝑡) + 𝐻𝑂𝑇

3 HOT = Higher Order Terms

12

Here,
𝑑

𝑑𝑡
𝑥𝑜𝑝 = 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) i.e. functional values evaluated at the operating points. Neglecting

the higher order terms (HOTs),

𝑑

𝑑𝑡
𝛿𝑥(𝑡) =

𝜕𝑓

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑥(𝑡) +
𝜕𝑓

𝜕𝑢
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑢(𝑡)

𝛿𝑥̇(𝑡) = 𝐴𝑐𝛿𝑥(𝑡) + 𝐵𝑐𝛿𝑢(𝑡)

where,

𝐴𝑐 =
𝜕𝑓

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

= 𝐴𝑐
𝑛𝑥×𝑛𝑥 =

[

𝜕𝑓1
𝜕𝑥1

,
𝜕𝑓1
𝜕𝑥2

, ………
𝜕𝑓1
𝜕𝑥𝑛𝑥

𝜕𝑓2
𝜕𝑥1

,
𝜕𝑓2
𝜕𝑥2

, ………
𝜕𝑓2
𝜕𝑥𝑛𝑥

⋮
𝜕𝑓𝑛𝑥
𝜕𝑥1

,
𝜕𝑓𝑛𝑥
𝜕𝑥2

, ………
𝜕𝑓𝑛𝑥
𝜕𝑥𝑛𝑥]

|𝑥𝑜𝑝,𝑢𝑜𝑝

𝐵𝑐 =
𝜕𝑓

𝜕𝑢
 |
𝑥𝑜𝑝,𝑢𝑜𝑝

 = 𝐵𝑐
𝑛𝑥×𝑛𝑢 =

[

𝜕𝑓1
𝜕𝑢1

,
𝜕𝑓1
𝜕𝑢2

, ………
𝜕𝑓1
𝜕𝑢𝑛𝑢

𝜕𝑓2
𝜕𝑢1

,
𝜕𝑓2
𝜕𝑢2

, ………
𝜕𝑓2
𝜕𝑢𝑛𝑢

⋮
𝜕𝑓𝑛𝑥
𝜕𝑢1

,
𝜕𝑓𝑛𝑥
𝜕𝑢2

, ………
𝜕𝑓𝑛𝑥
𝜕𝑢𝑛𝑢]

|𝑥𝑜𝑝,𝑢𝑜𝑝

For the output equation:

Let us perform a Taylor series expansion of the output equation (1.12) about the operating points

(𝑥𝑜𝑝, 𝑢𝑜𝑝, 𝑦𝑜𝑝) such that the output dynamics is in close proximity of nominal trajectories, i.e.

𝑦(𝑡) = 𝑦𝑜𝑝 + 𝛿𝑦(𝑡) and 𝑦𝑜𝑝 = 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝).

We get,

𝑦𝑜𝑝 + 𝛿𝑦(𝑡) = 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝) +
𝜕𝑔

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

(𝑥(𝑡) − 𝑥𝑜𝑝) +
𝜕𝑔

𝜕𝑢
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

(𝑢(𝑡) − 𝑢𝑜𝑝) + 𝐻𝑂𝑇

Neglecting HOT,

𝛿𝑦(𝑡) =
𝜕𝑔

𝜕𝑥
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑥 +
𝜕𝑔

𝜕𝑢
|
𝑥𝑜𝑝, 𝑢𝑜𝑝

𝛿𝑢

So,

𝛿𝑦(𝑡) = 𝐶𝑐𝛿𝑥(𝑡) + 𝐷𝑐𝛿𝑢(𝑡)

where,

13

𝐶𝑐 =
𝜕𝑔

𝜕𝑥
 |
𝑥𝑜𝑝,𝑢𝑜𝑝

 = 𝐶𝑐
𝑛𝑦×𝑛𝑥 =

[

𝜕𝑔1
𝜕𝑥1

,
𝜕𝑔1
𝜕𝑥2

, ………
𝜕𝑔1
𝜕𝑥𝑛𝑥

𝜕𝑔2
𝜕𝑥1

,
𝜕𝑔2
𝜕𝑥2

, ………
𝜕𝑔2
𝜕𝑥𝑛𝑥

⋮
𝜕𝑔𝑛𝑦
𝜕𝑥1

,
𝜕𝑔𝑛𝑦
𝜕𝑥2

, ………
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥]

|𝑥𝑜𝑝,𝑢𝑜𝑝

𝐷𝑐 =
𝜕𝑔

𝜕𝑢
 |
𝑥𝑜𝑝,𝑢𝑜𝑝

 = 𝐷𝑐
𝑛𝑦×𝑛𝑢 =

[

𝜕𝑔1
𝜕𝑢1

,
𝜕𝑔1
𝜕𝑢2

, ………
𝜕𝑔1
𝜕𝑢𝑛𝑢

𝜕𝑔2
𝜕𝑢1

,
𝜕𝑔2
𝜕𝑢2

, ………
𝜕𝑔2
𝜕𝑢𝑛𝑢

⋮
𝜕𝑔𝑛𝑦
𝜕𝑢1

,
𝜕𝑔𝑛𝑦
𝜕𝑢2

, ………
𝜕𝑔𝑛𝑦
𝜕𝑢𝑛𝑢]

|𝑥𝑜𝑝,𝑢𝑜𝑝

The linear model finally can be written as,

𝛿𝑥̇(𝑡) = 𝐴𝑐𝛿𝑥(𝑡) + 𝐵𝑐𝛿𝑢(𝑡) (1.14)

𝛿𝑦(𝑡) = 𝐶𝑐𝛿𝑥(𝑡) + 𝐷𝑐𝛿𝑢(𝑡) (1.15)

It is very important to understand that the linear model given by Equation (1.14) and (1.15)

is in deviation variable form i.e. deviation from the operating point. When you simulate this

linear model, you will get the solution in the deviation variables 𝛿𝑥, 𝛿𝑢 and δ𝑦. To calculate

the actual value of the variables, it is necessary to add the operating point values to the

deviation variables i.e.

𝑥(𝑡) = 𝛿𝑥 + 𝑥𝑜𝑝

𝑦(𝑡) = 𝛿𝑦 + 𝑦𝑜𝑝

𝑢(𝑡) = 𝛿𝑢 + 𝑢𝑜𝑝

In special cases, if the operating point is at the origin i.e. 𝑥𝑜𝑝 = 0, 𝑢𝑜𝑝 = 0 & 𝑦𝑜𝑝 = 0, then 𝛿𝑥 =

𝑥(𝑡), 𝛿𝑦 = 𝑦(𝑡) & 𝛿𝑢 = 𝑢(𝑡). For such cases, the linear model in continuous time domain can be

written as,

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) (1.16)

𝑦(𝑡) = 𝐶𝑐𝑥(𝑡) + 𝐷𝑐𝑢(𝑡) (1.17)

The Jacobians
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑢
,
𝜕𝑔

𝜕𝑥
 ,
𝜕𝑔

𝜕𝑢
 can be calculated analytically for simple models. If analytical

calculation becomes difficult, numerical approximations can be used (e.g., finite difference

approximation).

Various operations can be performed to the linear model of by using the control system toolbox in

MATLAB. As an example, the deviation form of the continuous linear model given by Equations

(1.14) and (1.15) can be changed to a discrete time linear state space model in deviation form as,

𝛿𝑥𝑘+1 = 𝐴𝑑𝛿𝑥𝑘 + 𝐵𝑑𝛿𝑢𝑘 (1.18)

14

𝛿𝑦𝑘 = 𝐶𝑑𝛿𝑥𝑘 + 𝐷𝑑𝛿𝑢𝑘 (1.19)

Here, 𝛿𝑥𝑘 = (𝑥𝑘 − 𝑥𝑜𝑝), 𝛿𝑢𝑘 = (𝑢𝑘 − 𝑢𝑜𝑝) and 𝛿𝑦𝑘 = (𝑦𝑘 − 𝑦𝑜𝑝) are the deviation of the

discrete time states, control inputs and outputs from the operating point respectively. If the values

of the operating points are all at the origin i.e. if 𝑥𝑜𝑝 = 0, 𝑢𝑜𝑝 = 0 & 𝑦𝑜𝑝 = 0, then 𝛿𝑥𝑘 =

𝑥𝑘, 𝛿𝑦𝑘 = 𝑦𝑘 & 𝛿𝑢𝑘 = 𝑢𝑘. For such special case, the linear model in discrete time domain can be

written as,

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 (1.20)

𝑦𝑘 = 𝐶𝑑𝑥𝑘 + 𝐷𝑑𝑢𝑘 (1.21)

Here 𝐴𝑑, 𝐵𝑑, 𝐶𝑑 and 𝐷𝑑 are the system matrices in discrete time domain. The lower superscript 𝑑

denotes discrete time. These discrete time system matrices can be found by converting the

continuous time domain system matrices 𝐴𝑐, 𝐵𝑐, 𝐶𝑐 and 𝐷𝑐. For this, the MATLAB function

"c2dm" can be used as shown below.

[𝐴𝑑, 𝐵𝑑, 𝐶𝑑 , 𝐷𝑑] = c2dm(𝐴𝑐, 𝐵𝑐, 𝐶𝑐 , 𝐷𝑐 , 𝑇𝑠)

with 𝑇𝑠 being the sampling time.

1.5 Introduction to simulation of process models

One basic requirement to be able to use the model of the process for predictive control is to be able

to first simulate the model properly. Normally, the process model that we will encounter frequently

is a set of ordinary differential equations (ODEs) in addition to some algebraic equations. To find

the solution of ODEs, we need to integrate them i.e. 𝑥(𝑡) = ∫ 𝑥̇(𝑡) 𝑑𝑡. This means that the solution

𝑥(𝑡) is the integration of the differential equation 𝑥̇(𝑡). A very basic introduction to some of the

commonly used method for solving a set of ODEs is given below.

Let us consider a general continuous non-linear process model described by a set of ordinary

differential equations as,

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥̇(𝑡) = 𝑓(𝑥, 𝑡)

with 𝑥0, the initial values of the states as being known or given. Remember that to solve an ODE,

the initial value should be known.

We are interested in finding the solution 𝑥(𝑡) at discrete time steps for a given time interval when

the initial values are known. Many methods are available to find its solution. Some of the numerical

methods that can be used are given below. These methods for solving ODEs can be easily

implemented as MATLAB scripts. They are fixed time step ODE solvers where the time step ∆𝑡 is

fixed.

a) Forward Euler Method

𝑥̇(𝑡) ≈
𝑥𝑘+1− 𝑥𝑘

∆𝑡
 with ∆t being the time step size.

 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑡 𝑥̇(𝑡)

 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑡 𝑓(𝑥𝑘, 𝑡𝑘) for 𝑘 = 0,1,2, …… and 𝑥0 known

15

b) Backward Euler:

𝑥̇(𝑡) ≈
𝑥𝑘− 𝑥𝑘−1

∆𝑡
 with ∆t being the time step size.

 𝑥𝑘 = 𝑥𝑘−1 + ∆𝑡 𝑓(𝑥𝑘, 𝑡𝑘)

 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑡 𝑓(𝑥𝑘+1, 𝑡𝑘+1)  for 𝑘 = 0,1,2, …… and 𝑥0 known

This is an implicit equation and has to be solved iteratively to obtain 𝑥𝑘+1. For example,

Newtons method can be used to solve the implicit equation.

c) Trapezoidal Method

 𝑥𝑘+1 = 𝑥𝑘 +
1

2
∆𝑡 [𝑓(𝑥𝑘 , 𝑡𝑘) + 𝑓(𝑥𝑘+1, 𝑡𝑘+1)] for 𝑘 = 0,1,2,…… and 𝑥0 known

This is an implicit equation and has to be solved iteratively to obtain 𝑥𝑘+1. For example, Newton

method can be used to solve the implicit equation.

d) Range-Kutta Method (4th order)

 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑡 (
𝑘1+2𝑘2+2𝑘3+𝑘4

6
) for 𝑘 = 0,1,2, …… and 𝑥0 known

where,

𝑘1 = 𝑓(𝑥𝑘, 𝑡𝑘)

𝑘2 = 𝑓 (𝑥𝑘 + 𝑘1
∆𝑡

2
, 𝑡𝑘 +

∆𝑡

2
)

𝑘3 = 𝑓 (𝑥𝑘 + 𝑘2
∆𝑡

2
, 𝑡𝑘 +

∆𝑡

2
)

𝑘4 = 𝑓(𝑥𝑘 + 𝑘3∆𝑡, 𝑡𝑘 + ∆𝑡)

Example

Let us consider an inverted pendulum on a cart as shown in Figure 2. The position of the cart with

mass 𝑚2 is (𝑥2, 𝑦2 = 0), and the position of the pendulum mass 𝑚1 at angle 𝛼 and pendulum

length 𝑙 is (𝑥1, 𝑦1). The cart is pushed by force 𝐹 (control input), while the pendulum is influenced

by gravity 𝑔 and a friction torque 𝑇𝑓 = 𝑘𝑇𝑙
2|𝜔|𝜔, where 𝜔 =

𝑑𝛼

𝑑𝑡
 is the angular velocity in

𝑟𝑎𝑑/𝑠𝑒𝑐.

16

Figure 2: Inverted pendulum on a cart

A mechanistic model of the inverted pendulum system is given below.

𝑑𝛼

𝑑𝑡
= 𝜔

𝑑𝜔

𝑑𝑡
=

𝑚1+𝑚2

𝑚1
2𝑙2𝑐𝑜𝑠2𝛼−𝑚1

2𝑙2−𝑚1𝑚2𝑙2
(𝑘𝑇𝑙

2|𝜔|𝜔 −𝑚1𝑔𝑙 𝑠𝑖𝑛𝛼) +
𝑐𝑜𝑠𝛼

𝑚1𝑙𝑐𝑜𝑠2𝛼−𝑚1𝑙−𝑚2𝑙
(𝐹 + 𝜔2𝑚1𝑙 𝑠𝑖𝑛𝛼)

𝑑𝑥2
𝑑𝑡

= 𝑣2

𝑑𝑣2
𝑑𝑡

=
1

𝑚1𝑙 𝑐𝑜𝑠𝛼
(𝑚1𝑔𝑙 𝑠𝑖𝑛𝛼 − 𝑘𝑇𝑙

2|𝜔|𝜔 −𝑚1𝑙
2
𝑑𝜔

𝑑𝑡
)

Here, 𝛼,𝜔, 𝑥2 and 𝑣2 are the states of the system. The parameters of the system are: 𝑚1 =

1 kg,𝑚2 = 2 kg, 𝑙 = 1 m, 𝑘𝑇 = 0.1 kg/rad
2. Assume that the cart is not being controlled and

hence 𝐹 = 0.

In Simulink, to solve or simulate the ODEs that describes the pendulum model, various built-in

blocks can be directly utilized. An easy way to do so is to use the user defined MATLAB-function

block to write the right hand side of the differential equations. Then the integrator block can be

used to integrate or solve the ODEs. For details, please look the video(s) in the link below.

https://web01.usn.no/~roshans/mpc/videos/lecture1/openloop-simulation-pendulum.mp4

https://web01.usn.no/~roshans/mpc/videos/lecture1/openloop-simulation-pendulum.mp4

17

Figure 3: Openloop simulation of inverted pendulum with RK-4 fixed time step solver

Note:

Fixed time step ∆𝑡 = 0.1 was used for the RK-4 method. We can also obtain the same results with

the forward Euler method but the time step has to be decreased sufficiently i.e. ∆𝑡 = 0.001. RK-

4 method produces stable results even with a comparatively higher value of the time step as

compared to the forward Euler method. A proper care about the choice of the time step value

should be taken when forward Euler is used. With ∆𝑡 = 0.1, the forward Euler produces incorrect

results. You can play around with the Simulink simulator of the inverted pendulum that can be

downloaded from the homepage of the course.

Real-time simulation of process models:

Normally, the model of the process is solved faster than the total length of time the model is

simulated for. In other words, if you are simulating a process described by a set of ODEs from a

starting time of 0 sec to an ending time of 200 sec, Simulink normally does not require 200 sec to

solve it. In general, it will be able to solve the model much more faster than 200 sec. The solution

is made available (for example for plotting) as soon as the model is solved. This way of simulating

the model does not allow you to see the results or solutions in real-time.

18

In Simulink, it is possible to simulate the model in real time. This allows for the user to observe

the solution in real time. In this course, we will use the real time pacer library for running the

simulations in real time. The real time pacer library can be downloaded from the homepage of the

course. Please refer to the video(s) (link below) to see and learn how it can be used in Simulink.

The video is based on the example of the inverted pendulum model.

https://web01.usn.no/~roshans/mpc/videos/lecture1/realtime-simulation-pendulum.mp4

Important Note: To read data from sensors and to apply control inputs to a real process at specific

time intervals (say for example every 0.1 seconds), the real time pacer library is a must and should

be used in Simulink.

Built-in ODE solvers in MATLAB:

With MATLAB, we can also use the built-in ODE solvers for solving the process model given by

a set of ODES. Various types of ODE solvers are available in MATLAB.

ode45, ode15s, ode23, ode23t etc. are some of the variable step ODE solvers available in

MATLAB.

Tips: It is a good idea to start the simulation with ode45 as a default choice. For stiff systems,

ode15s is recommended.

Syntax example:

[T, X] = ode45(@your_ode_equations, time span, initialvalue, options, parameters)

The variable time step ODE solvers will automatically choose the step length ∆𝑡 and discretize

the process.

You can also implement you own MATLAB script for Euler and Runge-Kutta methods for

solving or simulating the model of a process described by ODEs.

Important note: In case you are using MATLAB as a tool for developing/implementing MPC

algorithm, it is highly recommended that you implement your own MATLAB script for Euler or

Runge-Kutta methods. Using the built-in ODE solvers for MPC algorithm makes the iterations

very slow.

In this course, however, we focus in the use of Simulink for simulating a process model.

https://web01.usn.no/~roshans/mpc/videos/lecture1/realtime-simulation-pendulum.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture1/realtime-simulation-pendulum.mp4

19

Lecture 2

“MPC is nothing but a simple algorithm where an optimal control problem is solved at each time

step and then the receeding/sliding horizon strategy is applied.”

An optimal control problem is simply an optimization problem. The optimization problem is

created with respect to process control point of view, for example for tracking process outputs to

their desired setpoints. An optimal control problem is created by looking into the future from the

current time step. To look into the future or in other words, to calculate how the process would

behave, say from the current time and up to10 times steps ahead, the model of the process is used.

At each new time step, such optimal control problem is created and solved. This means that at each

time step, in an MPC, an optimization problem is solved.

So, “OPTIMIZATION” is the basic backbone for optimal control and hence for MPC.

In this lecture, we will learn the basics of optimization: the structure of an optimization problem,

different types of optimization problems, how to create an optimization problem and how to solve

them using MATLAB. We will also learn how we can create an optimization problem with process

control point of view.

2.1 Basic introduction to optimization:

In an optimization problem, in general, we have two main ingredients:

a) Objective(s) function to be minimized or maximized :

The objective function (also known as cost function or performance index) represents the

main function that we would like to optimize. It is a function where we setup our main aim

or goal for either minimizing or maximizing it. From process control point of view, an

example of such an objective could be to track the set point i.e. to minimize the error

between the reference/desired value and the actual process output. Other examples of the

objective functions can be profit maximization, cost minimization, production

maximization etc.

b) Constraints that should be obeyed if there are any and if it is possible. The presence of

constraints generates a specific region (also called feasible region) and the solution of the

optimization problem (also known as optimal solution) should always lie within the

feasible region.

An example of constraints could be limitations in the volumetric flow rate of a fluid through

a pipeline i.e. the flow rate should be greater than a specified minimum value or/and less

than a specified maximum value. Constraints could be on the input variables, output

variables and on the process states as well. The valve opening (which usually is a control

input for regulating flow) should be greater than 0% and cannot be more than 100% is yet

another example of a constraint. The rate by which a valve can be opened, for example,

valve opening should be less than 2% per time step, is another example of input constraint.

Usually, the operating conditions of the process give rise to numerous constraints.

20

We will see a number of examples of objective function and constraints as we move

forward with the course. If the optimization problem does not contain any constraints, it is

called unconstrained optimization problem and if it does, it forms a constrained

optimization problem.

In general, a constrained optimization problem is expressed as

𝑚𝑖𝑛/𝑚𝑎𝑥
𝑥

 𝐽 = 𝑓(𝑥)  Objective function (2.1)

 subject to,

ℎ𝑖(𝑥) = 0, 𝑖 = 1, 2, …… ,𝑚  Equality constraints (2.2)

𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1, 2, …… , 𝑟  Inequality constraints (2.3)

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥  Bounds

(2.4)

Here, 𝑥 are the unknown variables, sometimes also called decision variables. They are the variables

that need to be optimized in order to either minimize or maximize the objective functions while

still satisfying the constraints. ℎ𝑖(𝑥) = 0 is a general expression for the equality constraints and

𝑔𝑗(𝑥) is a general expression for the inequality constraints. They could be linear as well as

nonlinear functions. 𝑥𝐿 is a column vector with lower bounds on the decision variable i.e. the

unknowns 𝑥 should be equal to or greater than 𝑥𝐿. 𝑥𝑈 is a column vector with upper bounds on the

decision variable i.e. the unknowns 𝑥 should be equal to or less than 𝑥𝑈.

Note: Bounds can also be treated as general inequality constraints. For example, we can write

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 as two separate inequality constraints.

𝑥 ≤ 𝑥𝑈

−𝑥 ≤ −𝑥𝐿

Types:

i. If 𝑓(𝑥), ℎ𝑖(𝑥) and 𝑔𝑗(𝑥) are all linear functions, it forms a Linear Programming (LP)

problem or linear optimization problem. The term “programming” here simply refers to

optimization (but not to a programming language or something else).

The standard structure of an LP problem is:

𝑚𝑖𝑛/𝑚𝑎𝑥
𝑥

 𝐽 = 𝑓(𝑥) = 𝑐𝑇𝑥 𝑥𝜖ℝ𝑛𝑥  Linear objective function (2.5)

subject to,

𝐴𝑒𝑥 = 𝑏𝑒  Linear equality constraints (2.6)

𝐴𝑖𝑥 ≤ 𝑏𝑖  Linear inequality constraints (2.7)

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥  Bounds (2.8)

Here 𝑐 is a column vector (𝑐𝑇 is a row vector) that contains the coefficient of the unknowns

𝑥 in the linear objective function. 𝐴𝑒 is a matrix containing the coefficients of the unknowns

in the linear equality constraints, 𝑏𝑒 is a column vector of the constant term in the equality

constraints. Similarly, 𝐴𝑖 is a matrix containing the coefficients of the unknowns in the

linear inequality constraints, 𝑏𝑖 is a column vector of the constant term in the inequality

constraints

21

ii. If either 𝑓(𝑥), ℎ𝑖(𝑥) and 𝑔𝑗(𝑥) (any one of them or all of them) is(are) nonlinear

function(s), it forms a NonLinear Programming (NLP) problem. The standard structure

of the NLP is the same as listed in Equations 2.1 – 2.4.

iii. If 𝑓(𝑥) is a quadratic4 function and ℎ𝑖(𝑥) and 𝑔𝑗(𝑥) are both linear functions, it forms

Quadratic Programming (QP) problem. In this course, we will have more focus on QP

problems.

The standard structure of a QP problem is

𝑚𝑖𝑛/𝑚𝑎𝑥
𝑥

 𝐽 = 𝑓(𝑥) =
1

2
 𝑥𝑇 𝐻𝑥 + 𝑐𝑇𝑥 𝑥𝜖ℝ𝑛𝑥  Quadratic objective function

(2.9)

subject to,

𝐴𝑒𝑥 = be  Linear equality constraints (2.10)

𝐴𝑖𝑥 ≤ 𝑏𝑖  Linear inequality constraints (2.11)

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥  Bounds (2.12)

Here 𝐻 is a symmetric diagonal matrix containing the coefficients of the quadratic terms

on its diagonal. 𝑐𝑇 is a row vector containing the coefficient of the linear terms.

iv. If ℎ𝑖(𝑥) and 𝑔𝑗(𝑥) are absent, it forms an unconstrained optimization problem.

 Note: Maximizing an objective function 𝑓(𝑥) can equivalently be written as the minimization of

−𝑓(𝑥) as shown in Figure 2.1. In other words, maximizing a function 𝑓(𝑥) is the same as

minimizing the negative of the function. The structure of many optimization solvers are

designed to accept only the minimization of an objective function but they may not have

the feature of maximizing an objective function. In such a case, the negative of the

objective function can be minimized in order to actually perform the desired maximization.

Figure 2.1: Illustration for min. f(x) = max -f(x)

4 A quadratic function contains one or more variables where the highest degree terms are of second order. For

example, 𝑥1
2 + 3𝑥2

2 − 5𝑥3
2 + 2𝑥4 − 3𝑥5 is an example of a quadratic function. Here the highest degree terms

𝑥1, 𝑥2 and 𝑥3 have powers raised to 2. Please note that a quadratic function in addition can also contain terms of first

order (𝑥4 and 𝑥5) in this example.

22

2.2 Oil Refinery Example

To give you a basic understanding of optimization, an example of optimal production in an oil

refinery is taken as an example for illustration. We will formulate an LP and QP optimization

problems and solve it.

But at first the problem description:

As shown in Figure 2.2, in an oil refinery, the raw material consists of two types of crude oil. The

oil refinery purchase these crude oils from vendors. The crude oils are refined in the refinery and

the end products are gasoline, kerosene, fuel oil and other residual. The refinery then sells these

products. 𝑥1 and 𝑥2 denote the quantity of crude oils used in one day (units: barrel/day). 𝑥3 to 𝑥6

are the production rates of the products in barrel/day.

To produce one barrel (bbl.) of gasoline, 0.8 bbl. of crude oil 1 and 0.44 bbl. of crude oil 2 are

required. To produce one barrel (bbl.) of kerosene, 0.05 bbl. of crude oil 1 and 0.1 bbl. of crude

oil 2 are required. For one barrel of fuel oil, it requires 0.1 bbl. of crude oil 1 and 0.36 bbl. of crude

oil 2. For one barrel of residual, it requires 0.05 bbl. of crude oil 1 and 0.1 bbl. of crude oil 2.

The price of purchasing the raw materials (crude oil) is 𝑝1 = $24/bbl for crude oil 1 and 𝑝2 =

$15/bbl for crude oil 2. The production costs are related to the consumption of crude oil, and these

are 𝑐1 = $0.5/bbl for crude oil 1 and 𝑐2 = $1.00/bbl for crude oil 2. The revenue are related to

the selling price of the products: 𝑠3 = $36/bbl for gasoline, 𝑠4 = $24/bbl for kerosene, 𝑠5 =

$21/bbl for fuel oil and 𝑠6 = $10/bbl for the residual.

The constraints on the system are related to the quantity of the products that can be produced in a

day. The maximum amount of gasoline that can be produced in a day is 24000 bbl/day, for

kerosene it is 2000 bbl/day and for the fuel oil it is 6000 bbl/day.

Objective: Maximize the profit by production by taking into consideration the constraints in the

system.

Formulation of Linear Programming (LP) problem:

Profit is given by (total income – total expense).

Total Income = selling price ∗ quantity = 36𝑥3 + 24𝑥4 + 21𝑥5 + 10𝑥6 [$/day]

Oil

Refinery

Crude oil 1

Crude oil 2

Gasoline

Kerosene

Fuel Oil

Residual

𝑥3

𝑥4

𝑥5

𝑥6

𝑥1

𝑥2

Figure 2.2: Block diagram showing raw materials and products of an oil refinery.

23

Total expense = buying price ∗ quantity + production costs ∗ quantity

= 24𝑥1 + 15𝑥2 + 0.5𝑥1 + 1𝑥2 = 24.5𝑥1 + 16𝑥2 [$/day]

Now the profit (which is our objective function) is,

Profit = (total income – total expense)

= 36𝑥3 + 24𝑥4 + 21𝑥5 + 10𝑥6 − 24.5𝑥1 − 16𝑥2 [$/day]

The profit is constrained to satisfy the steady state mass balance for the refinery and it gives rise

to the following equality constraints:

Gasoline: 𝑥3 = 0.8𝑥1 + 0.44𝑥2

Kerosene: 𝑥4 = 0.05𝑥1 + 0.1𝑥2

Fuel oil: 𝑥5 = 0.1𝑥1 + 0.36𝑥2

Residual: 𝑥6 = 0.05𝑥1 + 0.1𝑥2

The production constraints are:

𝑥3 ≤ 24000

𝑥4 ≤ 2000

𝑥5 ≤ 6000

Note: The production constraints for 𝑥6 is not available. Similarly no constraints have been

stated for 𝑥1 and 𝑥2. Keeping in mind that 𝑥1, 𝑥2, … , 𝑥6 cannot have negative values (since they

are quantities), we can formulate the inequality constraints as:

0 ≤ 𝑥1 ≤ ∞

0 ≤ 𝑥2 ≤ ∞

0 ≤ 𝑥3 ≤ 24000

0 ≤ 𝑥4 ≤ 2000

0 ≤ 𝑥5 ≤ 6000

0 ≤ 𝑥6 ≤ ∞

Note that since no constraints have been stated for 𝑥1 and 𝑥2, we simply assume that they can

take values anywhere between 0 and ∞.

Finally the optimization problem can be formulated as,
𝑚𝑎𝑥

(𝑥1, … , 𝑥6)
 𝐽 = 𝑓(𝑥) = 36𝑥3 + 24𝑥4 + 21𝑥5 + 10𝑥6 − 24.5𝑥1 − 16𝑥2  Objective function (2.13)

subject to,

𝑥3 = 0.8𝑥1 + 0.44𝑥2
𝑥4 = 0.05𝑥1 + 0.1𝑥2
𝑥5 = 0.1𝑥1 + 0.36𝑥2
𝑥6 = 0.05𝑥1 + 0.1𝑥2

 } Linear equality constraints (2.14)

0 ≤ 𝑥1 ≤ ∞
0 ≤ 𝑥2 ≤ ∞

0 ≤ 𝑥3 ≤ 24000
0 ≤ 𝑥4 ≤ 2000
0 ≤ 𝑥5 ≤ 6000
0 ≤ 𝑥6 ≤ ∞

}

Linear inequality constraints

(2.15)

24

2.2.1 Manual Solution of LP problem for oil refinery:

For smaller sized problems, it is possible to manually solve an LP optimization problem. Manual

solution is discussed here simply to increase the understanding. We can use the equality constraints

to simplify and eliminate variables 𝑥3, 𝑥4, 𝑥5 and 𝑥6. This can be done by inserting the equality

constraints of equation 2.14 into the objective function of equation 2.13. We then get,

𝑓(𝑥) = 36(0.8𝑥1 + 0.44𝑥2) + 24(0.05𝑥1 + 0.1𝑥2) + 21(0.1𝑥1 + 0.36𝑥2) + 10(0.05𝑥1 + 0.10𝑥2)

𝑓(𝑥) = 8.1𝑥1 + 10.8𝑥2

Inserting the equality constrains into the inequality constraints for 𝑥3, 𝑥4 and 𝑥5 we get,

0.8𝑥1 + 0.44𝑥2 ≤ 24000

0.05𝑥1 + 0.1𝑥2 ≤ 2000

0.1𝑥1 + 0.36𝑥2 ≤ 6000

(2.15a)

The above inequality equations of 2.15a can be arranged as,

𝑥2 ≤ 54545 − 1.8182𝑥1

𝑥2 ≤ 20000 − 0.5𝑥1

𝑥2 ≤ 16667 − 0.27778𝑥1

(2.15b)

These inequality constraints of equation 2.15b defines the region where the solution should lie or

be present. Such a region is also known as feasible region. To draw the region or boundary, the

following equations of the lines (which defines the boundary) should be drawn.

𝑥2 = 54545 − 1.8182𝑥1

𝑥2 = 20000 − 0.5𝑥1

𝑥2 = 16667 − 0.27778𝑥1

(2.15c)

The plot of these straight lines is shown in Figure 2.3.

Figure 2.3: Feasible region and the optimal point

25

The region where all the three inequality constraints will be satisfied is the shaded area in orange

color. The solution are the points where the lines intersect each other (in the feasible region). There

are two solution points: point A and point B as shown in Figure 2.3. However, the optimal point

where the objective function will attain the maximum value while still satisfying all the constraints

is point B. Thus, the optimal values of 𝑥1 and 𝑥2 is the point B.

The optimal solution is found out by solving the two steepest inequality constraints as,

54545 − 1.8182𝑥1
∗ = 20000 − 0.5𝑥1

∗

𝑥1
∗ = 26206

Then 𝑥2 is given by

𝑥2
∗ = 20000 − 0.5𝑥1

∗ = 6897

Thus the optimal profit is,

𝐽∗ = 𝑓(𝑥∗) = 8.1𝑥1
∗ + 10.8𝑥2

∗ = 2.8676 × 105 $/day

Then we can find the optimal production values in barrels per day of the products as

𝑥3
∗ = 0.8 ∙ 26206 + 0.44 ∙ 6897 = 24000

𝑥4
∗ = 0.05 ∙ 26206 + 0.10 ∙ 6897 = 2000

𝑥5
∗ = 0.10 ∙ 26206 + 0.36 ∙ 6897 = 5103.5

𝑥6
∗ = 0.05 ∙ 26206 + 0.10 ∙ 6897 = 2000

2.2.2 Using solver for Linear programming (LP) for oil refinery example:

It is usually less cumbersome and more easy to use solvers for solving an LP optimization problem.

The optimization toolbox in MATLAB includes built-in routines that can be used to solve such

problems. One such routine is the ‘linprog’ with ‘interior-point’ as the default algorithm. Other

algorithms available are ‘dual-simplex’ and ‘active-set’ methods. ‘linprog’ accepts the standard

form or structure of LP problems as,

𝑚𝑖𝑛
𝑥
 𝐽 = 𝑓(𝑥) = 𝑐𝑇𝑥 𝑥𝜖ℝ𝑛𝑥  Linear objective function (2.16)

subject to,

𝐴𝑒𝑥 = 𝑏𝑒  Linear equality constraints (2.17)

𝐴𝑖𝑥 ≤ 𝑏𝑖  Linear inequality constraints (2.18)

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥  Bounds (2.19)

An example of the syntax is,

[x, fval]= linprog(c,Ai ,bi,Ae,be,xL,xU,x0,options)

Here, 𝑐, 𝐴𝑒 , 𝑏𝑒 , 𝐴𝑖 , 𝑏𝑖 , 𝑥𝐿 , 𝑥𝑈 are the matrices (or vectors) associated with the standard formulation

of Equations 2.16 - 2.19. 𝑥0 is the initial values of the unknowns 𝑥. Before the optimizer can start

26

looking for the optimal solution, it needs a point from where it can start the iterative algorithm.

This is provided as the initial values of the unknowns 𝑥0 by the user5. Options are passed to the

linprog routine which provides us with the choice of the algorithm, tolerance error etc. For details

about the different options that can be passed into linprog refer to MATLAB documentation.

For the oil refinery example, let us first rewrite the LP problem given by Equations 2.13 - 2.15

into the standard LP problem form/structure given by Equations 2.16 - 2.19. The objective function

of Equation 2.13 is a maximization function, however the standard form is the minimization of the

objective function. This can be achieved by minimizing −𝑓(𝑥) and can be written in standard form

as,

𝑚𝑖𝑛
(𝑥1, … , 𝑥6)

 𝐽 = −𝑓(𝑥) = [24.5 16 −36 −24 −21 −10]⏟
𝑐𝑇

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

(2.20)

The linear equality constraints of Equation 2.14 can be written in standard form as,

[

0.8 0.44 −1 0 0 0
0.05 0.1 0 −1 0 0
0.1 0.36 0 0 −1 0
0.05 0.1 0 0 0 −1

]

⏟
𝐴𝑒

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

= [

0
0
0
0

]

⏟
𝑏𝑒

(2.21)

The inequality constraints of Equation 2.15 are actually the bounds on the unknown variables.

They can be expressed in standard form as,

[

0
0
0
0
0
0]

⏟
𝑥𝐿

≤

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

≤

[

∞
∞

24000
2000
6000
∞]

⏟
𝑥𝑈

(2.22)

 Let us choose the initial values of the unknowns as 𝑥0 = [1000 1500 3000 4000 2500 1800]𝑇

and use the active-set method as the algorithm for solving the LP problem in MATLAB.

>> options = optimoptions('linprog','Algorithm','active-set')

Then call the linprog routine as,

>> x = linprog(c,[],[],Ae,be,xL,xU,x0,options)

Optimization terminated.

x =

 2.6207e+04

 6.8966e+03

 2.4000e+04

 2.0000e+03

 5.1034e+03

5 The latest releases of MATLAB contains algorithms where the initial value is not required to be supplied by the

user.

27

 2.0000e+03

Note that any parameters that are not applicable for the optimization problem being solved is

replaced by empty matrices or vectors []. Here we have expressed the inequality constraints as

bounds, thus 𝐴𝑖 = [] and 𝑏𝑖 = [] i.e. matrices related to the linear inequality constraints are taken

as empty matrices/vectors.

Note: The algorithms dual-simplex, simplex, interior-point and interior-point legacy automatically

choose the internal starting point 𝑥0. Thus it is not necessary to supply the initial values of the

unknowns when these algorithms are chosen. For LP problems, the solution is always located on

the vertices (corner points where the constraints intersect) formed by the inequality constraints.

2.2.3 Quadratic Programming (QP) and oil refinery example:

Quadratic programming/optimization problems are the base stones for a linear MPC. Thus it is

important to look into an example on how a QP problem can be formulated and solved.

Let us look back into oil refinery example of Section 2.2 in order to have a quadratic programming

problem.

Let us assume that the price of purchasing the raw materials (crude oil) is 𝑝1 = $24/bbl for crude

oil 1 and 𝑝2 = $15/bbl for crude oil 2. The production costs are related to the consumption of

crude oil, and these are 𝑐1 = $0.5/bbl for crude oil 1 and 𝑐2 = $1.00/bbl for crude oil 2. The

revenue or income are related to the selling price of the products: i.e. 𝑠3 = (36 −
𝑥3

5000
) $/bbl for

gasoline, 𝑠4 = (24 −
𝑥4

5000
) $/bbl for kerosene, 𝑠5 = $21/bbl for fuel oil and 𝑠6 = $10/bbl for

the residual.

Now the profit is given by (total income – total expense).

Total Income = selling price ∗ quantity

= (36 −
𝑥3

5000
) 𝑥3 + (24 −

𝑥4

5000
) 𝑥4 + 21𝑥5 + 10𝑥6 [$/day]

Total expense = buying price ∗ quantity + production costs ∗ quantity

= 24𝑥1 + 15𝑥2 + 0.5𝑥1 + 1𝑥2 = 24.5𝑥1 + 16𝑥2 [$/day]

Now the profit (which is our objective function) is,

Profit = (total income – total expense)

= 36𝑥3 −
1

5000
𝑥3
2 + 24𝑥4 −

1

5000
𝑥4
2 + 21𝑥5 + 10𝑥6 − 24.5𝑥1 − 16𝑥2 [$/day]

Also let us assume that in order to produce one barrel (bbl.) of gasoline, 0.8 bbl. of crude oil 1 and

0.44 bbl. of crude oil 2 are required. To produce one barrel (bbl.) of kerosene, 0.05 bbl. of crude

oil 1 and 0.1 bbl. of crude oil 2 are required. For one barrel of fuel oil, it requires 0.1 bbl. of crude

oil 1 and 0.36 bbl. of crude oil 2. For one barrel of residual, it requires 0.05 bbl. of crude oil 1 and

0.1 bbl. of crude oil 2.

This gives rise to the steady state mass balance for the refinery and thus to the following equality

constraints:

28

Gasoline: 𝑥3 = 0.8𝑥1 + 0.44𝑥2

Kerosene: 𝑥4 = 0.05𝑥1 + 0.1𝑥2

Fuel oil: 𝑥5 = 0.1𝑥1 + 0.36𝑥2

Residual: 𝑥6 = 0.05𝑥1 + 0.1𝑥2

The constraints on the system are related to the quantity of the products that can be produced in a

day. The maximum amount of gasoline that can be produced in a day is 24000 bbl/day, for

kerosene it is 2000 bbl/day and for the fuel oil it is 6000 bbl/day.

Thus, the production constraints are:

𝑥3 ≤ 24000

𝑥4 ≤ 2000

𝑥5 ≤ 6000

Note: The production constraints for 𝑥6 is not available. Similarly no constraints have been

stated for 𝑥1 and 𝑥2. Keeping in mind that 𝑥1, 𝑥2, … , 𝑥6 cannot have negative values (since they

are quantities), we can formulate the inequality constraints as:

0 ≤ 𝑥1 ≤ ∞

0 ≤ 𝑥2 ≤ ∞

0 ≤ 𝑥3 ≤ 24000

0 ≤ 𝑥4 ≤ 2000

0 ≤ 𝑥5 ≤ 6000

0 ≤ 𝑥6 ≤ ∞

Note that since no constraints have been stated for 𝑥1 and 𝑥2, we simply assume that they can

take values anywhere between 0 and ∞.

Finally the quadratic optimization problem of maximizing the profit can be formulated as,

𝑚𝑎𝑥

(𝑥1, … , 𝑥6)
 𝐽 = 𝑓(𝑥) = 36𝑥3 −

1

5000
𝑥3
2 + 24𝑥4 −

1

5000
𝑥4
2 + 21𝑥5 + 10𝑥6 − 24.5𝑥1 − 16𝑥2 (2.23)

subject to,

𝑥3 = 0.8𝑥1 + 0.44𝑥2
𝑥4 = 0.05𝑥1 + 0.1𝑥2
𝑥5 = 0.1𝑥1 + 0.36𝑥2
𝑥6 = 0.05𝑥1 + 0.1𝑥2

 } Linear equality constraints (2.24)

0 ≤ 𝑥1 ≤ ∞
0 ≤ 𝑥2 ≤ ∞

0 ≤ 𝑥3 ≤ 24000
0 ≤ 𝑥4 ≤ 2000
0 ≤ 𝑥5 ≤ 6000
0 ≤ 𝑥6 ≤ ∞

}

Linear inequality constraints

(2.25)

Optimization problem given by Equations 2.23 - 2.25 is a QP problem (the objective function is

quadratic and the constraints are linear). It can be solved using QP solvers. But most of the QP

solvers are designed to solve the standard QP problem formulation given by Equations 2.9 – 2.12.

The oil refinery QP problem given by Equation 2.23 – 2.25 is not in the standard form. Before we

29

can use QP solvers to solve it, the QP problem given by 2.23 – 2.25 must be first converted to the

standard QP problem formulation given by Equation 2.9 – 2.12.

For the oil refinery example, the objective function of Equation 2.23 is a maximization function.

The qpOASES6 solver that we will be using to solve a QP problem in Simulink accepts only

minimization problems. We have to adjust the objective function of the oil refinery example such

that it becomes a minimization problem. This can be achieved by minimizing −𝑓(𝑥) and can be

written in standard form as,
𝑚𝑖𝑛

(𝑥1, … , 𝑥6)
 𝐽 = −𝑓(𝑥) =

1

2
[𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]⏟

𝑥𝑇

2

5000

[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

⏟
𝐻

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

+

⏟
𝑥

[24.5 16 −36 −24 −21 −10]⏟
𝑐𝑇

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

(2.26)

The linear equality constraints of Equation 2.24 can be written in standard form as,

[

0.8 0.44 −1 0 0 0
0.05 0.1 0 −1 0 0
0.1 0.36 0 0 −1 0
0.05 0.1 0 0 0 −1

]

⏟
𝐴𝑒

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

= [

0
0
0
0

]

⏟
𝑏𝑒

(2.27)

The inequality constraints of Equation 2.25 are actually the bounds on the unknown variables.

They can be expressed in standard form as,

[

0
0
0
0
0
0]

⏟
𝑥𝐿

≤

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

⏟
𝑥

≤

[

∞
∞

24000
2000
6000
∞]

⏟
𝑥𝑈

(2.28)

In addition, it is very important to understand that the qpOASES solver accepts a special structure

of the Quadratic Programming problem as,
𝑚𝑖𝑛
(𝑥)

 𝐽 = 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥, 𝑥𝜖ℝ𝑛𝑥 Objective function (2.29a)

subject to,

𝑏𝐿 ≤ 𝐴𝑒𝑥 ≤ 𝑏𝑈 Linear equality/inequality constraints (2.29b)

 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥 Bounds (2.29c)

The qpOASES solver uses the same notation for both the linear equality and the inequality

constraints as shown in Equation 2.29b. For linear inequality constraints, the vectors 𝑏𝐿 and 𝑏𝑈

take different values. The good point is that we can use the same notation of equation 2.29b to

express the linear equality constraints as well. For this the vectors 𝑏𝐿 and 𝑏𝑈 take the same value

i.e. they are the same.

Thus for expressing linear equality constraints in qpOASES,

6 Visit projects.coin-or.org/qpOASES for details about qpOASES solver.

https://projects.coin-or.org/qpOASES

30

𝑏𝐿 = 𝑏𝑈 = 𝑏𝑒

Then we have,

𝑏𝑒 ≤ 𝐴𝑥 ≤ 𝑏𝑒

This is equivalent to the linear equality equation of the standard QP form

𝐴𝑒𝑥 = 𝑏𝑒

Refer to the following video for the formulation of the QP problem for the oil refinery and for the structure

accepted with qpOASES

https://web01.usn.no/~roshans/mpc/videos/lecture2/problem-formulation.mp4

qpOASES solver for Quadratic Programming (QP) and oil refinery example

Before we can start using the qpOASES solver in Simulink, we have to first install the solver in

computer. Please look into the videos for lecture 2 in the homepage of this course. The following

link explains how to install the qpOASES solver in your computer.

https://web01.usn.no/~roshans/mpc/videos/lecture2/qpoases-installation.mp4

The qpOASES solver is written in plain C++ language. Thus it has to be complied to a mex file

before we can use it in Simulink. In this course we will be using TDM-GCC compiler. The

following link explains where to download the installer and then how to install the C++ compiler.

https://web01.usn.no/~roshans/mpc/videos/lecture2/tdm64-gcc-installation.mp4

To check whether your compiler and the solver have been successfully installed, see the following

video.

https://web01.usn.no/~roshans/mpc/videos/lecture2/compiling-qpoases.mp4

Now the Quadratic optimization problem with the oil refinery example can be solved using

qpOASES solver in Simulink. The details of the implementation is described in the following

video.

https://web01.usn.no/~roshans/mpc/videos/lecture2/refinery-qpoases.mp4

It is also possible to solve a QP problem in MATLAB. The optimization toolbox in MATLAB

includes built-in routines that can be used to solve such problems. One such routine is the

‘quadprog’ with ‘interior-point-convex’ as the default algorithm. Other algorithms available are

‘trust-region-reflective’ and ‘active-set’ methods. ‘quadprog’ accepts the standard form of QP

problems in MATLAB as,

𝑚𝑖𝑛
𝑥
 𝐽 = 𝑓(𝑥) =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥 𝑥𝜖ℝ𝑛𝑥  Quadratic objective function (2.30)

subject to,

𝐴𝑒𝑥 = 𝑏𝑒  Linear equality constraints (2.31)

𝐴𝑖𝑥 ≤ 𝑏𝑖  Linear inequality constraints (2.32)

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑥𝐿𝜖ℝ
𝑛𝑥 , 𝑥𝑈𝜖ℝ

𝑛𝑥  Bounds (2.33)

An example of the syntax is,

[x, fval]= quadprog(H,c,Ai ,bi,Ae,be,xL,xU,x0,options)

https://web01.usn.no/~roshans/mpc/videos/lecture2/problem-formulation.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture2/qpoases-installation.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture2/tdm64-gcc-installation.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture2/compiling-qpoases.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture2/refinery-qpoases.mp4

31

Here, 𝐻, 𝑐, 𝐴𝑒 , 𝑏𝑒 , 𝐴𝑖 , 𝑏𝑖, 𝑥𝐿 , 𝑥𝑈 are the matrices (or vectors) associated with the standard

formulation of Equations 2.30 - 2.33. 𝑥0 is the initial values of the unknowns 𝑥. Before the

optimizer can start looking for the optimal solution, it needs a point from where it can start the

iterative algorithm. This is provided as the initial values of the unknowns 𝑥0 by the user. Options

are passed to the quadprog routine which provides us with the choice of the algorithm, tolerance

error, maximum iterations etc. For details about the different options that can be passed into

quadprog refer to MATLAB documentation.

Let us choose the initial values of the unknowns as 𝑥0 = [1000 1500 3000 4000 2500 1800]𝑇

and use the active-set method as the algorithm for solving the LP problem.

>> options = optimoptions('quadprog','Algorithm','interior-point-convex')

Then call the linprog routine as,

>> x = quadprog(H,c,[],[],Ae,be,xL,xU,x0,options)

The interior-point-convex algorithm does not accept an initial point.

Ignoring X0.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x =

 1.5000e+04

 1.2500e+04

 1.7500e+04

 2.0000e+03

 6.0000e+03

 2.0000e+03

Note: The default algorithm interior-point-convex does not need an initial point and it generates it

internally automatically. If active-set is used, then initial point of the unknowns should be

specified. Any parameters that are not applicable for the optimization problem being solved is

replaced by empty matrices []. Here we have expressed the inequality constraints as bounds, thus

𝐴𝑖 = [] and 𝐵𝑖 = []. The complete source code is available in the Fronter.

2.3 Dynamic Optimal Control and Performance Indices:

The oil refinery posed as a Quadratic optimization problem is an example of static optimization

where the dynamic model of the process is not used. They are also in reality not control problems.

These optimization examples are defined by algebraic equations so they are in a sense steady state

optimization problems. With a model predictive control, the dynamic model of the process is used

for formulating the optimization problem, which is normally a control problem (e.g. tracking a set

point) and the control action is dynamic. This gives rise to dynamic optimal control: dynamic

because the model of the process captures its dynamics (and the generated control action acts on

32

the dynamics), optimal because the control actions/signals are obtained by solving an optimization

problem. Let us define a dynamic process with input/output and states as shown in Figure 2.4.

Figure 2.4: Dynamic process with inputs, outputs and states

For simplicity, two outputs and two states are shown but they could be more than two. In this

course, we do not fouls on the development of the models of the processes. We assume that the

model of the process is known or available. The model can be simulated from any start time to any

end time (given that the initial values at the start time is known).

Now to formulate an optimization problem for creating an optimal control problem, what we do

is: we use the model i.e. we simulate the model from a given start time (with known/estimated

initial values) to 𝑁 steps forward in time and obtain the future values of the states and the outputs

(from given start time to 𝑁 steps ahead of this time, with 𝑑𝑡 being the time step). We then use these

future values to create an optimal control problem (that has an objective function and constraints),

solve this control problem by using optimization solvers (e.g. qpOASES for QP problem) and then

find out a set of 𝑁 control actions/control inputs (the optimal values that are found by solving the

optimization problem). These optimal values of the control actions are then applied to the process.

The set of 𝑁 control moves should be calculated based on usually minimizing a criterion or an

objective and at the same time obeying all the constraints. This criterion is also called performance

index. The most general/common performance index with respect to control point of views is to

track the output of the process to a given/desired set point value by using the optimal control inputs.

The performance index can be both linear and non-linear. But we will start by first looking into

the objective functions or performance index that is quadratic in nature. This is also the most

common structure of the performance index or objective function for optimal control problems.

2.3.1 Dynamic optimal control problem formulation for tracking

Let us consider that we have a process and we would like to control the output of the process to a

setpoint (or reference line) as shown in Figure 2.5. We would like to control the process output

from the starting time step (0 in Figure 2.5) to N time steps ahead in the future. The reference line

(written as Refline in Figure 2.5) is also defined for all these N time steps.

 y1

Outputs

 x1 States x2

y2

Process
 u1

Inputs u2

33

Figure 2.5: Dynamic optimal control

Now let us consider that the model of the process is given by discrete time linear state space

representation as

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 with 𝑥0 known State equation (2.34)

 𝑦𝑘 = 𝐶𝑥𝑘 Measurement equation (2.35)

Here, 𝑘 represents the discrete time steps. It is necessary that the values of the states at the initial

time step of 𝑘 = 0 i.e. 𝑥0 is known.

From control point of view, our objective is to make the output of the process (𝑦𝑘) be as close as

possible to the set point or the Refline (denoted as 𝑟𝑘). In other words, our objective from control

point of view is to reduce (minimize) the difference between the set point value and the actual

process output value. If we define this difference as the error (𝑒𝑘) in set point tracking, then we

have,

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 Error equation (2.36)

In addition, we would like to minimize this error (𝑒𝑘) from the discrete time step 𝑘 = 1 to 𝑘 = 𝑁.

The total number of time steps that we look ahead in the future starting from the initial time step

is called the prediction horizon. In Figure 2.5, we are looking N time steps into the future from the

current time step. Thus N is the prediction horizon.

If we want to minimize error (𝑒𝑘) from 𝑘 = 1 to 𝑘 = 𝑁, Equation 2.35 says that we have to know the

values of the process outputs for the whole prediction horizon length i.e. from 𝑘 = 1 to 𝑘 = 𝑁. For

this, the model of the process given by equations 2.34 and 2.35 is utilized to predict the future time

steps behavior of the process. To do so, the process states at the initial or current time step should

be known i.e. 𝑥0 should be known. For example: If 𝑥0 is known then we can use equation 2.34 to

calculate 𝑥1 for time step 𝑘 = 1 with a certain value of the control input 𝑢0. Then we can use

equation 2.35 to calculate 𝑦1 for time step 𝑘 = 1. Further, we can then use 𝑥1 and control input 𝑢1

34

to calculate 𝑥2 for time step 𝑘 = 2 using equation 2.34. Then we can again use equation 2.35 to

calculate 𝑦2 for time step 𝑘 = 2 and so on for the whole prediction horizon length.

Another important thing to understand is that, in order to minimize the error 𝑒𝑘 throughout the

prediction horizon, the only way possible is by changing the control input signals (𝑢𝑘).

Thus our final objective function for an optimal control problem for set point tracking is,

𝑚𝑖𝑛
(𝑢)

 𝐽 =
1

2
 ∑(𝑒𝑘

𝑇 𝑄𝑘𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑘−1 𝑢𝑘−1)

𝑁

𝑘=1

(2.37)

where,

𝑒𝑘 = error in setpoint tracking = 𝑦𝑘 − 𝑟𝑘

𝑟𝑘 = reference/setpoint value which are defined for the whole prediction horizon.

The ∑ symbol in equation 2.37 indicates that we would like to minimize the sum of the errors for

the whole prediction horizon length. We achieve the setpoint or the reference point at the expense

of the control signals or inputs (which give rise to the 2nd term 𝑢𝑘−1
𝑇 𝑃𝑘−1 𝑢𝑘−1). At the same time

we also want this expenses of the control inputs to be small so we minimize it.

Here, 𝑄𝑘 = weighting matrix for the error signal for each time step within the prediction horizon.

It should be positive definite i.e. 𝑒𝑘
𝑇 𝑄𝑘𝑒𝑘 > 0 for 𝑒𝑘 ≠ 0. It defines the weight that you

want to put in minimizing the error term.

 𝑃𝑘 = weighting matrix on control input variables for each time step within the prediction

horizon. It should be positive semi definite i.e. 𝑢𝑘
𝑇𝑃𝑘𝑢𝑘 > 0 for 𝑢𝑘 ≠ 0. It defines the

weight that you want to put to limit the expense of the control input signals. With lower

weight on control inputs, they usually become aggressive i.e. they are sacrificed

heavily/their expense is higher.

Note: 𝑢𝑘−1 is considered instead of 𝑢𝑘 because the current output is the result of the previous input

or present input will be used to calculate the next time step output.

In an optimal control problem formulation, generally the weighting matrices are taken to the

same for the whole prediction horizon i.e. 𝑄1 = 𝑄2 = ⋯ = 𝑄𝑁 = 𝑄. Similarly, 𝑃0 = 𝑃1 = ⋯ =

𝑃𝑁−1 = 𝑃.

Some more examples of the performance indices:

Another variant for formulating the objective or performance index of an optimal control problem

could be to take into account the deviation or rate of change of control inputs ∆𝑢𝑘 where,

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1

Then the performance index can be written as,

𝑚𝑖𝑛
(∆𝑢)

 𝐽 = ∑(𝑒𝑘
𝑇 𝑄𝑒𝑘 + ∆𝑢𝑘−1

𝑇 𝑃𝑘−1∆𝑢𝑘−1)

𝑁

𝑘=1

We minimize this criterion with respect to ∆𝑢 but apply 𝑢𝑘 = ∆𝑢𝑘 + 𝑢𝑘−1 as the control action.

35

e.g.: Motor, valves and other types of actuators may have limits on their dynamic performance i.e.

the amount with which they can be changed in a single time step may be limited. For example

in many operations, control valves cannot change from fully closed position to fully open

position in one time step. In other words, if we want to restrict the rate of change of control

inputs this formulation is suitable for optimal control problem formulation.

 It is also possible to have an economic profit criteria in the objective function. As for an example,

𝑚𝑎𝑥
 𝐽 = ∑‖𝑝𝑖𝑦𝑖‖𝑝

𝑁

𝑖=1

− ‖𝑐𝑖−1𝑢𝑖−1‖𝑝 → objective function

 where, 𝑝𝑖 ≥ 0 is the price of product 𝑦𝑖, 𝑐𝑖 ≥ 0 is the cost of raw material 𝑢𝑖 and ‖(.)‖𝑝 is the

norm p. Usually p=1 means simple addition of the elements of the vectors.

Another example of a performance index could be production maximization as,

𝑚𝑎𝑥
 𝐽 = ∑𝜆𝑝‖𝑦𝑝𝑟(𝑥, 𝑢, 𝜃)‖2

𝑁

𝑖=1

where, 𝑦𝑝𝑟(𝑥, 𝑢, 𝜃) is some function for calculating the production and 𝜆𝑝 is weighting factor.

In this course, we will limit ourselves with the formulation of an optimal control problem from a

control point of view i.e. we will focus only on optimal control problem for set point tracking.

One way of writing the complete formulation of an optimal control problem for setpoint tracking

is,

𝑚𝑖𝑛
(𝑢)

 𝐽 =
1

2
 ∑(𝑒𝑘

𝑇 𝑄𝑘𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑘−1 𝑢𝑘−1)

𝑁

𝑘=1

 (2.38)

subject to,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , 𝑘 = 0, 1, 2, ………… ,𝑁 − 1 𝑥0 , known

𝑦𝑘 = 𝐶𝑥𝑘

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 with 𝑟𝑘 known or defined for whole prediction horizon length

𝑥𝐿 ≤ 𝑥𝑘 ≤ 𝑥𝑈

𝑢𝐿 ≤ 𝑢𝑘 ≤ 𝑢𝑈

∆𝑢𝐿 ≤ ∆𝑢𝑘 ≤ ∆𝑢𝑈

𝑄𝑘 ≥ 0

𝑃𝑘 ≥ 0

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1

(2.39)

Here, 𝑥𝐿 , 𝑢𝐿 & ∆𝑢𝐿 are the lower limits for the states, control inputs and the rate of change of

control inputs. Similarly, 𝑥𝑈, 𝑢𝑈 & ∆𝑢𝑈 are the upper limits for the states, control inputs and the

rate of change of control inputs.

This formulation has "Quadratic criteria or objective" with linear process model (that forms the

linear constraints). This type of optimal control problem is well known as "Linear Quadratic

(LQ)" optimal control.

36

In general, the standard formulation for the quadratic programming (QP) problem is written as,

𝑚𝑖𝑛
𝑧

1

2
 𝑧𝑇 𝐻𝑧 + 𝑐𝑇𝑧 Quadratic objective (2.40)

subject to,

 𝐴𝑒𝑧 = 𝑏𝑒 Equality constraints
 𝐴𝑖𝑧 ≤ 𝑏𝑖 Inequality constraints

 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 Bounds
 (2.41)

Here 𝑧 is the vector of decision variable. The control input signals can be one of the decision

variables in addition to other variables.

Many QP solvers including the qpOASES solver accept the standard formulation for the QP

problems. This is also the structure that MATLAB's function/solver 'quadprog' accepts.

Thus, the LQ optimal control problem for set point tracking formulated in equations 2.38 and

2.39 should be first expressed as a standard QP problem of equations 2.40 and 2.41. Then we can

solve the standard QP problem and obtain the solution of the LQ optimal control problem.

LQ optimal control problem of Equations (2.38) and (2.39) can be efficiently formulated as

standard QP problem of Equations (2.40) and (2.41) by using Kornecker product. With this

formulation we will obtain a spare QP structure of the corresponding LQ optimal control

problem.

37

Lecture 3

Goal: Efficient formulation of LQ optimal control problem as Standard Quadratic

Programming (QP). Use of Kronecker products.

In this chapter, the setpoint tracking LQ optimal control problem given by Equations (2.46)

and (2.47) from lecture 2 is considered. This control problem is expressed or formulated as a

standard Quadratic Programming (QP) given by Equations (2.48) and (2.49) in lecture 2. The

reason that we should formulate the LQ optimal control problem into a standard QP optimization

problem is that the control problem becomes well structured and we can use the optimization

solvers (which usually are based on the standard QP formulation) to solve the control problem.

The given LQ optimal control problem can be efficiently formulated as QP optimization problem

by constructing well structured matrices by using the Kronecker product. But before we jump into

the formulation, let us first look into some simple examples.

3.1 First some simple examples

(i)

a) Quadratic Objective:

𝐽 = 𝑓(𝑥) = −5𝑥3
2 + 3𝑥1

2 + 2.5𝑥1 + 7𝑥2

b) Linear Constraints:

2𝑥1 + 3𝑥2 + 4𝑥3 = 5

−3𝑥1 − 8𝑥3 = −6

−4𝑥1 − 3.2𝑥2 + 1.8𝑥3 = 2

Express (a) and (b) in the standard form

𝐽 = 𝑓(𝑥) =
1

2
 𝑥𝑇 𝐻𝑥 + 𝑐𝑇𝑥

𝐴𝜖𝑥 = 𝑏𝜖

Let 𝑥 = [

𝑥1
𝑥2
𝑥3
] , 𝑥𝑇 = [𝑥1 𝑥2 𝑥3]

Then, 𝐽 = 𝑓(𝑥) = [𝑥1 𝑥2 𝑥3] [
3 0 0
0 0 0
0 0 −5

] [

𝑥1
𝑥2
𝑥3
] + [2.5 7 0] [

𝑥1
𝑥2
𝑥3
]

𝐽 = 𝑓(𝑥) =
1

2
[𝑥1 𝑥2 𝑥3]⏟

𝑥𝑇

 [
2 × 3 0 0
0 0 0
0 0 −5 × 2

]
⏟

𝐻

[

𝑥1
𝑥2
𝑥3
]

⏟
𝑥

+ [2.5 7 0]⏟
𝑐𝑇

[

𝑥1
𝑥2
𝑥3
]

⏟
𝑥

∴ 𝐽 = 𝑓(𝑥) =
1

2
 𝑥𝑇 𝐻𝑥 + 𝑐𝑇𝑥

38

Now express the linear constraints in the for 𝐴𝜖𝑥 = 𝑏𝜖

[
2 3 4
−3 0 −8
−4 −3.2 1.8

]
⏟

𝐴𝑒

[

𝑥1
𝑥2
𝑥3
]

⏟
𝑥

= [
5
−6
2
]

⏟
𝑏𝑒

(ii)

𝐽 = 𝑓(𝑥) = 36𝑥3 −
1

5000
 𝑥3
2 + 24𝑥4 −

1

5000
 𝑥4
2 + 21𝑥5 + 10𝑥6 − 24.5𝑥1 − 16𝑥2

Let,

𝑥 =

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

 𝑜𝑟 𝑥𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]

Then 𝐽 = 𝑓(𝑥) = 0𝑥1
2 + 0𝑥2

2 −
1

5000
𝑥3
2 −

1

5000
𝑥4
2 − 0𝑥5

2 −0𝑥6
2 − 24.5𝑥1 − 16𝑥2 + 36𝑥3 +

 24𝑥4 + 4𝑥5 + 10𝑥6

𝑓(𝑥) = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]⏟
𝑥𝑇

[

0 0 0
0 0 0

0 0 −
1

5000

 0 0 0
 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

−
1

5000
0 0

 0 0 0
 0 0 0]

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

 + [−24.5 −16 36 24 21 10]⏟
𝑐𝑇

[

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]

𝑓(𝑥) =
1

2
𝑥𝑇

[

0 0 0
0 0 0

0 0 −
2

5000

 0 0 0
 0 0 0
 0 0 0

0 0 0
0 0 0
0 0 0

−
2

5000
0 0

 0 0 0
 0 0 0]

⏟
𝐻

 𝑥 + 𝑐𝑇𝑥

∴ 𝑓(𝑥) =
1

2
 𝑥𝑇 𝐻𝑥 + 𝑐𝑇𝑥

39

3.2 Useful matrices and their structures

Please see also the video in the homepage of the course for some examples in MATLAB.

http://web01.usn.no/~roshans/mpc/videos/lecture3/useful_matrices_structures.mp4

a) Kronecker product (Symbol )

Let 𝐴 ∈ 𝑅𝑚×𝑛 and 𝐵 be any size matrix, then Kronecker product of 𝐴 and 𝐵 is,

𝐴𝐵 = [

𝑎11𝐵 𝑎12𝐵 ⋯ 𝑎1𝑛𝐵

𝑎21𝐵 𝑎22𝐵 ⋯ 𝑎2𝑛𝐵
⋮

𝑎𝑚1𝐵
⋮

𝑎𝑚2𝐵
⋱
⋯

⋮
𝑎𝑚𝑛𝐵

] = kron (A,B) in MATLAB

Here, each element of the matrix A is being multiplied with the whole matrix B.

b) Identity matrix : I

𝐼𝑛 = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
1

]

𝑛𝑥𝑛

 = eye (n) in MATLAB

The diagonal elements are all unity.

c) Identity matrix whose diagonal elements are offset by position ‘k’ (In,k):

 In,k = diag (1n−|k|×1 , k) → Diagonal elements or 1′s are offset by ′k′

 = diag (ones(n − abs(k), 1) , k) in MATLAB

Example:

n = 4, k = 1

𝐼4,1 = [

0 1 0 0
0 0 1 0
0
0

0
0

0 1
0 0

]

n = 4, k = -1

𝐼4,−1 = [

0 0 0 0
1 0 0 0
0
0

1
0

0 0
1 0

]

d) Block diagonal

blkdiag (A11 , A22 , A33 , A44 , ………… Ann) in MATLAB will produce

[

𝐴11 0 0 ⋯⋯
0 𝐴22 0 ⋯⋯
⋮
0

⋮
0

⋱
⋯

⋮
𝐴𝑛𝑛

]

The matrices (or vectors) A11 , A22 , A33 , A44 , ………… Ann are placed as the diagonal elements

in a matrix.

http://web01.usn.no/~roshans/mpc/videos/lecture3/useful_matrices_structures.mp4

40

e) Kronecker product with an identity matrix:

𝐼𝑛𝐵 = [

𝐵 0 0 ⋯⋯
0 𝐵 0 ⋯⋯
⋮
0

⋮
0

⋱
⋯

⋮
𝐵

] = blkdiag (𝐵, 𝐵,… , 𝐵)⏟
n times

f) Block diagonal matrix offset by position ‘k’:

 𝐼𝑛,𝑘  𝐴 =

[

⋮ ⋮ ⋮
0 0 0
𝐴 0 0

⋮ ⋮ ⋮
… 0 0
… 0 0

0 𝐴 0
0
⋮

0
⋮

𝐴
⋮

0 0 0

… 0 0
…
⋱

0
⋮

0
⋮

… 𝐴 0]

e. g. 𝐼3,−1 𝐴 = [
0 0 0
𝐴 0 0
0 𝐴 0

] , 𝐼3,1 𝐵 = [
0 𝐵 0
0 0 𝐵
0 0 0

]

g) Identity matrix + a block diagonal matrix offset by position ‘k’:

[

⋮ ⋮ ⋮
1 0 0
𝐴 1 0

⋮ ⋮ ⋮
… 0 0
… 0 0

0 𝐴 1
0
⋮

0
⋮

𝐴
⋮

0 0 0

… 0 0
…
⋱

0
⋮

0
⋮

… 𝐴 1]

 = 𝐼𝑛 + (𝐼𝑛,𝑘  𝐴)

e.g. 𝐼3 + (𝐼3,−1  𝐴) = [
1 0 0
𝐴 1 0
0 𝐴 1

] 𝐼3 − (𝐼3,−1  𝐴) = [
1 0 0
−𝐴 1 0
0 −𝐴 1

]

3.3 Efficient formulation of LQ optimal control problem

In general, let us consider the following for LQ optimal control problem with the future

prediction horizon of 𝑁 time steps.

a) Quadratic Objective function:

𝑚𝑖𝑛 𝐽 =
1

2
 ∑ 𝑒𝑘

𝑇 𝑄𝑘𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑘−1𝑢𝑘−1

𝑁

𝑘=1

 (3.1)

b) Linear Constraint (given by the process model)

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 with 𝑥𝜖ℝ
𝑛𝑥×1 , 𝑢𝜖ℝ𝑛𝑢×1 (3.2)

𝑦𝑘 = 𝐶𝑥𝑘 with yϵℝ
ny×1 and x0 is given/known (3.3)

The error in tracking the set point 𝑟𝑘 is,

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 (3.4)

41

Here, 𝑛𝑥= no. of states, 𝑛𝑢 = no. of control inputs, 𝑛𝑦 = no. of outputs

𝑄𝑘 = weighting matrix for 𝑒𝑘 and is positive definite. It is a diagonal matrix with 𝑛𝑦 number

of weighting elements on the diagonal corresponding to each output.

𝑃𝑘 = weighting matrix for 𝑢𝑘 and is positive semi definite. It is a diagonal matrix with 𝑛𝑢

number of weighting elements on the diagonal corresponding to each inputs.

𝑟𝑘 = reference signal or setpoint value

We want to express LQ optimal control problem of equations (3.1) - (3.4) in a standard QP

form i.e. into the form given by equations 3.5 and 3.6,

𝑚𝑖𝑛
𝑧

1

2
 𝑧𝑇 𝐻𝑧 + 𝑐𝑇𝑧 (3.5)

subject to,

𝐴e𝑧 = 𝑏e → equality constraint
 𝐴𝑖𝑧 ≤ 𝑏𝑖 → inequality constraint
 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 → bounds

 (3.6)

Let us first define the vector of unknowns 𝑧. This vector contains the variables to be

optimized. For control purpose, obviously one of the unknowns that needs to be optimized

are the control inputs. Why? because we try to fulfill the objective (setpoint tracking) and

the constraints by finding the very best (optimal) values of the control inputs. However, in

addition to the control inputs, other variables like the process states, outputs, error signal

etc. can also be included in the vector of unknowns. In this sense, we can say that we have

the flexibility in defining 𝑧, and its contents can vary.

Let us for example define the vector of unknowns 𝑧 as follows,

𝑧 = [

𝑢
𝑥
𝑒
𝑦

] 𝑖. 𝑒. 𝑧𝑇 = (𝑢𝑇 , 𝑥𝑇 , 𝑒𝑇 , 𝑦𝑇) = [

𝑢
𝑥
𝑒
𝑦

]

𝑇

Remember that we are trying to control the process output throughout the whole prediction

horizon (from the current time step and N steps into the future). Thus the unknown variables

(which also includes the control inputs) should be optimized for the whole prediction

horizon. We then have,

𝑢𝑇 = (𝑢0
𝑇 , 𝑢1

𝑇 , ………… . . 𝑢𝑁−1
𝑇) , 𝑢𝑇𝜖 ℝ(1× 𝑁.𝑛𝑢)

𝑥𝑇 = (𝑥1
𝑇 , 𝑥2

𝑇 , ………… . . 𝑥𝑁
𝑇) , 𝑥𝑇𝜖 ℝ(1×𝑁.𝑛𝑥)

𝑒𝑇 = (𝑒1
𝑇 , 𝑒2

𝑇 , ………… . . 𝑒𝑁
𝑇) , 𝑒𝑇𝜖 ℝ(1×𝑁.𝑛𝑦)

𝑦𝑇 = (𝑦1
𝑇 , 𝑦2

𝑇 , ………… . . 𝑦𝑁
𝑇) , 𝑦𝑇𝜖 ℝ(1×𝑁.𝑛𝑦)

Note:

For processes with single input, 𝑢𝑘−1 at each time step i.e. 𝑢0, 𝑢1, 𝑢2, … 𝑢𝑁−1 for k = 1 to k =

N will be each a scalar number. However, for processes with multiple inputs, 𝑢𝑘−1 at each

time step i.e. 𝑢0, 𝑢1, 𝑢2, … 𝑢𝑁−1 for k = 1 to k = N will be each a vector. For example, for a

42

system with 𝑛𝑢 = 2 number of control inputs, the control inputs at time 𝑘 = 1 is 𝑢0
𝑇 =

(𝑢0
1, 𝑢0

2). Here the superscript 1 means the first control input and superscript 2 means the

second control input (out of the multiple inputs available in the process)

At time 𝑘 = 2, the control inputs 𝑢1
𝑇 = (𝑢1

1, 𝑢1
2) and so on for other time steps.

The same applies for the outputs also. If a system has more than one (multiple) outputs, then

𝑦𝑘 at each time step i.e. 𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁 for k = 1 to k = N will be each a vector. For example,

for a system with 𝑛𝑦 = 3 number of outputs, the outputs at time 𝑘 = 1 is 𝑦1
𝑇 = (𝑦1

1, 𝑦1
2, 𝑦1

3).

Here the superscript 1 means the first process output, superscript 2 means the second

process output and superscript 3 means the third process output (out of the multiple inputs

available in the process)

At time 𝑘 = 2, it is 𝑦2
𝑇 = (𝑦2

1, 𝑦2
2, 𝑦2

3) and so on for other time steps.

Based on our choice, the total number of unknowns (𝑛𝑧) in vector 𝑧 for the whole prediction

horizon length (𝑁) is,

𝑛𝑍 = 𝑁 (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑦)

If we expand the objective function 𝐽 of equation 3.1 for 𝑘 = 1 to 𝑘 = 𝑁 we will get,

𝐽 =
1

2
[𝑒1
𝑇𝑄1𝑒1 + 𝑒2

𝑇𝑄2𝑒2 +⋯+ 𝑒𝑁
𝑇𝑄𝑁𝑒𝑁 + 𝑢0

𝑇𝑃0𝑢0 + 𝑢1
𝑇𝑃1𝑢1 +⋯+ 𝑢𝑁−1

𝑇 𝑃𝑁−1𝑢𝑁−1] (3.7)

Now with our choice of vector 𝑧, the standard quadratic objective function of equation 3.5

can be written as,

𝐽 =
1

2
 𝑧𝑇 𝐻𝑧 + 𝑐𝑇𝑧

 𝐽 =
1

2
 [

𝑢
𝑥
𝑒
𝑦

]

𝑇

⏟
𝑧𝑇

[

 𝐻11 0
 0 𝐻22

0 0
0 0

0 0
0 0

𝐻33 0
0 𝐻44

]

⏟
𝐻

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑧

+ [

𝑐1
𝑐2
𝑐3
𝑐4

]

𝑇

⏟
𝑐𝑇

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑧

(3.8)

Here we have arranged the symmetric diagonal matrix with four elements

 𝐻11, 𝐻22, 𝐻33 and 𝐻44 on the diagonal because the vector 𝑧 contains four different types of

elements (𝑢, 𝑥, 𝑒 and 𝑦). Similar argument holds also for the vector 𝑐.

Now if we multiply the matrices in equation 3.8 we get,

𝐽 =
1

2
[𝑢𝑇𝐻11𝑢 + 𝑥

𝑇𝐻22𝑥 + 𝑒
𝑇𝐻33𝑒 + 𝑦

𝑇𝐻44𝑦] + 𝑐1
𝑇𝑢 + 𝑐2

𝑇𝑥 + 𝑐3
𝑇𝑒 + 𝑐4

𝑇𝑦 (3.9)

Comparing (3.7) with (3.9),

𝑢𝑇𝐻11𝑢 = 𝑢0
𝑇𝑃0𝑢0 + 𝑢1

𝑇𝑃1𝑢1 +⋯+ 𝑢𝑁−1
𝑇 𝑃𝑁−1𝑢𝑁−1

In matrix form,

𝑢𝑇𝐻11𝑢 = [

𝑢0
𝑢1
⋮

𝑢𝑁−1

]

𝑇

 [

𝑃0 0
0 𝑃1

⋯
0
0

⋮ ⋱ ⋮
0 ⋯ 𝑃𝑁−1

] [

𝑢0
𝑢1
⋮

𝑢𝑁−1

] (3.10)

43

Comparing both sides of equation 3.10 we finally can write,

 𝐻11 = [

𝑃0 0 ⋯ 0
0 𝑃1 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝑃𝑁−1

]

If, 𝑃0 = 𝑃1 = ………… .= 𝑃𝑁−1 = 𝑃 with 𝑃𝜖ℝ
𝑛𝑢×𝑛𝑢 , i.e. taking the same value of the

weighting matrix (the weighting matrix P should be a diagonal matrix, with weights for each

control input placed on the diagonal) for the whole prediction horizon length, then we have

𝑯𝟏𝟏 = [

𝑷 𝟎 ⋯ 𝟎
𝟎 𝑷 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
𝑷

] = 𝑰𝑵  𝑷

Note:

IN = Identify matrix of size ′N
′

 = Kronecker product

Again Comparing (3.7) with (3.9) we see that there is no ‘𝑥’ term in equation (3.7). So we

have,

𝑥𝑇𝐻22𝑥 = 𝑥1
𝑇0𝑥1 + 𝑥2

𝑇0𝑥2 +⋯+ 𝑥𝑁
𝑇0𝑥𝑁

In matrix form,

𝑥𝑇𝐻22𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑁

]

𝑇

 [

0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
0

] [

𝑥1
𝑥2
⋮
𝑥𝑁

] (3.11)

Comparing both sides of equation 3.11 we get,

𝑯𝟐𝟐 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
0

] = 𝟎𝑵.𝒏𝒙×𝑵.𝒏𝒙 = 𝑰𝑵 𝟎𝒏𝒙×𝒏𝒙

Similarly, for the error term, comparing (3.7) with (3.9) we have,

𝑒𝑇𝐻33𝑒 = 𝑒1
𝑇𝑄1𝑒1 + 𝑒2

𝑇𝑄2𝑒2 +⋯+ 𝑒𝑁
𝑇𝑄𝑁𝑒𝑁

In matrix form,

𝑒𝑇𝐻33𝑒 = [

𝑒1
𝑒2
⋮
𝑒𝑁

]

𝑇

 [

𝑄1 0
0 𝑄2

⋯
0
0

⋮ ⋱ ⋮
0 ⋯ 𝑄𝑁

] [

𝑒1
𝑒2
⋮
𝑒𝑁

] (3.12)

Comparing both sides of equation 3.12 we get,

𝐻33 = [

𝑄1 0
0 𝑄2

⋯
0
0

⋮ ⋱ ⋮
0 ⋯ 𝑄𝑁

]

44

If, 𝑄1 = 𝑄2 = ………… .= 𝑄𝑁 = 𝑄 with 𝑄𝜖𝑅
𝑛𝑦×𝑛𝑦 , i.e. taking the same value of the

weighting matrix (the weighting matrix Q should be a diagonal matrix) for the whole

prediction horizon length, we get,

𝑯𝟑𝟑 = [

𝑸 𝟎 ⋯ 𝟎
𝟎 𝑸 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
𝑸

] = 𝑰𝑵  𝑸

Again Comparing (3.7) with (3.9) we see that there is no ‘𝑦’ term in equation (3.7). So we

have,

𝑦𝑇𝐻44𝑥 = 𝑦1
𝑇0𝑦 + 𝑦2

𝑇0𝑦2 +⋯+ 𝑦𝑁
𝑇0𝑦𝑁

In matrix form,

𝑦𝑇𝐻44𝑦 = [

𝑦1
𝑦2
⋮
𝑦𝑁

]

𝑇

 [

0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
0

] [

𝑦1
𝑦2
⋮
𝑦𝑁

] (3.13)

Comparing both sides of equation 3.13 we get,

𝐇𝟒𝟒 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
0

] = 𝟎𝐍.𝐧𝐲×𝐍.𝐧𝐲 = 𝐈𝐍  𝟎𝐧𝐲×𝒏𝒚

Note: 0N.ny×N.ny = zeros (N. ny, N. ny) in MATLAB

Then the 𝐻 matrix of the standard quadratic objective function can be written as,

𝐻 = blkdiag (𝐻11 , 𝐻22 , 𝐻33 , 𝐻44)

 = blkdiag (𝐼𝑁  𝑃 , 0𝑁.𝑛𝑥×𝑁.𝑛𝑥 , 𝐼𝑁  𝑄 , 0𝑁.𝑛𝑦×𝑁.𝑛𝑦)

In addition, we can clearly see that in equation (3.7) we do not have any linear term (term

where variables have order 1, i.e. power raised to 1). Then comparing equations 3.7 and 3.9

we get,

𝑐1
𝑇𝑢 = 0𝑢0 + 0𝑢1 +⋯+ 0𝑢𝑁−1 (3.14)

In matrix form,

𝑐1
𝑇𝑢 = [0 0 ⋯ 0] [

𝑢0
𝑢1
⋮

𝑢𝑁−1

]

Comparing both sides of equation 3.14 we get,

𝑐1
𝑇 = [0 0 ⋯ 0]

Thus we have,

𝑐1 = [

0
0
⋮
0

] = 0𝑁.𝑛𝑢×1

In a similar manner, comparing equations 3.7 and 3.9 for the remaining linear terms we get,

45

𝑐2
𝑇𝑥 = 0𝑥1 + 0𝑥2 +⋯+ 0𝑥𝑁 (3.15)

𝑐3
𝑇𝑒 = 0𝑒1 + 0𝑒2 +⋯+ 0𝑒𝑁 (3.16)

𝑐4
𝑇𝑦 = 0𝑦1 + 0𝑦2 +⋯+ 0𝑦𝑁 (3.17)

In matrix form,

𝑐2
𝑇𝑥 = [0 0 ⋯ 0] [

𝑥1
𝑥2
⋮
𝑥𝑁

] (3.18)

𝑐3
𝑇𝑒 = [0 0 ⋯ 0] [

𝑒1
𝑒2
⋮
𝑒𝑁

] (3.19)

𝑐4
𝑇𝑦 = [0 0 ⋯ 0] [

𝑦1
𝑦2
⋮
𝑦𝑁

] (3.20)

Comparing both sides of equation 3.18, 3.19 and 3.20 respectively, we get,

𝑐2
𝑇 = [0 0 ⋯ 0] (3.21)

𝑐3
𝑇 = [0 0 ⋯ 0] (3.22)

𝑐4
𝑇 = [0 0 ⋯ 0] (3.23)

Thus we have,

𝑐2 = [

0
0
⋮
0

] = 0𝑁.𝑛𝑥×1 𝑐3 = [

0
0
⋮
0

] = 0𝑁.𝑛𝑦×1 𝑐4 = [

0
0
⋮
0

] = 0𝑁.𝑛𝑦×1

Putting them together in vector c we get,

𝑐 = [

𝑐1
𝑐2
𝑐3
𝑐4

] =

[

0𝑁.𝑛𝑢
0𝑁.𝑛𝑥

0𝑁.𝑛𝑦
0𝑁.𝑛𝑦]

= 0(𝑛𝑧×1) 𝑛𝑍 = no. of total unknowns

Note: 0(𝑛𝑧×1) = zeros (nZ , 1) → in MATLAB

Now let us express the equality constraints of the LQ optimal control problem given by

equation (3.2) - (3.4) in the standard QP form 𝐴𝑒𝑧 = 𝑏𝑒 given by equation 3.6. Let us first

organize the matrix 𝐴𝑒 and vector 𝑏𝑒. From the optimal control problem, we have in total

three equality constraints (equations 3.2, 3.3 and 3.4), therefore, let us group them into three

groups (three rows). For each group (or each row), it is easier to find the structured matrices

if we separate them out (in columns) according to the elements in the unknown vector 𝑧.

Then we have,

[

𝐴𝑒,1𝑢 𝐴𝑒,1𝑥 𝐴𝑒,1𝑒 𝐴𝑒,1𝑦

𝐴𝑒,2𝑢 𝐴𝑒,2𝑥 𝐴𝑒,2𝑒 𝐴𝑒,2𝑦
𝐴𝑒,3𝑢 𝐴𝑒,3𝑥 𝐴𝑒,3𝑒 𝐴𝑒,3𝑦

]

⏟
𝐴𝑒

 [

𝑢
𝑥
𝑒
𝑦

] = [

𝑏𝑒,1
𝑏𝑒,2
𝑏𝑒,3

]

⏟
𝑏𝑒

(3.24)

46

Each row of 𝐴𝑒 in equation (3.24) corresponds to each equality constraint of equations (3.2)

- (3.4). Each column of 𝐴𝑒 represents the an element of the unknown vector 𝑧 i.e. first column

corresponds to the first element of 𝑧 which is the control inputs and so on. We will now find

the structures for each of the elements of 𝐴𝑒 in equation (3.24).

Let us first consider the equality constraint given by equation (3.2)

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑥𝑘+1 − 𝐴𝑥𝑘 − 𝐵𝑢𝑘 = 0

𝑥𝑘 − 𝐴𝑥𝑘−1 − 𝐵𝑢𝑘−1 = 0

We should obey the constraints for the whole prediction horizon length. Since we consider a

prediction horizon from 𝑘 = 1 to 𝑘 = 𝑁 we have,

𝑥1 − 𝐴𝑥0 − 𝐵𝑢0 → 𝑥1 − 𝐵𝑢0 = 𝐴𝑥0 for 𝑘 = 1
𝑥2 − 𝐴𝑥1 − 𝐵𝑢1 = 0(𝑛𝑥×1) for 𝑘 = 2

 ⋮ ⋮ ⋮
𝑥𝑁 − 𝐴𝑥𝑁−1 − 𝐵𝑢𝑁−1 = 0(𝑛𝑥×1) for 𝑘 = 𝑁

(3.25)

Note: We take 𝑨𝒙𝟎 to the right hand side because 𝒙𝟎 is known and hence the term 𝑨𝒙𝟎 is

known. Remember to take all the known terms to the right hand side and all the

unknown terms to the left hand side.

Arranging the set of equations 3.25 obtained from the first equality constraints into a matrix

form we get the first row of 𝐴𝑒 in equation (3.24) as,

[

 −𝐵 0 0
0 −𝐵 0
0
⋮
0

0
⋱
…

−𝐵
⋱
…

… 0
… 0
…
⋱
…

0
⋮
−𝐵⏟

𝐴𝑒,1𝑢

⋮
⋮
⋮
⋮
⋮

𝐼 0 0
−𝐴 𝐼 0
0
⋮
0

−𝐴
⋱
0

𝐼
⋱
…

… 0
… 0
…
⋱
−𝐴

0
⋮
𝐼

⏟
𝐴𝑒,1𝑥

⋮
⋮
⋮
⋮
⋮

0 0 0
0 0
0
⋮
0

0
⋱
0

⋱
…

… 0
… ⋮
…
⋱
…

⋮
⋮
0

⏟
𝐴𝑒,1𝑒

⋮
⋮
⋮
⋮
⋮

0 0 0
0 0
0
⋮
0

0
⋱
0

⋱
…

… 0
… 0
…
⋱
…

0
⋮
0⏟

𝐴𝑒,1𝑦

]

(𝑁.𝑛𝑥×𝑛𝑧)

[

𝑢0
𝑢1
⋮

𝑢𝑁−1
𝑥1
𝑥2
⋮
𝑥𝑁
𝑒
𝑦]

(𝑛𝑧×1)

=

[

𝐴𝑥0
0𝑛𝑥×1
0𝑛𝑥×1
⋮
⋮
⋮
⋮
⋮
⋮

0𝑛𝑥×1]

⏟
𝑏𝑒,1

So, we have from the first linear equality constraint,

𝑨𝒆,𝟏𝒖 = [

−𝑩 𝟎 ⋯ 𝟎
𝟎 −𝑩 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
−𝑩

] = −𝑰𝑵  𝑩

𝑨𝒆,𝟏𝒙 =

[

𝑰 𝟎 𝟎 ⋯ 𝟎
−𝑨 𝑰 𝟎 ⋯ 𝟎
𝟎
⋮
𝟎

−𝑨

⋯

𝑰

⋯

⋯ 𝟎
⋱
−𝑨 𝑰]

 = 𝑰𝑵.𝒏𝒙 − (𝑰𝑵,−𝟏  𝑨)

In MATLAB, 𝐼𝑁,−1 can be written as diag(ones((N-abs(-1), 1), -1) .

47

Similarly,

𝑨𝒆,𝟏𝒆 = 𝟎(𝑵.𝒏𝒙×𝑵.𝒏𝒚)

𝑨𝒆,𝟏𝒚 = 𝟎(𝑵.𝒏𝒙×𝑵.𝒏𝒚)

and 𝒃𝒆,𝟏 = [
𝑨𝒙𝟎

𝟎((𝑵−𝟏).𝒏𝒙×𝟏)
]
(𝑵.𝒏𝒙×𝟏)

Now considering the second equality constraint of equation (3.3) we get,

𝑦𝑘 = 𝐶𝑥𝑘

𝑦𝑘 − 𝐶𝑥𝑘 = 0

This equality constraint must also be satisfied over the whole prediction horizon length.

Since we consider a prediction horizon from 𝑘 = 1 to 𝑘 = 𝑁 we get,

𝑦1 − 𝐶𝑥1 = 0(𝑛𝑦×1) for 𝑘 = 1

𝑦2 − 𝐶𝑥2 = 0(𝑛𝑦×1) for 𝑘 = 2

 ⋮ ⋮ ⋮
𝑦𝑁 − 𝐶𝑥𝑁 = 0(𝑛𝑦×1) for 𝑘 = 𝑁

(3.26)

Arranging the set of equations 3.26 obtained from the second equality constraints into a

matrix form we get the second row of 𝐴𝑒 in equation (3.24) as,

[

 0 0
0 0

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 0⏟
𝐴𝑒,2𝑢

⋮
⋮
⋮
⋮
⋮

−𝐶 0
0 −𝐶

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ −𝐶⏟
𝐴𝑒,2𝑥

⋮
⋮
⋮
⋮
⋮

0 0
0 0

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 0⏟
𝐴𝑒,2𝑒

⋮
⋮
⋮
⋮
⋮

𝐼 0
0 𝐼

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 𝐼⏟
𝐴𝑒,2𝑦]

(𝑁.𝑛𝑦×𝑛𝑧)

[

𝑢
𝑥1
𝑥2
⋮
𝑥𝑁
𝑒
𝑦1
𝑦2
⋮
𝑦𝑁]

(𝑛𝑧×1)

=

[

0𝑛𝑦×1
0𝑛𝑦×1
⋮
⋮
⋮
⋮
⋮
⋮
⋮

0𝑛𝑦×1]

⏟
𝑏∈,2

So we have,

𝑨𝒆,𝟐𝒖 = 𝟎(𝑵.𝒏𝒚×𝑵.𝒏𝒖)

𝑨𝒆,𝟐𝒙 = [

−𝑪 𝟎 ⋯ 𝟎
𝟎 −𝑪 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
−𝑪

] = −𝑰𝑵  𝑪

𝑨𝒆,𝟐𝒆 = 𝟎(𝑵.𝒏𝒚×𝑵.𝒏𝒚)

𝑨𝒆,𝟐𝒚 = [

𝑰 𝟎 ⋯ 𝟎
𝟎 𝑰 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
𝑰

] = 𝑰𝑵.𝒏𝒚

𝒃𝒆,𝟐 = 𝟎(𝑵.𝒏𝒚×𝟏)

Finally, from the last equality constraint of equation (3.4) we get,

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

48

𝑒𝑘 + 𝑦𝑘 = 𝑟𝑘 (we are taking 𝑟𝑘 to the right because the reference or setpoint is

known or defined for the whole prediction horizon length)

This equality constraint must also be satisfied over the whole prediction horizon length.

Since we consider a prediction horizon from 𝑘 = 1 to 𝑘 = 𝑁 we get,

𝑒1 + 𝑦1 = 𝑟1 for 𝑘 = 1
𝑒2 + 𝑦2 = 𝑟2 for 𝑘 = 2
 ⋮ ⋮ ⋮

𝑒𝑁 + 𝑦𝑁 = 𝑟𝑁 for 𝑘 = 𝑁

(3.27)

Arranging the set of equations 3.27 obtained from the third equality constraints in a matrix

form we get the third row of 𝐴𝑒 in equation (3.24) as,

[

 0 0
0 0

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 0⏟
𝐴𝑒,3𝑢

⋮
⋮
⋮
⋮
⋮

0 0
0 0

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 0⏟
𝐴𝑒,3𝑥

⋮
⋮
⋮
⋮
⋮

𝐼 0
0 𝐼

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 𝐼⏟
𝐴𝑒,3𝑒

⋮
⋮
⋮
⋮
⋮

𝐼 0
0 𝐼

⋯
…

0
0

⋮ ⋱ ⋮

0 ⋯ 𝐼⏟
𝐴𝑒,3𝑦]

(𝑁.𝑛𝑦×𝑛𝑧)

[

𝑢
𝑥
𝑒1
𝑒2
⋮
𝑒𝑁
𝑦1
𝑦2
⋮
𝑦𝑁]

(𝑛𝑧×1)

=

[

𝑟1
𝑟2
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑟𝑁]

⏟
𝑏𝑒,3

So we have,

𝑨𝒆,𝟑𝒖 = 𝟎(𝑵.𝒏𝒚×𝑵.𝒏𝒖)

𝑨𝒆,𝟑𝒙 = 𝟎(𝑵.𝒏𝒚×𝑵.𝒏𝒙)

𝑨𝒆,𝟑𝒆 = [

𝑰 𝟎 ⋯ 𝟎
𝟎 𝑰 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
𝑰

] = 𝑰𝑵  𝑰𝒏𝒚 = 𝑰𝑵.𝒏𝒚

𝑨𝒆,𝟑𝒚 = [

𝑰 𝟎 ⋯ 𝟎
𝟎 𝑰 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱
⋯

⋮
𝑰

] = 𝑰𝑵.𝒏𝒚

𝒃𝒆,𝟑 = [
𝒓𝟏
⋮
𝒓𝑵
]
(𝑵.𝒏𝒚×𝟏)

Finally, all the three equality constraints can be written in the standard form of 𝐴𝑒 𝑧 = 𝑏𝑒

where,

𝐴𝑒 = [

−𝐼𝑁𝐵 𝐼𝑁.𝑛𝑥 − (𝐼𝑁,−1𝐴) 0𝑁.𝑛𝑥×𝑁.𝑛𝑦
0𝑁.𝑛𝑦×𝑁.𝑛𝑢 −𝐼𝑁 𝐶 0𝑁.𝑛𝑦×𝑁.𝑛𝑦
0𝑁.𝑛𝑦×𝑁.𝑛𝑢 0𝑁.𝑛𝑦×𝑁.𝑛𝑥 𝐼𝑁.𝑛𝑦

0𝑁.𝑛𝑥×𝑁.𝑛𝑦
𝐼𝑁.𝑛𝑦
𝐼𝑁.𝑛𝑦

]

and

49

𝑏𝑒 = [

𝑏𝑒,1
𝑏𝑒,2
𝑏𝑒,3

] =

[

𝐴𝑥0
0(𝑁−1).𝑛𝑥×1
0𝑁.𝑛𝑦×1
𝑟1
𝑟2
⋮
𝑟𝑁]

3.4 Handling bounds and inequality constraints:

The standard QP formulation of equations 3.6 also contains the bounds i.e. 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻.

Thus, bounds on the unknown variables should also be properly formulated. Since no values

to the lower and upper bound are provided in the statement of the LQ control problem of

equations (3.1 – 3.4), we will assume that they are unbounded i.e. we assume that they can

take any values between −∞ and +∞. Thus for the given LQ optimal control problem, the

bounds are,

𝑧𝐿 = −∞ × 𝑜𝑛𝑒𝑠 (𝑛𝑧 , 1) = −∞ × 1𝑛𝑧×1

𝑧𝑈 = +∞ × 𝑜𝑛𝑒𝑠 (𝑛𝑧 , 1) = +∞ × 1𝑛𝑧×1

In the statement of the LQ optimal control problem equations (3.1 – 3.4), only the equality

constraints are present. Due to the absence of the inequality constraints for this particular

problem i.e. when 𝐴𝑖𝑧 ≤ 𝑏𝑖 is not considered or present, we simply represent it as,

𝐴𝑖 = [] = 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

𝑏𝑖 = [] = 𝑒𝑚𝑝𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟

Some comments:

If the control input signals have bounds such that 𝑢𝐿 ≤ 𝑢𝑘 ≤ 𝑢𝑈 then, the bounds on the

unknown vector 𝑧 should be adjusted or modified. The vector 𝑢𝐿 = [𝑢𝐿
1, 𝑢𝐿

2, … , 𝑢𝐿
𝑛𝑢] contains

the value of the lower bound for each control inputs. The vector 𝑢𝑈 = [𝑢𝑈
1 , 𝑢𝑈

2 , … , 𝑢𝑈
𝑛𝑢]

contains the value of the upper bound for each control inputs. Since for this optimal control

problem, the control input signals are the first unknown variable in the vector 𝑧, the first

𝑁. 𝑛𝑢 elements of 𝑧𝐿 and 𝑧𝑈 should be modified as,

𝑧𝐿 = (
1𝑁×1 𝑢𝐿

−∞(𝑛𝑧− 𝑁.𝑛𝑢)×1
) , 𝑧𝐻 = (

1𝑁×1 𝑢𝑈
+∞(𝑛𝑧−𝑁.𝑛𝑢)×1

)

The same approach can also be taken to add bounds to the other unknown variables in z.

In the statement of the LQ optimal control problem equations (3.1 – 3.4), only the equality

constraints are present. However, in many other control problems, inequality constraints

could also be present. In general, the inequality constraints can also be treated in the same

way as the equality constraints i.e. by constructing the structured matrices for inequality

constraints as was done for the equality constraints.

50

Finally, we have created all the matrices that are needed to formulate the given LQ optimal

control problem into a standard QP (Quadratic optimization) problem. We are now ready to

solve this QP. For this course, we will be using the qpOASES solver in Simulink. An example

of its use is explained in the next section.

The standard QP problem can also be solved using the ‘quadprog’ solver in MATLAB for. The

syntax for using the quadprog solver is,

𝑧∗ = quadprog (𝐻, 𝑐, 𝐴𝑖 , 𝐵𝑖 , 𝐴𝑒 , 𝑏𝑒 , 𝑧𝐿 , 𝑧𝑈 , 𝑧𝑂)

where 𝑧𝑂 is the initial starting point for the optimizer, 𝑧0𝜖ℝ
𝑛𝑧×1. All the matrices and vectors

i.e. 𝐻, 𝑐, 𝐴𝑖 , 𝐵𝑖 , 𝐴𝜖 , 𝑏𝜖 , 𝑧𝐿 , 𝑧𝐻 , 𝑧𝑂 that are needed for the ‘quadprog’ solver should be known

or constructed.

Both the qpOASES solver in Simulink and the ‘quadprog’ solver in MATLAB will solve the QP

problem (the inner details of how the solver function operates is NOT within the scope of

this course) and return back the optimal values (the best values) of the variables contained

in the unknown vector 𝑧. The optimal values of the unknown variables are denoted as 𝑧∗

where 𝑧∗𝜖ℝ𝑛𝑧×1. For the 𝑧 variables that we previously chose as unknowns, the structure of

the 𝑧∗ is as follows,

𝑧∗ =

[

𝑢0
∗

𝑢1
∗

⋮
𝑢𝑁−1
∗

𝑥1
∗

⋮
𝑥𝑁
∗

𝑒1
∗

⋮
𝑒𝑁
∗

𝑦1
∗

⋮
𝑦𝑁
∗]

(𝑛𝑧×1)

Another example: If there are three outputs present in the system,

i.e. 𝑛𝑦 = 3 then,

𝑦𝑘
∗ = [

𝑦𝑘
1

𝑦𝑘
2

𝑦𝑘
3

]

∗

 for 𝑘 = 1, 2,… . ,𝑁 (through out the prediction horizon)

Here, the superscript denotes the three outputs present in the system respectively

Imp

For MIMO system and with multiple states, for each 𝑘𝑡ℎ sample, 𝑢, 𝑥,

𝑒 and 𝑦 are vectors (instead of just scalars)

e.g. If there are two control inputs in the system i.e. 𝑛𝑢 = 2 then,

𝑢𝑘
∗ = [

𝑢𝑘
1

𝑢𝑘
2]

∗

for 𝑘 = 0, 1, ………… . . , 𝑁 − 1 (whole prediction horizon)

The superscript denotes the two control inputs present in the

process respectively.

51

As an example of a complete structure of 𝑧∗ for a MIMO system, let us consider that 𝑛𝑢 =

2, 𝑛𝑥 = 2, 𝑛𝑦 = 2 and 𝑁 = 3. To save space, let us write the structure of the transpose of 𝑧∗

where the subscripts denote the time 𝑘 and the superscript denote the individual inputs,

states, error signals and the outputs present in the system. The solution returned by the

qpOASES solver (also by quadprog solver) will have the following structure:

(𝑧∗)𝑇 = [𝑢0
1, 𝑢0

2, 𝑢1
1, 𝑢1

2, 𝑢2
1, 𝑢2

2, 𝑥1
1, 𝑥1

2, 𝑥2
1, 𝑥2

2, 𝑥3
1, 𝑥3

2, 𝑒1
1, 𝑒1

2, 𝑒2
1, 𝑒2

2, 𝑒3
1, 𝑒3

2, 𝑦1
1, 𝑦1

2, 𝑦2
1, 𝑦2

2, 𝑦3
1, 𝑦3

2]∗

This means that the variables in z∗ vector are not arranged in “ready to plot form”. You have

to first properly extract the needed signals before you can plot them.

To better understand this, let us consider that the prediction horizon 𝑁 = 3. With this

horizon length we will have the time steps as 𝑘 = 1, 2, 3. Let us also consider that the process

has three outputs 𝑛𝑦 = 3, two states 𝑛𝑥 = 2 and three control inputs 𝑛𝑢 = 3. The structure

of the optimal solution will be (again using transpose to save space),

(𝑧∗)𝑇 = [𝑢𝑇 , 𝑥𝑇 , 𝑒𝑇 , 𝑦𝑇]∗

where,

𝑢𝑇 = [𝑢0
1, 𝑢0

2, 𝑢0
3, 𝑢1

1, 𝑢1
2, 𝑢1

3, 𝑢2
1, 𝑢2

2, 𝑢2
3]∗

𝑥𝑇 = [𝑥1
1, 𝑥1

2, 𝑥2
1, 𝑥2

2, 𝑥3
1, 𝑥3

2]∗

𝑒𝑇 = [𝑒1
1, 𝑒1

2, 𝑒1
3, 𝑒2

1, 𝑒2
2, 𝑒2

3, 𝑒3
1, 𝑒3

2, 𝑒3
3]∗

𝑦𝑇 = [𝑦1
1, 𝑦1

2, 𝑦1
3, 𝑦2

1, 𝑦2
2, 𝑦2

3, 𝑦3
1, 𝑦3

2, 𝑦3
3]∗

Let us take the output signal as an example here (but the structure is the same for all other

elements in the vector 𝑧).

𝑦 =

[

𝑦1
1

𝑦1
2

𝑦1
3

…
𝑦2
1

𝑦2
2

𝑦2
3

…
𝑦3
1

𝑦3
2

𝑦3
3]

for the first time step 𝑘 = 1 all the three

outputs of the process are present.

for the second time step 𝑘 = 2 all the three

outputs of the process are present.

For the third time step 𝑘 = 3 all the three

outputs of the process are present.

Same structure also for u, x and e

also

52

Now, if we want to plot the first output signal 𝑦𝑘
1 for all the time steps i.e. for 𝑘 = 1, 2 and 3,

we should plot 𝑦1
1, 𝑦2

1 and 𝑦3
1. As we can see that these values are not placed one after the

other. They are rather placed in specific places in the 𝑧∗ vector. Thus, we should make sure

that we pick them up properly from the z∗ vector. The same thing applies also for all the

other unknown variables present in the z∗ vector.

In MATLAB (and MATLAB function block in Simulink), you can use the function called

"reshape” to pick up or choose the right signals from the optimal solution. Explore this

function yourself and also look at the example!!

Can you do it yourself?

Let us consider the following quadratic performance criteria

 𝐽 =
1

2
 ∑𝑒𝑘

𝑇 𝑄𝑘. 𝑒𝑘 + ∆𝑢𝑘−1
𝑇 𝑃𝑘−1∆𝑢𝑘−1

𝑁

𝑘=1

+ 𝑢𝑘−1
𝑇 𝑅𝑘−1𝑢𝑘−1

where,

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1

For the given process model,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘

where,

𝑥𝑘𝜖ℝ
𝑛𝑥 , 𝑢𝑘𝜖ℝ

𝑛𝑢 , 𝑦𝑘𝜖ℝ
𝑛𝑦 , 𝑣𝑘𝜖ℝ

𝑛𝑥 , 𝑤𝑘𝜖ℝ
𝑛𝑦

𝑣𝑘 and 𝑤𝑘 are the process noise and the measurement noise respectively and it is assumed

that they are known or can be modeled.

Express the above in the standard QP from

𝐽 =
1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧

𝐴𝜖𝑧 = 𝑏𝜖

Where,

𝑧𝑇 = (𝑢𝑇 , ∆𝑢𝑇 , 𝑥𝑇 , 𝑒𝑇 , 𝑦𝑇)

3.5 Example: LQ optimal control of inverted pendulum

In this example, we will further work with the inverted pendulum system (as described in

lecture 1). If we recall, the inverted pendulum system has 4 states: the angle(𝛼), angular

velocity(𝜔), position of cart(𝑥2) and velocity of cart(𝑣2). A mechanistic model of the inverted

pendulum system is given by the following set of nonlinear ODEs.

𝑑𝛼

𝑑𝑡
= 𝜔

𝑑𝜔

𝑑𝑡
=

𝑚1+𝑚2

𝑚1
2𝑙2𝑐𝑜𝑠2𝛼−𝑚1

2𝑙2−𝑚1𝑚2𝑙2
(𝑘𝑇𝑙

2|𝜔|𝜔 −𝑚1𝑔𝑙 𝑠𝑖𝑛𝛼) +
𝑐𝑜𝑠𝛼

𝑚1𝑙𝑐𝑜𝑠2𝛼−𝑚1𝑙−𝑚2𝑙
(𝐹 + 𝜔2𝑚1𝑙 𝑠𝑖𝑛𝛼)

53

𝑑𝑥2
𝑑𝑡

= 𝑣2

𝑑𝑣2
𝑑𝑡

=
1

𝑚1𝑙 𝑐𝑜𝑠𝛼
(𝑚1𝑔𝑙 𝑠𝑖𝑛𝛼 − 𝑘𝑇𝑙

2|𝜔|𝜔 −𝑚1𝑙
2
𝑑𝜔

𝑑𝑡
)

The parameters of the system are: 𝑚1 = 1 kg,𝑚2 = 2 kg, 𝑙 = 1 m, 𝑘𝑇 = 0.1 kg/rad
2.

We will control the angle of the inverted pendulum so that it remains inverted (i.e. it stands

upright). At the same time we will also control the position of the cart. In order to control 𝛼

and 𝑥2, the force acting on the cart(𝐹) can be adjusted/manipulated. Thus the control input of the

system is 𝐹.

Since, we will be designing an LQ optimal controller, we need a linear model of the inverted

pendulum system. The nonlinear ODEs can be linearized around the equilibrium point (𝛼𝑠 =

0,𝑤𝑠 = 0, 𝑥2𝑠 = 0 and 𝑣2𝑠 = 0). We will then obtain a continuous time linear model of the system

as,

𝑑𝑥

𝑑𝑡
= 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) (3.28)

 (3.29)

𝑦 = 𝐶𝑐𝑥(𝑡)

where,

𝑥 = [

𝛼
𝜔
𝑥2
𝑣2

], 𝐴𝑐 = [

0 1 0 0
14.715 0 0 0
0

−4.905
0
0

0
0

1
0

], 𝐵𝑐 = [

0
−0.5
0
0.5

], 𝐶𝑐 = [
1 0 0 0
0 0 1 0

]

Note: Since the measurements (𝛼 and 𝑥2) are directly the states of the system, measurement

matrix 𝐶𝑐 is obvious to construct.

For LQ optimal control, we need the discrete time linear model of the system. The continuous

time model of equations (3.28) and (3.29) can be discretized (for e.g. in MATLAB) with a

chosen sampling time 𝑑𝑡 as,

% Discrete time model

dt = 0.1; %sampling time
sys = ss(Ac,Bc,Cc,0); %there is no D matrix, so set it as 0
ds = c2d(sys,dt);
A = ds.a; B = ds.b; C = ds.c; %discrete time system matrices

Precaution and information:

In Simulink, the function ss is not supported for code generation (or compilation) as shown

in Figure 3.1. So you cannot use the above code snippet with MATLAB function block in

Simulink. The workaround here is to use the above code snippet with MATLAB alone, execute

54

it and then copy (or use) the discrete A, B, C, D matrices in MATLAB function block in

Simulink.

Figure 3.1: ss function does not support code generation in Simulink

We then have the discrete time model as,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (3.30)

 (3.31)

𝑦𝑘 = 𝐶𝑥𝑘

where

𝑥 = [

𝛼
𝜔
𝑥2
𝑣2

], 𝐴 = [

1.0745 0.1025 0 0
1.5079 1.0745 0 0
−0.0248
−0.5026

−0.0008
−0.0248

1
0

0.1
1

], 𝐵𝑐 = [

−0.0025
−0.0512
0.0025
0.0504

], 𝐶𝑐 = [
1 0 0 0
0 0 1 0

]

Problem Formulation:

Design an LQ optimal controller that tracks the angle of the pendulum (𝛼) and the position

of the cart (𝑥2) to their set points.

As a scenario for the simulation, let us simulate the system for 8 seconds with a sampling

time of 0.1 sec. Then the length of the horizon will be 𝑁 =
8

0.1
= 80 samples. Let us define the

set point for the angle to be 0 radian throughout the horizon. For the position of the cart, let

us define the set point to be:

0 for 𝑁 ≤ 40 i.e. 𝑡 ≤ 4 seconds

1 for 𝑁 > 40 i.e. 𝑡 > 4 seconds

55

In a MATLAB function block in Simulink, it can be done as,

N = 80; % prediction horizon length

% set up the references for the whole prediction horizon length
r = [zeros(1,N);
 zeros(1,N/2) ones(1,N/2)];

The LQ optimal control problem can be formulated as,

𝑚𝑖𝑛 𝐽 =
1

2
 ∑ 𝑒𝑘

𝑇 𝑄𝑘𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑘−1𝑢𝑘−1

𝑁

𝑘=1

(3.32)

subject to,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 with 𝑥𝜖ℝ
𝑛𝑥×1 , 𝑢𝜖ℝ𝑛𝑢×1 (3.33)

𝑦𝑘 = 𝐶𝑥𝑘 with yϵℝ
ny×1 and x0 is given/known (3.34)

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 with 𝑟𝑘 being the set points (3.35)

Here, 𝑛𝑥= no. of states = 4, 𝑛𝑢 = no. of control inputs=1, 𝑛𝑦 = no. of outputs=2, 𝑄𝑘 and 𝑃𝑘

are the weighting matrices

Problem Solution:

To solve the LQ optimal control problem given by equations (3.32 – 3.35), we first need to

express the problem in a standard QP form as,

𝑚𝑖𝑛
𝑧

1

2
 𝑧𝑇 𝐻𝑧 + 𝑐𝑇𝑧 (3.36)

subject to,

𝐴e𝑧 = 𝑏e → equality constraint
𝐴𝑖𝑧 ≤ 𝑏𝑖 → inequality constraint
𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 → bounds

 } (3.37)

Here we are free to choose the vector of unknowns 𝑧. Let us define it to be 𝑧 = [𝑢, 𝑥, 𝑒, 𝑦]𝑇 .

This problem is similar to what we learnt in lecture 3. Following the same procedure we can

construct the structured matrices 𝐻, 𝑐, 𝐴e, 𝑏ϵ, 𝐴𝑖 , 𝑏𝑖, 𝑧𝐿 , 𝑧𝑈. They will be the same as discussed

in lecture 3 (thus not shown here but note that they may be different for different

formulations and different choices of the vector 𝑧).

In Simulink, we can make use of the qpOASES solver to solve the LQ optimal control problem

for the inverted pendulum. A suggested block diagram for implementing it in Simulink is

shown in Figure 3.2. Please note that here we use “Array plot” for plotting and not “scope” in

Simulink. The “scope” can only plot variables vs. time. Here we need to plot array of numbers,

thus we use “Array Plot”.

56

Figure 3.2: Implementation of LQ optimal control for inverted pendulum in Simulink

In the first block (QP_formulation_IVP), you can use the MATLAB function block in Simulink

to construct matrices needed for standard QP formulation such as 𝐻, 𝑐, 𝐴𝑒, 𝑏𝑒, 𝑧𝐿, 𝑧𝑈. To do

so you should use the discrete time matrices 𝐴, 𝐵, 𝐶.

A code snippet of the first MATLAB function block in Simulink is shown below:

function [H,c,Ae,zL,zU,be] = QP_formulation_IVP()

%discrete time model

A = [1.0745,0.1025,0,0; 1.5079,1.0745,0,0;-0.0248,-0.0008,1,0.1;-0.5026,

 -0.0248,0,1];

B = [-0.0025;-0.0512;0.0025;0.0504];

C = [1,0,0,0;0,0,1,0];

N = 80; % prediction horizon length

% set up the references for the whole prediction horizon length
r = [zeros(1,N); % first row for first output (pendulum angle)
 zeros(1,N/2) ones(1,N/2)]; % second row for second output (cart position)

%initial values of the states should be known or estimated
x0 = [0; 0; 0; 0];

%size of matrices
nx = 4; ny = 2; nu = 1;

%size of the unknow vector z
nz = N*(nx + nu + 2*ny);

%weighting matrices
Q=diag([1.0 1.0]); %tuning weight for error: there are 2
P=1e-3; %tuning weight for inputs: there is 1

% build matrices
H11 = kron(eye(N),P);
H22 = zeros(N*nx,N*nx);
H33 = kron(eye(N),Q);

57

H44 = zeros(N*ny,N*ny);
H_mat = blkdiag(H11,H22,H33,H44);

%qpOASES does not accept matrices, but only vectors

%we have to change H matrix to vector by stacking elements column wise

H = H_mat(:);

c = zeros(nz,1);

%constraints (from process model)

% from eq 3.33: state equation
Ae1u = -kron(eye(N),B);
Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A);
Ae1e = zeros(N*nx,N*ny);
Ae1y = zeros(N*nx,N*ny);
be1 = [A*x0;zeros((N-1)*nx,1)];

%from eq 3.34: measurement equation
Ae2u = zeros(N*ny,N*nu);
Ae2x = -kron(eye(N),C);
Ae2e = zeros(N*ny,N*ny);
Ae2y = eye(N*ny);
be2 = zeros(N*ny,1);

%from eq 3.35: error equation
Ae3u = zeros(N*ny,N*nu);
Ae3x = zeros(N*ny,N*nx);
Ae3e = eye(N*ny);
Ae3y = eye(N*ny);

% since be3 contains the reference vector in specific order, we have to use

% the function “reshape” to put the reference values in the right order
be3 = reshape(r,N*ny,1);

Ae_mat=[Ae1u Ae1x Ae1e Ae1y;

 Ae2u Ae2x Ae2e Ae2y;

 Ae3u Ae3x Ae3e Ae3y];

%qpOASES does not accept matrices, but only vectors

%we have to change Ae matrix to vector by stacking elements column wise

Ae = Ae_mat(:); %stacking column wise

% make the standard be vector

be=[be1;be2;be3];

%bounds (not specified so assume between –inf to +inf)
ZL=(-Inf*ones(nz,1));
ZU=(Inf*ones(nz,1));

Some notes:

The qpOASES solver does not accept matrices but it can accept only vectors. Since 𝐻 is a

matrix, it should be converted to a vector by stacking the elements of the matrix column wise.

The code snippet to be used in the first MATLAB function block in Simulink is

H_mat = blkdiag(H11,H22,H33,H44);

%qpOASES does not accept matrices, but only vectors

%we have to change H matrix to vector by stacking elements column wise

H = H_mat(:);

58

Similarly, 𝐴𝑒 is a matrix, so it should be converted to a vector by stacking the elements of the

matrix column wise. The code snippet to be used in the first MATLAB function block in

Simulink is

Ae_mat=[Ae1u Ae1x Ae1e Ae1y;

 Ae2u Ae2x Ae2e Ae2y;

 Ae3u Ae3x Ae3e Ae3y];

%qpOASES does not accept matrices, but only vectors

%we have to change Ae matrix to vector by stacking elements column wise

Ae = Ae_mat(:); %stacking column wise

After defining and constructing the matrices in the first MATLAB function block in Simulink,

you have to return back the matrices 𝐻, 𝑐, 𝐴𝑒 , 𝑏𝑒 , 𝑧𝐿, 𝑧𝑈. Then we are ready to solve the QP

problem.

In the second block (qpOASES_SQProblem), you have to use the qpOASES solver (the

compiled mex file) to solve the standard QP problem. Please make sure to compile the

qpOASES solver such that it fits the size of your problem given by 𝑛𝑧 . For this you should

modify the .cpp file in the qpOASES installation folder. Details on how to do so was also

discussed in lecture 2 when the oil refinery QP problem was solved in Simulink (look back

the videos if necessary).

In the third block (extract_results), the optimal values of the unknowns in vector 𝑧, here

donoted by 𝑧_𝑜𝑝𝑡 is taken as the input in a MATLAB function block in Simulink. Since the

𝑧_𝑜𝑝𝑡 vector does not contain data in a “ready to plot” order, we have to extract the results

for the process outputs and control inputs. Then these extracted results can be plotted using

Array Plot in Simulink. In addition, it is also useful to plot the reference line or the setpoints

along with the process outputs (therefor we have y_and_r). The code snippet to do so is,

function [y_and_r,u] = extract_results(z_opt)

N = 80; %prediction horizon length

nx = 4; nu = 1; ny = 2; %no. of states, inputs and outputs

%extract results

Ua = z_opt(1+N*(0) :N*(nu),1); %control inputs

Xa = z_opt(1+N*(nu) :N*(nu+nx),:); %states

Ea = z_opt(1+N*(nu+nx) :N*(nu+nx+ny),:); %error in tracking

Ya = z_opt(1+N*(nu+nx+ny) :N*(nu+nx+ny+ny),:); %outputs

%we use the reshape function to rearrange the data

y_temp = reshape(Ya,ny,N);%arranged outputs(rows as signals, columns as data)

%the array plot in Simulink accepts signals in a format such that the columns

%represent the different signals and the rows represent the data for each

signal. So we need to transpose it.

%The first column is for output y1 (angle), second column for output y2

%(cart postion)

y = y_temp';

%Let us also plot the reference signals along with the output signals for

%better viewing.

r = [zeros(N,1),[zeros(N/2,1);ones(N/2,1)]];

59

%Put it as the third column (for r1) and fourth column (for r2).

y_and_r = [y,r(:,1),r(:,2)];

u_temp = reshape(Ua,nu,N); %arranged input(row as signals, columns as data)

u = u_temp';

You should now configure the simulation parameters. Click in the model configuration

parameter (click gear like symbol in Simulink) as shown in Figure 3.3(a). Then it opens up

configuration parameter window. You can choose 0.0 seconds for Start time and 0.1 second

for Stop time. In solver options type, choose “Fixed-step”. Choose ode4 (Runge-Kutta) as

“Solver”. Choose 0.1 as the fixed-step size under “additional options”. See Figure 3.3(b) for

the values to be chosen.

Note: Here for LQ optimal control, we choose Stop time = fixed-step size because we only

need to solve the optimal control problem once. Later on in this course, you will learn that

for MPC, your Stop time can be much larger, since with MPC we have to re-solve the optimal

control problem at each time step.

Figure 3.3 (a): Model configuration parameter icon

Figure 3.3 (b): Configuration of the simulation parameters

Click Apply and then OK to close the configuration parameter window. Then you can go

ahead and click the run button in Simulink (on top middle) to start the simulation. The LQ

optimal control of the inverted pendulum example is shown below in Figure 3.4.

60

Figure 3.4: LQ optimal control of inverted pendulum in Simulink

In MATLAB (without Simulink) we can make use of the quadprog solver. The code snippet

for solving LQ optimal control problem for inverted pendulum in MATLAB (is almost the

same as for Simulink) is

%clear

clc,

clear all

%Continuous time model

Ac = [0 1 0 0; 14.715 0 0 0; 0 0 0 1;-4.905 0 0 0];

Bc = [0;-0.5;0;0.5];

Cc = [1 0 0 0;0 0 1 0];

dt = 0.1; %sampling time

%change to discrete time model

sys = ss(Ac,Bc,Cc,0); %there is no D matrix, so set it as 0

ds = c2d(sys,dt);

A = ds.a; B = ds.b; C = ds.c; D = ds.d;

N = 80; % prediction horizon length

% set up the references for the whole prediction horizon length
r = [zeros(1,N); % first row for first output (pendulum angle)
 zeros(1,N/2) ones(1,N/2)]; % second row for second output (cart position)

61

%initial values of the states should be known or estimated
x0 = [0; 0; 0; 0];

%size of matrices
nx = 4; ny = 2; nu = 1;

%size of the unknow vector z
nz = N*(nx + nu + 2*ny);

%weighting matrices
Q=diag([1.0 1.0]); %tuning weight for error: there are 2
P=1e-3; %tuning weight for inputs: there is 1

% build matrices
H11 = kron(eye(N),P);
H22 = zeros(N*nx,N*nx);
H33 = kron(eye(N),Q);
H44 = zeros(N*ny,N*ny);
H = blkdiag(H11,H22,H33,H44);

c = zeros(nz,1);

%constraints (from process model)

% from eq 3.33: state equation
Ae1u = -kron(eye(N),B);
Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A);
Ae1e = zeros(N*nx,N*ny);
Ae1y = zeros(N*nx,N*ny);
be1 = [A*x0;zeros((N-1)*nx,1)];

%from eq 3.34: measurement equation
Ae2u = zeros(N*ny,N*nu);
Ae2x = -kron(eye(N),C);
Ae2e = zeros(N*ny,N*ny);
Ae2y = eye(N*ny);
be2 = zeros(N*ny,1);

%from eq 3.35: error equation
Ae3u = zeros(N*ny,N*nu);
Ae3x = zeros(N*ny,N*nx);
Ae3e = eye(N*ny);
Ae3y = eye(N*ny);

% since be3 contains the reference vector in specific order, we have to use

% the function “reshape” to put the reference values in the right order
be3 = reshape(r,N*ny,1);

Ae =[Ae1u Ae1x Ae1e Ae1y;

 Ae2u Ae2x Ae2e Ae2y;

 Ae3u Ae3x Ae3e Ae3y];

% make the standard be vector

be=[be1;be2;be3];

%bounds (not specified so assume between –inf to +inf)
ZL=(-Inf*ones(nz,1));
ZU=(Inf*ones(nz,1));

% run quadprog to solve the QP problem

62

Z_opt = quadprog(H,c,[],[],Ae,be,Zl,Zh);

The solver calculates the optimal values of the unknowns of vector 𝑧 (which also includes

the control inputs). But as also discussed earlier, the calculated optimal values are of the

vector 𝑧 contains data which are not in “ready to plot” format. Thus we first need to extract

data/results.

A code snippet for extracting data in MALTAB is shown below. Assuming that the optimal

values are returned in the variable z_opt,

%% extract results
Ua = z_opt(1+N*(0) :N*(nu),1); %control inputs
Xa = z_opt (1+N*(nu) :N*(nu+nx),:); %states
Ea = z_opt (1+N*(nu+nx) :N*(nu+nx+ny),:); %error in tracking
Ya = z_opt (1+N*(nu+nx+ny) :N*(nu+nx+ny+ny),:); %outputs

%we use the reshape function to rearrange the data
u_opt = reshape(Ua,nu,N); %arranged control inputs
x_opt = reshape(Xa,nx,N); %arranged states
e_opt = reshape(Ea,ny,N); %arranged e
y_opt = reshape(Ya,ny,N); %arranged outputs

Finally we are ready to plot the results. However, first we need to define the x-axis in terms

of time steps. We do this as,

%make x-axis

k = linspace(0,N-1,N);

The plots of the LQ optimal control are then obtained as,
% plot the figures,

figure,

subplot(211)

plot(k,r(1,:),'b-',k,r(2,:),'r-',k,y_opt(1,:),'g-',k,y_opt(2,:),'k-')

legend('r1: pendulum angle set point','r2: cart position set

point','y1:pendulum angle','y1: cart position')

ylabel('y, r'); title('LQ optimal control of Inverted Pendulum');

subplot(212)

plot(k,u_opt(1,:),'r-')

xlabel('time steps [k]'); ylabel('u [N]');

legend('u: Force applied on the cart');

The plots should look exactly like the one shown in Figure 3.4. Please check it out yourself.

Q) Can you invert the pendulum from its hanging position (i.e. initial angle = 𝜋 rad) to the

upright position (𝛼 = 0 𝑟𝑎𝑑)?

63

Lecture 4

Receding horizon strategy for Model Predictive control

4.1 Recap

In the precious lectures, you learned about optimal control (for linear case). The optimal

control problem was posed as dynamic optimization problem with a selected prediction

horizon. The dynamic optimization problem was then solved using appropriate solvers and

you computed the optimal control signal for the whole prediction horizon length of 𝑁 time

steps i.e. you calculated 𝑢0
∗ , 𝑢1

∗, …………… . . , 𝑢𝑁−1
∗ and applied all of them to obtain the desired

response.

You did the calculation (solved the optimal control problem) at the current time (say at 𝑡 =

 0) to compute the optimal control signals. The 𝑁 number of optimal control moves/actions

which were calculated at (𝑡 = 0) were applied (all of them) to control the process up to 𝑁

time steps ahead.

The optimal control sequence (𝑢0
∗ , 𝑢1

∗, …………… . . , 𝑢𝑁−1
∗) was calculated by having a prior

knowledge of the initial state (𝑥0) of the process, future reference values (𝑟1, 𝑟2, ……… . . 𝑟𝑁)

and future disturbance value (𝑤0 , 𝑤1, …… . , 𝑤𝑁−1). It also means that for 𝑁 time steps ahead

in the future, you already know what should be the desired reference and disturbance acting

on the system.

 4.2 The problem

So far so good. But there are various comments that needs to be considered.

a) Optimal control problem formulated as dynamic optimization problem is a one time

optimization problem (one time in a sense that, the optimization is performed only

once (at 𝑡 = 0) and 𝑁 number of optimal values of the control inputs are obtained

and applied for 𝑡 = 0 to 𝑡 = 𝑁 − 1). In other words, it is like an openloop solution.

The disadvantage is that if any changes in the input disturbances or reference values

occur as the system marches forward in time (by applying the 𝑁 control moves), they

are not updated to the controller. Therefore, if the input disturbances and references

change after (say a few time steps), the controller has no idea or knowledge about

this change since no re-computation is performed. Due to such changes, the

controller, that is still using the optimal control inputs obtained from solving the

control problem before disturbance occurred, may fail to produce the required

performance.

Fact: In real world systems/applications, disturbances are always present in the

system and they may affect the system at any time.

b) Optimal control problems formed in the previous chapters as optimization problems

use a finite horizon(𝑁) i.e. we calculate a fixed number of optimal control actions that

are used for 𝑁 number of time steps. In reality, industrial processes run continuously

64

Slide

Slide

Slide

So on……..

for any time 'j'

Figure 4.1: Receeding horizon or sliding horizon strategy

65

in time and this 𝑁 number of time steps will easily be surpassed. With a larger

prediction horizon, the size of the optimal control problem also becomes larger. With

infinite prediction horizon, the size of the optimal control becomes infinite. If there

 were no disturbances and no model-plant mismatch, and if the optimization problem

could be solved over an infinite horizon, the input signal found at 𝑡 = 0 could be open-

loop applied to the process for all 𝑡 ≥ 0. But in reality, disturbances and model-plant

mismatch are always present due to which the actual system behavior is different

from the predicted one. And also remember that mathematical model are simply

representation of the real process, and usually they cannot represent the system fully

or completely.

4.3 Receding horizon strategy

The solution to the above problem is that we have to introduce feedback to the open loop

optimal controller. How?: By using the optimal open-loop input only until the next sampling

instant and then re-computing/re-optimizing the optimal solution at each time step as the

process marches forward in time. The idea is to use the receding horizon strategy (also

known as sliding horizon strategy) to introduce feedback as shown in Figure 6.1. An optimal

controller with the receding horizon strategy is the Model predictive Controller (MPC).

MPC also has other names such as moving horizon optimal control or receding horizon

optimal control. If the optimal control problem is linear quadratic (LQ) where the objective

function is quadratic and all the constraints are liner, with the sliding horizon strategy

included it is called a linear MPC. If the optimal control problem is nonlinear where either

objective and/or constraints are nonlinear function of the decision variables, with the sliding

horizon strategy included it is called a nonlinear MPC.

The sliding horizon strategy is the same for both the linear as well as nonlinear MPCs.

4.3.1 How does sliding horizon strategy introduce feedback?

⟹With a sliding horizon strategy, a new optimal control problem is solved at every time

step. For example, at any given time 𝑡 = 0, an optimal control problem (say optimal control

problem 1 in Figure 4.1) is solved to obtain 𝑁 number of optimal control actions

𝑢0
∗ , 𝑢1

∗, …………… . . , 𝑢𝑁−1
∗ . But instead of applying all the 𝑁 number of control actions for the

whole prediction horizon length, only the first control action 𝒖𝟎
∗

 is applied to slide or shift one

time step forward. Remember for processes having more than one inputs, 𝒖𝟎
∗ will be a vector.

Now let us assume that after you have slided one-step forward to 𝑡 = 1, some changes had

to be made to the reference values (say process operation had to be changed) or due to some

disturbances acting on the system, the dynamic behavior of the process changed. Before you

can take any further step forward in time, a completely new optimal control problem (say

optimal control problem 2 in Figure 4.1) is created at 𝑡 = 1. This new control problem will

incorporate these changes in the reference values (and/or incorporate the new predicted

plant behavior due to occurrence of disturbances) when the optimal control problem is re-

created. With this new optimal control problem, the controller will calculate a new set of

66

optimal control inputs by solving the updated/new optimal control problem i.e. a new set of

𝑁 number of optimal control actions 𝑢1
∗, 𝑢2

∗ , …………… . . , 𝑢𝑁
∗ are obtained. Once again, only

the first control input 𝑢1
∗ is applied to the process to slide/shift one time step forward.

This process (of re-computing the optimal solution of a new control problem) is repeated at

each time step. When a new optimal control problem is formulated at each time step, the

most recent (updated) values of the states are used as the initial values (denoted by 𝑥0,

𝑥1, … , 𝑥𝑗 … in Figure 4.1) to predict the plant future behavior. If the occurrence of any

disturbance into the system has changed this “most recent/updated” states, it is accounted

for when formulating a new optimal control problem and the controller will re-generate a

new set of optimal control move to handle it. This introduces feedback to the optimal

controller.

4.3.2 How does sliding horizon strategy introduce feedforward?

In forming and solving an optimal control problem at any time, say at 𝑡 = 𝑗, future reference

values 𝑟𝑗+1, 𝑟𝑗+2, …… . . 𝑟𝑗+𝑁 and future known input disturbance values 𝑤𝑗 , 𝑤𝑗+1, …… .𝑤𝑗+𝑁−1

are included. This introduces feed forward action to the optimal controller i.e. the controller

has a prior information of what these variables are going to be in the future. The controller

then can appropriately react before a change in the input disturbance (or set point changes)

affect the process output variable.

Note: You should have prior knowledge about the future references and disturbance values.

It is recommended that you calculate all the value of the future known input disturbances or

references offline and then use them while solving the optimization problem.

4.4 State feedback MPC

In the figure 4.1 you can see that in order to solve an optimal control problem at any time

step 𝑗, we need to know the initial value of the state of the process 𝑥𝑗 at the current time. The

initial (or current) value of the state at each time step should be known in order to predict

how the process behaves in the future (within the prediction horizon) by taking this initial

value of state as the starting point for prediction.

A model based predictive control where we assume that all the states are exactly measured

(or that the full state is available) at each time step is also known as state feedback MPC. A

simple algorithm of a state feedback MPC is given below:

1. Start with a given initial values of the state of the process 𝑥𝑗 = 𝑥0 and set 𝑡 = 𝑗 = 0.

2. Considering a prediction horizon of 𝑁 samples. Solve the optimal control problem

(dynamic constrained optimization with desired objective function) over the

prediction horizon from 𝑡 = 𝑗 to 𝑡 = 𝑗 + 𝑁. Use 𝑥𝑗 (full state) as the current states

of the process and the system model for prediction of the future states. Compute

𝑢𝑗
∗, 𝑢𝑗+1

∗ , …………… . . , 𝑢𝑗+𝑁−1
∗ by solving this openloop optimization problem.

67

3. Use only the first control move 𝑢𝑗
∗ until the next sampling instant and discard the

others i.e. compute the updated state of the system 𝑥𝑗+1
∗ for 𝑡 = 𝑗 + 1 by using the

control input 𝑢𝑗
∗ (update the system using 𝑢𝑗

∗).

4. Set 𝑥𝑗 = 𝑥𝑗+1
∗ and slide one time step forward to 𝑡 = 𝑗 + 1

5. Repeat steps (2) to (5) until the program terminates.

4.5 Warm start

To solve an optimization problem, you need to tell the optimizer where to start looking for

the optimal solution. i.e. initial starting point should be provided to the solver. Assuming

that the control inputs are the variables to optimize, you should at first choose good starting

values of the control inputs while solving “optimal control problem 1” (refer to Figure 4.1).

But when solving "optimal control problem 2" at the next time step, you can wisely use

𝑢0
∗ , 𝑢1

∗, …………… . . , 𝑢𝑁−1
∗ (the optimal results of the optimal control problem 1) as the initial

starting points for solving "optimal control problem 2". For solving "optimal control problem

3" you can use 𝑢1
∗, 𝑢2

∗ , …………… . . , 𝑢𝑁
∗ as initial values for optimizer & so on for others. This

is called warm start.

You could have randomly chosen the starting point for each optimal control problem for each

time step. But with warm start, the optimizer finds the solution to each optimal control

problem probably more faster in less number of iterations.

4.6 Example to illustrate the main idea of MPC

This interesting example has been from Institu für Automatik. The example is about a racing

car.

• Objective:
– Minimize lap time

• Constraints:
– Avoid other cars
– Stay on road
– Don’t skid
– Limited acceleration

• Approach: (as a driver/controller)

– Look forward (with a prediction horizon) and
plan the driving path based on:

• Road Conditions
• Upcoming corners
• Ability of car

• Requirement for automatic controller: You need a model of

the process to look forward throughout the horizon.

68

BUT…………….

• Back bone is OPTIMIZATION (form an optimization
problem to)

– Minimize lap time

 while satisfying the constraints.
• Solve the optimization problem to:

– Find minimum-time path
– Find a collection of control actions to be

taken over the horizon.

• Collection of control action is denoted by the
coloured line.

• Yes, you could have used all the control actions for

the whole prediction horizon.

• Slide or move one time step ahead (from
position 1 to position 2)

– Use only the first control input to slide.
• Repeat the planning procedure:
– From position 2, form and solve a new optimal

control problem with an updated information
about the disturbances (cars at the corners etc.)

– The prediction horizon will slide from

1 − 1̅ to 2 − 2̅ at position 2.

• Again at position 2, use only the first control
input to slide one step further.

 Repeat this until the racing is over.
2

1

1̅

2̅

• When there are unexpected disturbances and
unknown model errors….

– E.g. another car suddenly drove inside
your planned path after you started using
the optimal control moves

– didn’t see cars around the corner etc.
• What not to do?

– Don’t be stupid to hit the other cars
– Don’t follow all the control actions of the

horizon
• Then what to do?

– Apply only the first control action
– Introduce feedback

69

Figure 4.2: Receding horizon strategy for MPC

In an MPC, you need a model of the plant. You create an optimal control problem with objectives

and constraints (linear or nonlinear) and solve it using an optimization solver. The optimal value

of the first control action is fed to the plant for controlling it. Then, receding or sliding horizon

strategy is applied as shown in Figure 4.2. If the states need to be estimated, the latest

measurements from the plant are used.

70

Note: There is also another strategy called the shrinking horizon strategy which shrinks the

prediction horizon at each time step instead of sliding the horizon. This strategy is useful for e.g.

for batch processes where it doesn’t make any sense to let the horizon extend beyond the end

of the batch operation. If the optimization horizon is equal to the batch time, then we shrink the

horizon by one time unit while solving the new optimal control problem at the new shifted time.

In the next section, an example of nonlinear MPC is given, but the principle of making the optimal

control problem into a predictive control (by using sliding horizon strategy) also applies for a linear

MPC. For linear MPC, the LQ optimal control (with quadratic objective and linear constraints)

should be used with sliding horizon strategy.

4.7 Example of a linear model predictive control in simulink

Let us again consider the example of inverted pendulum. In the previous lectures, we have already

formulated the LQ optimal controller to the inverted pendulum system. In this example, we will

be using the sliding horizon strategy and convert the LQ optimal control problem to linear MPC.

Formulating and solving the optimal control problem takes the biggest part in making a linear

MPC. Applying receeding horizon strategy is relatively simpler. The control problem is to keep

the pendulum in inverted position (angle 𝛼 = 0) and change the position of the cart while still

keeping the pendulum in upright position. Simulink will be used as the platform for designing and

implementing linear MPC. The MPC will be designed to be run in real time. We will make use of

the “knobs” and/or “slider” in Simulink to change the set points in real time.

At first, for simplicity, let us re-write (from previous chapters) the LQ optimal control problem

formulation for the inverted pendulum. Linear model of the inverted pendulum in deviation form

is used (linearization part is skipped here, see details in the previous chapters). The LQ optimal
control problem can be formulated as (see detail in the previous chapter),

𝑚𝑖𝑛 𝐽 =
1

2
 ∑ 𝛿𝑒𝑘

𝑇 𝑄𝑘𝛿𝑒𝑘 + 𝛿𝑢𝑘−1
𝑇 𝑃𝑘−1𝛿𝑢𝑘−1

𝑁

𝑘=1

subject to,
𝛿𝑥𝑘+1 = 𝐴𝛿𝑥𝑘 + 𝐵𝛿𝑢𝑘 with δ𝑥𝜖ℝ𝑛𝑥×1 , δ𝑢𝜖ℝ𝑛𝑢×1

 𝛿𝑦𝑘 = 𝐶𝛿𝑥𝑘 with δyϵℝny×1 and δx0 is given/known
 𝛿𝑒𝑘 = δ𝑟𝑘 − δ𝑦𝑘 with 𝛿𝑟𝑘 = 𝑟𝑘 − 𝑦𝑜𝑝 being the deviation set points

Note: Here 𝑦𝑜𝑝 is simply the operating points for measured states i.e. 𝛼𝑜𝑝 and 𝑥2𝑜𝑝

This LQ optimal control problem has to be converted to standard QP formulation using Kronecker

product formulation (see previous chapter for details). Only the final structure is written here for

simplicity.

71

Standard QP form is,

𝑚𝑖𝑛
𝑧

1

2
 𝑧𝑇 𝐻𝑧 + 𝑐𝑇𝑧

subject to,
𝐴e𝑧 = 𝑏e → equality constraint

𝐴𝑖𝑧 ≤ 𝑏𝑖 → inequality constraint (if any present)
𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 → bounds

𝑧 = [𝛿𝑢, δ𝑥, δ𝑒, δ𝑦]𝑇
Here, 𝑧 is the vector of unknowns and contains the deviation variables for 𝑢, 𝑥, 𝑒 and 𝑦. From the

kronecker product formulation (for efficiently converting LQ optimal control problem to standard

QP problem) we get the 𝐻, 𝑐, 𝐴𝑒 , 𝑏𝑒 , 𝐴𝑖 , 𝑏𝑖, 𝑧𝐿 and 𝑧𝑈. These will be the same as discussed in

lecture 3 (thus not shown here but note that they may be different for different formulations

and different choices of the vector 𝑧).

For making a linear MPC: We have to solve this QP optimization problem (control problem) in

Simulink using the qpOASES solver. Then select only the first control move (out of the 𝑁 number

of them available) for each control input of the system. For this example of the inverted pendulum,

we have only one control input which is the force applied to the cart. For systems with more than

one control inputs, you should select the first control move for each control input. Then apply it

(them) to the system to go to the next time step (i.e. update the state of the process using the first

control move of all the available control inputs). Using the new updated state at the new time step,

re-formulate/re-solve the QP optimization problem. Again, select only the first control action for

each control input, then apply it (them) to the process and go one time step further. Repeat this

procedure at each time step until you stop the simulation.

 The basic block diagram for the implementation of the linear MPC is shown in Figure 4.3.

Figure 4.3: Basic block diagram for Linear MPC applied to a linear plant model

72

The first thing to note is that the “linear MPC” subsystem in Figure 4.3 generates the control action

in deviation form (delta_u_opt) since the linear model used for making the MPC is in deviation

form. This is then applied to the linear plant model. The linear plant model requires 𝛿𝑢 as control

input signal.

Note: If you want to use a linear MPC for controlling the nonlinear plant model, then make sure

that you add the operating point for control inputs before sending the control input to the nonlinear

model. This is because, the nonlinear model would require 𝑢 and not 𝛿𝑢 as control input signal.

We will learn more about the use of linear MPC for controlling nonlinear plant models later on in

this course when we talk about integral action and steady state offsets.

The second thing to note is that the updated values of the states from the “plant: linear model”

subsystem (delta_x in Figure 4.3) after the control input was applied to it, is taken back to the

“linear MPC” subsystem. This is because, we always need to know the initial values of the states

(at any given time step) to formulate the LQ optimal control problem that sits inside the “linear

MPC” subsystem. Remember: The 𝑏𝑒,1 vector (from kronecker product formulation) of the QP

problem has the first element as 𝐴𝛿𝑥0, and thus at each time step we need to know the value of

𝛿𝑥0 which is taken back from the linear plant model.

The third thing to note is that the setpoints or the reference values are also supplied to the “linear

MPC” subsystem in Figure 4.3 in deviation form, since the linear model used for making the MPC

is in deviation form. The reference values can be changed in real time, for e.g. using a slider or a

knob in Simulink. The reference vector (or matrix for if there are more than one output to control)

will use the chosen value of the setpoints for the whole prediction horizon, when formulating the

LQ optimal control problem at any given time. In other words, if 𝑑𝑒𝑙𝑡𝑎_𝑟 (look figure 4.3) contains

the current chosen set points for both the pendulum angle and the cart position in deviation form

(2 chosen scalar numbers, say 0 and -1 as setpoints for 𝛿𝛼 and 𝛿𝑥2), then to make reference matrix

for the whole prediction horizon delta_ref_N, we can use the following code snippet:

delta_ref_N = [ones(1,N).*delta_r(1);

 ones(1,N).*delta_r(2)];

 i.e. the same chosen scalar value for the setpoints, delta_r(1)and delta_r(2) is extended for

the whole prediction horizon length of 𝑁.

Note: It is also possible to provide varying values for setpoints within the prediction horizon at

any given time. But then you have to write up your own routine for it. In practice, for real time

application on a real unit, where you would like to run the unit for hours, if not days, if not for all

the time; planning for such varying values for setpoints simply becomes cumbersome. It is much

easier just to use a knob or slider to change the setpoint in real time and consider to hold the same

chosen value of the setpoints throughout the prediction horizon at any given time.

73

Inside the “linear MPC” subsystem in Figure 4.3, the LQ optimal control problem is formed, and

then it is solved, and then the first control move for each control input is selected. The inside of

the “linear MPC” subsystem is shown in Figure 4.4.

Figure 4.4: Inside the “linear MPC” subsystem, where LQ optimal control problem is formed, then solved
using qpOASES solver, and then only the first control move for each control input is selected.

The first block in Figure 4.4 is the same as already explained in lecture 3, and hence not explained

here. The LQ optimal control problem is formulated inside this “QP_formulation_IVP” MATLAB

function block i.e. the standard matrices like 𝐻, 𝑐, 𝐴𝑒 , 𝑏𝑒 , 𝑧𝐿 , 𝑧𝑈 etc. for the standard QP problem

are formed inside this block. The code snippet is shown here.

function [H,c,Ae,zL,zU,be] = QP_formulation_IVP(delta_x0,delta_ref,A, B, C)

%Here A, B, C are discrete time system matrices. They have been passed as

%parameters and not as inputs to this block.

%configuration

N = 20; %prediction horizon

del_x0 = delta_x0; %using the updated state values directly from the plant model

%setup the references for the whole prediction horizon length

delta_ref_N = [ones(1,N).*delta_ref(1); %first row for the pendulum angle, alpha

 ones(1,N).*delta_ref(2)]; %second row for the cart position, x2

%weighting matrices

Q=diag([1.0 1.0]); %tuning weight of error

P=1e-3; %tuning weight of inputs

%standard QP problem formulation

%compute n's

nx = size(A,1); nu = size(B,2); ny = size(C,1); nz = N*(nx + nu + 2*ny);

% build matrices

H11 = kron(eye(N),P);

H22 = zeros(N*nx,N*nx);

H33 = kron(eye(N),Q);

H44 = zeros(N*ny,N*ny);

H_mat = blkdiag(H11,H22,H33,H44);

%qpOASES does not accept matrices, but only vectors

%we have to change H matrix to vector by stacking elements column wise

H = H_mat(:);

c = zeros(nz,1);

%constraints (from model)

Ae1u = -kron(eye(N),B);

Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A);

74

Ae1e = zeros(N*nx,N*ny); %eq 1 is states, hence nx rows, and errors are ny cols

Ae1y = zeros(N*nx,N*ny);

be1 = [A*del_x0;zeros((N-1)*nx,1)];

Ae2u = zeros(N*ny,N*nu); %eq 2 is measurment eq, ny cols, nu inputs

Ae2x = -kron(eye(N),C);

Ae2e = zeros(N*ny,N*ny);

Ae2y = eye(N*ny);

be2 = zeros(N*ny,1);

Ae3u = zeros(N*ny,N*nu); %eq3 is error, ny lines, and nu inputs

Ae3x = zeros(N*ny,N*nx);

Ae3e = eye(N*ny);

Ae3y = eye(N*ny);

be3 = reshape(delta_ref_N,N*ny,1);

Ae_mat=[Ae1u Ae1x Ae1e Ae1y;

 Ae2u Ae2x Ae2e Ae2y;

 Ae3u Ae3x Ae3e Ae3y];

%qpOASES does not accept matrices, but only vectors

%we have to change Ae matrix to vector by stacking elements column wise

Ae = Ae_mat(:); %stacking column wise

be=[be1;be2;be3];

%bounds

zL=(-Inf*ones(nz,1));

zU=(Inf*ones(nz,1));

In the code snippet above,
function [H,c,Ae,zL,zU,be] = QP_formulation_IVP(delta_x0,delta_ref,A, B, C)

the system matrices 𝐴, 𝐵, 𝐶 in discrete form are passed to this block as parameters and not as inputs

to the block. We can make use of a plain MALTAB script to create the 𝐴, 𝐵, 𝐶 matrices, to define

the operating points for linearization, to define the system parameters etc. For this example, a script

in MATLAB called “initialization_script.m” is created for this purpose. This file is saved in the

same location as the other Simulink files for this example. You should run this script first, before

running your Simulink file. Inside the script, you see the following.

%file: initialization_script.m

clc

clear

%define model parameters

m1 = 1; %[kg]

m2 = 2; %[kg]

l = 1; %[m]

k_T = 0.1; %[kg/rad^2]

g = 9.81; %[m/s^2]

%perform linearization (e.g. using pen and paper) and type in the

%continuous time Ac, Bc and Cc matrices.

Ac = [0,1,0,0; (m1+m2)*g/(m2*l),0,0,0;0,0,0,1;-m1*g/m2,0,0,0];

Bc = [0;-1/(m2*l);0;1/m2];

Cc = [1,0,0,0;0,0,1,0]; % angle alpha and cart position are measured

%choose the oprerating points for the states

alpha_op = 0;

w_op = 0;

x2_op = 0;

v2_op = 0;

%calculate the operating point for control inputs by solving the plant

%nonlinear model at the steady state

F_op = 0;

% Discretize the continuous time model to get the discrete time linear model

dt = 0.1; %sampling time

75

sys = ss(Ac,Bc,Cc,0); %there is no D matrix, so set it as 0

ds = c2d(sys,dt);

A = ds.a; B = ds.b; C = ds.c; %discrete time system matrices

In the second block “qpOASES_SQProblem” in Figure 4.4, the standard QP is solved. This block

has also been already explained in lecture 3, and hence skipped here. Note that, if you have changed

the prediction horizon length (and hence the size of the optimal control problem for this example),

then you should re-compile your qpOASES solver to match the size of your problem.

Finally, in the third block “select_first_control_move” in Figure 4.4, only the first control move

for each control input is selected. For the inverted pendulum system, there is only one control input

(force applied to the cart), thus we need to select the first control move for this control input only.

The code snipped is as shown below.

function delta_u_opt = select_first_control_move(z_opt)

delta_u_opt = z_opt(1);

Since, 𝛿𝑢 is the first element of the 𝑧 = [𝛿𝑢, δ𝑥, δ𝑒, δ𝑦]𝑇 vector, the first move of this control input

(force applied to cart) is simply z_opt(1).

Note: If you have a system/process, which has, let say 3 different control inputs i.e. if 𝑛𝑢 = 3 for

your system, then you need to extract the first control move for each of these three different control

inputs of your system. In that case, you would simply write, delta_u_opt = z_opt(1:nu)to

extract the first move of all the three control inputs present in your system. Why? Go back to

lecture 3 and see the structure of the 𝑧∗ vector.

In Figure, 4.3, the “plant: linear model” subsystem is the model of the plant which in this example

is the linear state space model of the inverted pendulum system, which is in deviation form due to

linearization. Inside this subsystem, the linear model in deviation form is formed and integrated as

shown in Figure 4.5 below.

Figure 4.5: Inside the “plant: linear model” subsystem

As also stated before: We can use linear MPC for controlling nonlinear plant model. This is

explained in detail in lecture 7.

76

The complete simulator for the simulation of linear MPC for linear model of the inverted pendulum

system is shown in Figure 4.6. The simulator is also available for download in the homepage of

the course. When you use the Simulink simulator in your own PC, make sure to first run the

“initialization_script.m” file in MATLAB. This loads up the model parameters, the discrete time

system matrices, the operating points for states and control inputs etc. into the workspace of

MATLAB, which then can be used directly in Simulink. In the model configuration parameter

(click the gear icon on top middle) in Simulink, you can configure the stop time in Simulink to be

infinity by typing inf. Select the “Fixed-step” solver type, “ode4 (Runge-Kutta)” as solver and

“fixed-step size” to be 0.1. After this, click on the run button in Simulink to start the simulation.

Figure 4.6: An example of implementing linear MPC for linear model of inverted pendulum system

The simulator can be run in real time using the real time pacer, and setpoint for cart position (𝑥2)

can be changed in real time using knob. An example of running the simulator is shown in Figure

4.7(a).

As you can see, the setpoint for the cart position (𝑥2) is changed between 0,−1 and 1 in real time

while the simulator is running. The controller is able to keep track of the changed position of the

cart. In doing so, the pendulum is still kept in the inverted position by the controller. It makes no

sense to change the setpoint for pendulum angle 𝛼, since the whole idea of using the linear MPC

is to keep the pendulum in the upright positon. So the setpoint for angle 𝛼 is always kept at zero.

To control this process, the linear MPC changes the force applied to the cart (𝐹) which is the

control input for the system. The snapshot of the control input produced by the linear MPC and

used in the process is shown in Figure 4.7 (b).

77

Figure 4.7 (a): An example of running the simulator and changing setpoint for 𝑥2 in real time.

Figure 4.7 (b): Control input used to control the inverted pendulum

78

4.8 Linear MPC example in a scripting language like MATLAB + Execution time

It is also very interesting to study about the execution time need to run the linear MPC for the

inverted pendulum. For this we will be using MATLAB (not Simulink) for implementing the linear

MPC. The reasons for this are:

a) In this course, we use Simulink for real time simulation. Recording the exact time needed

to solve the QP problem at each time step is much more precise and easier in MATLAB.

b) It also gives us an opportunity to see and understand how we can implement a linear MPC

in a scripting (text based) language like MATLAB. Then you can easily implement the

same in other text based languages like Python, Julia, etc.

c) We can compare the execution time for linear MPC with this sparse formulation of LQ

optimal control problem with a more dense formulation by QR factorization (detail in

lecture 5). We can see whether reduction of the size of the LQ optimal control problem

increases the speed of execution.

Please look at the video https://web01.usn.no/~roshans/mpc/videos/lecture4/execution-time-

linearMPC-MATLAB.mp4 for more details.

Note: The text in this section of the lecture note will be update by the end of this semester.

However, the video covers all of it.

https://web01.usn.no/~roshans/mpc/videos/lecture4/execution-time-linearMPC-MATLAB.mp4
https://web01.usn.no/~roshans/mpc/videos/lecture4/execution-time-linearMPC-MATLAB.mp4

79

Lecture 5:

5.1 Review:
In lecture 3, we learned how to transform a given LQ optimal control problem to a standard

QP problem using kronecker product formulation. In lecture 4, we learned how to introduce

feedback to LQ optimal control problem by receeding horizon strategy and make a linear

MPC.

A typical content of 𝑧 (the vector of unknowns to be optimized) is,

𝑧𝑇 = (𝑢0
𝑇 , … , 𝑢𝑁−1

𝑇 , 𝑥1
𝑇 , … , 𝑥𝑁

𝑇 , 𝑒1
𝑇 , … , 𝑒𝑁

𝑇 , 𝑦1
𝑇 , … , 𝑦𝑁

𝑇)

Let us take an example where 𝑁 = 20, 𝑛𝑥 = 15, 𝑛𝑢 = 6 and 𝑛𝑦 = 6. Then the number of

unknown variables are,

𝑛𝑍 = 𝑁. (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑦) = 20. (6 + 15 + 6 + 6) = 660

The optimizer (for e.g. qpOASES in Simulink or quadprog in MATLAB) will try to calculate

the optimal values of these 660 unknown variables (also called as decision variables).

If we consider an LQ optimal control problem as,

𝑚𝑖𝑛 𝐽 =
1

2
 ∑ 𝑒𝑘

𝑇 𝑄𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑢𝑘−1

𝑁

𝑘=1

 (5.1)

subject to,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘 with 𝑥0 given (5.2)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑤𝑘 (5.3)

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 (5.4)

Equation (5.4) has 𝑁. 𝑛𝑦 = 20 × 6 = 120 equality constraints.

If we can eliminate the error variables by substituting equation (5.4) into the objective

function (5.1) then we will have,

𝑛𝑍 = 𝑁. (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦) = 20. (6 + 15 + 6) = 540

i.e. there will be only 540 unknown variables to optimize instead of 660 unknown

variables.

In this lecture, we will learn about reducing the size of the optimal control problems. We

will do so in three different ways: a) by using Lagrangian functions b)by QR factorization

c) by grouping of control inputs into two or more groups.

5.2 Reducing the size of optimal control problems:

5.2.1 Eliminating equality constraints using Lagrangian functions

Let us consider a quadratic cost function with linear equality constraint as,

𝑚𝑖𝑛
𝑧
 𝐽 = 𝑓(𝑧) =

1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧

(5.5) subject to

𝐴𝑒𝑧 = 𝑏𝑒

The Lagrangian function 𝐹(𝑧, 𝜆) is defined as,

𝐹(𝑧, 𝜆) = 𝑓(𝑧) + 𝜆𝑇(𝐴𝑒𝑧 − 𝑏𝑒) (5.6)

80

where 𝜆 is known as Lagrange multiplier.

You can see that equation (5.5) which is a constrained optimization problem, has been

changed to a reduced form of equation (5.6) without the equality constraints i.e. an

unconstrained optimization problem. Therefore, we can now work further with this reduced

problem of equation (5.6). However, the reduced problem has both 𝑧 and 𝜆 as unknowns.

This means that although the original problem of equation (5.5) has been reduced to

equation (5.6), the number of unknowns to be optimized has been increased.

So we have,

𝑚𝑖𝑛
(𝑧, 𝜆)

 𝐹(𝑧, 𝜆) =
1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 + 𝜆𝑇(𝐴𝑒𝑧 − 𝑏𝑒) (5.7)

To find the minimum of unconstrained problem of equation (5.7), we simply take the first

derivative and equate them to zero.

Note :- Since equation (5.7) has two unknown variables which are 𝑧 and 𝜆, we need to take

partial derivative as,
𝜕𝐹(𝑧, 𝜆)

𝜕𝑧
= 𝐻𝑧 + 𝑐 + 𝐴𝑒

𝑇𝜆 (5.8)

𝜕𝐹(𝑧, 𝜆)

𝜕𝜆
= 𝐴𝑒𝑧 − 𝑏𝑒 (5.9)

Equating (5.8) and (5.9) to zero for minimum we get,

𝐻𝑧 + 𝐴∈
𝑇𝜆 = −𝑐 (5.10)

𝐴𝑒𝑧 + 0𝜆 = 𝑏𝑒 (5.11)

Arranging (5.10) and (5.11) in a compact form,

[
𝐻 𝐴𝜖

𝑇

𝐴𝑒 0
]

⏟
𝑀

[
𝑧
𝜆
]⏟
𝑧

= [
−𝑐
𝑏𝑒
]

⏟
𝑏̃∈

(5.12)

The task has now reduced to solving equation (5.12) which is a linear algebraic equation to

find the optimal solution of the original problem of equation (5.5) i.e. solve 𝑀𝑧̃ =

 𝑏̃∈ to find 𝑧̃
∗.

𝑧̃∗ has the optimal solution 𝑧∗ and 𝜆∗ . If 𝑀 is invertible then 𝑧̃∗ = 𝑀−1𝑏̃𝑒

You can also try :

 𝑀𝑇𝑀𝑧̃ = 𝑀𝑇𝑏̃𝑒

 𝑧̃∗ = (𝑀𝑇𝑀)−1𝑀𝑇𝑏̃𝑒

5.2.2 Eliminating equality constraints by QR factorization:

Background:

Let us consider the LQ optimization problem of the standard form "(if original problem is

not in the standard from, I assume that by this time, the students have mastered the

transformation process of expressing it into the standard from)" as,

81

𝑀𝑖𝑛
𝑧

1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧

subject to
𝐴𝑒𝑧 = 𝑏𝑒
𝐴𝑖𝑧 ≤ 𝑏𝑖
𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻 }

 (5.13)

Optimization problem of (5.13) can be converted into a quadratic problem of reduced form

as,

𝑚𝑖𝑛
𝑧2

1

2
 𝑧2
𝑇 𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖

} (5.14)

The reduced problem of (5.14) has only linear inequality constraints i.e. we have eliminated

the linear equality constraints from the original optimization problem of (5.13)

IDEA:

The trick here is to use the linear equality constraint 𝐴𝑒𝑧 = 𝑏𝑒 present in the original

problem to split the unknown variables 𝑧 into two parts: "basic variables" and "non-basic

variables". Using the equality constraint, the basic variables are expressed in terms of the

non-basic variables. The basic variables (which are the functions of non-basic variables) are

then substituted in the objective function of equation (5.13). The objective function will then

only have the non-basic variables. This will also result in the elimination of the linear equality

constraint & we will obtain the reduced problem of equation (5.14).

Example: Let us consider a quadratic optimization problem as,
𝑚𝑖𝑛
𝑧
 𝑓(𝑧) = 2𝑥1

2 +5𝑥2
2 − 3𝑥3

2 + 𝑥4
2 + 4𝑥1 + 2𝑥2 + 6𝑥3 − 2𝑥4 (5.15)

subject to,

𝑥1 + 5𝑥2 − 2𝑥3 + 𝑥4 = 2 (5.16)

−3𝑥1 + 𝑥2 − 𝑥3 − 𝑥4 = 2 (5.17)

2𝑥1 + 𝑥2 − 2𝑥3 − 2𝑥4 = 5 (5.18)

𝑥1 − 3𝑥2 − 3𝑥3 + 2𝑥4 = 6 (5.19)

Here, the vector of unknowns can be written as,

𝑧 = [

𝑥1
𝑥2
𝑥3
𝑥4

]

a) Divide the vector of unknowns into two parts.

𝑧 = [

𝑥1
𝑥2
𝑥3
𝑥4

]
}

}

basic variables, ′𝑧1′

non − basic variables, ′𝑧2′

82

i.e. 𝑥1 & 𝑥2 are basic variables 𝑥3 & 𝑥4 are non basic variables.

b) Express the basic variables as algebraic functions of non-basic variables. Use linear

equality constraints for doing it.

From equation (5.16) and (5.19) you can express, (the order in which we choose linear

equality constraints doesn't matter)

𝑥2 = −
1

8
𝑥3 +

1

8
𝑥4 −

1

2
 (5.20)

i.e. 𝑥2 = 𝑓(𝑥3 , 𝑥4) i.e. 𝑥2 is expressed using non-basic variables. Similarly, from equation

(5.17) and (5.18) we can write,

𝑥1 =
1

5
𝑥3 +

1

5
𝑥4 +

3

5
 (5.21)

 𝑥1 = 𝑓(𝑥3 , 𝑥4) i.e. 𝑥1 is expressed using non-basic variables.

c) To eliminate the equality constraints completely, substitute equation (5.20) and (5.21)

in the objective function of equation (5.15).

𝑚𝑖𝑛
𝑧2
 𝑓(𝑧2) = 2 (

1

5
𝑥3 +

1

5
𝑥4 +

3

5
)
2

+ 5(−
1

8
𝑥3 +

1

8
𝑥4 −

1

2
)
2

− 3𝑥3
2 + 𝑥4

2 + 4𝑥1 + 2𝑥2

+ 6𝑥3 − 2𝑥4

(5.22)

Here 𝑓(𝑧2) consists of only the non-basic variables 𝑧2 i.e. 𝑓(𝑧2) = 𝑓(𝑥3 , 𝑥4)

So, in this way, optimization problem of (5.15) -(5.19) is reduced to the problem of (5.22).

We can then solve equation (5.22) to obtain optimal values 𝑧2
∗ i.e. 𝑥3

∗ & 𝑥4
∗. Further we can

find the optimal values of 𝑥1 and 𝑥2 using equations (5.20) and (5.21) as,

 𝑥1
∗ = 𝑓(𝑥3

∗ , 𝑥4
∗) and 𝑥2

∗ = 𝑓(𝑥3
∗ , 𝑥4

∗).

Well, that was just an example. So, the question remains:

Q) Is there a way to generalize these steps i.e. steps (a) -(c)

Answer: Yes, by using QR factorization (for linear case)

Let us consider the linear equality of eq. (5.23)

𝐴𝑒𝑧 = 𝑏𝑒 (5.23)

Let us assume equation (5.23) has 𝑛 number of equations i.e. equation (5.23) is a compact

form of 𝑛 linear equality constraints. Then, 𝐴𝑒𝜖𝑅
𝑛×𝑛𝑧 , where 𝑛𝑧 is the total number of

unknown variables that are listed in vector 𝑧. Let the rank of 𝐴𝑒 be 𝑟 i.e. 𝑟 = rank(𝐴𝑒).

Rank of a matrix gives you the number of linearly independent rows of the matrix, here in

this case, the number of independent linear equality constraints.

Now, let us decompose 𝐴𝑒 into the product of 𝑄 and 𝑅 as,

𝐴𝑒 = 𝑄𝑅

where 𝑄 = orthogonal matrix i.e. 𝑄𝑇𝑄 = 𝐼 and 𝑄ϵℝ𝑛×𝑛, 𝑅 = upper triangular matrix,

𝑅𝜖ℝ𝑛×𝑛𝑧 .

For example, let,

83

𝐴𝑒 = [
2 3 1
1 5 3
3 7 1

] = [
0.53 −0.5 0.6
0.26 0.86 0.42
0.8 0.04 −0.59

]
⏟

𝑄

 [
3.7 8.5 2.1
0 3.1 2.1
0 0 1.3

]
⏟

𝑅

Furthermore, 𝑅 can be written as,

𝑅 = [
𝑅1 𝑅2
0 0

] (5.24)

where, 𝑅1𝜖ℝ
𝑟×𝑟 is full rank i.e. rank (𝑅1) = 𝑟 = rank(𝐴𝑒) and 𝑅2𝜖ℝ

𝑟×(𝑛𝑧−𝑟) is the upper

right submatrix of 𝑅.

Note that the 0’s under 𝑅1 has the size of (𝑛 − 𝑟) × 𝑟 and the 0’s under 𝑅2 has the size of

(𝑛 − 𝑟) × (𝑛𝑧 − 𝑟). So, we can write the linear equality constraints of equation (5.23) as,

𝐴𝑒𝑧 = 𝑏𝑒

𝑄𝑅𝑧 = 𝑏𝑒

Multiplying both sides by 𝑄𝑇 we get,

𝑄𝑇𝑄⏟
𝐼

𝑅𝑧 = 𝑄𝑇 𝑏𝑒⏟
𝑏̅𝑒

𝑅𝑧 = 𝑏̅𝑒 (5.25)

Now let us split the vector of unknowns 𝑧 into 𝑧 = [
𝑧1
𝑧2
] or 𝑧𝑇 = (𝑧1

𝑇 , 𝑧2
𝑇)

where, 𝑧1 are the basic variables of size (𝑟 × 1) and 𝑧2 are the nonbasic variables of size

(𝑛𝑧 − 𝑟) × 1.

Also let us split b∈ into two parts as,

𝑏𝑒 = [
𝑏𝑒,1

𝑏𝑒,2
] (5.26)

where, 𝑏𝑒,1𝜖ℝ
𝑟×1 and 𝑏𝑒,2𝜖ℝ

(𝑛−𝑟)×1

Then we have from equations (5.24, 5.25 & 5.26) we get,

[
𝑅1 𝑅2
0 0

] [
𝑧1
𝑧2
]= [

𝑏𝑒,1

𝑏𝑒,2
] (5.27)

From equation 5.27 we get,

𝑅1𝑧1 + 𝑅2𝑧2 = 𝑏𝑒,1

Since 𝑅1 is full ranked, it is invertible. Then we can express 𝑧1 (the basic variables) in terms

of 𝑧2 (the non-basic variables) as,

𝑧1 = 𝑅1
−1 (𝑏𝑒,1 − 𝑅2𝑧2) (5.28)

So, in summary we have,

𝑧 = [
𝑧1
𝑧2
] = [𝑅1

−1 (𝑏𝑒,1 − 𝑅2𝑧2)
𝑧2

] = [
𝑅1
−1 𝑏𝑒,1 − 𝑅1

−1𝑅2𝑧2
0 + 𝑧2

]

↓

 𝑧 = [
𝑧1
𝑧2
] = [𝑅1

−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 (5.29)

84

The sizes of zeros and identity matrix in equation (5.29) are: 0 → (𝑛𝑧 − 𝑟) × 1 and 𝐼 →

 (𝑛𝑧 − 𝑟) × (𝑛𝑧 − 𝑟).

Now let us substitute 𝑧 from equation (5.29) in the original problem given by equation

(5.13) i.e.


1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 can be written as,

1

2
 ([𝑅1

−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2)
𝑇

 𝐻 ([𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2)

+ 𝑐𝑇 ([𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2)
(5.30)

We can see that equation (5.30) has only the non-basic variable 𝑧2. After rearranging and

solving equation (5.30) we can express it in the reduced order standard form as,

𝑚𝑖𝑛
𝑧2
,
1

2
 𝑧2
𝑇 𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2 + 𝐾̃ (5.31)

where,

𝐻̃ = [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1𝑅2
𝐼

] (5.32)

𝑐̃ = [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

]
𝑇

𝑐 (5.33)

𝐾̃ =
1

2
[𝑅1
−1 𝑏𝑒,1
0

]
𝑇

𝐻 [𝑅1
−1 𝑏𝑒,1
0

] + 𝑐𝑇𝑅1
−1 [𝑏𝑒,1

0
] = constant (5.34)

Since 𝐾̃ is constant, it can be safely removed from the optimization problem. Then the

objective of the reduced problem is,

𝑚𝑖𝑛
𝑧2

1

2
 𝑧2
𝑇 𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2

At this stage we have eliminated the equality constraint. But the original optimization

problem of equation (5.13) also has linear inequality constraints and bounds.

For the inequality constraints we have from equation (5.13),

𝐴𝑖𝑧 ≤ 𝑏𝑖

Substituting 𝑧 from equation (5.29) in this above equation we get,

𝐴𝑖 ([
𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2) ≤ 𝑏𝑖

𝐴𝑖 [
−𝑅1

−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑏𝑖 − 𝐴𝑖 [
𝑅1
−1 𝑏𝑒,1
0

] (5.35)

For the bounds, we have from equation (5.13),

𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻

Substituting 𝑧 from equation (5.29) in this above equation we get,

𝑧𝐿 ≤ [
𝑅1
−1 𝑏𝑒,1
0

] + [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻

𝑧𝐿 − [
𝑅1
−1 𝑏𝑒,1
0

] ≤ [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

] (5.36)

85

Equation (5.36) can be written separately using two equations (i.e. bounds can be

expressed as two inequality constraints) as,

− [−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ −𝑧𝐿 + [
𝑅1
−1 𝑏𝑒,1
0

] (5.37)

[−𝑅1
−1 𝑅2
𝐼

] 𝑧2 ≤ 𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

] (5.38)

Equations (5.35), (5.37) & (5.38) can be written in compact form as,

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖

where,

𝐴̃𝑖 =

[

 𝐴𝑖 [

−𝑅1
−1 𝑅2
𝐼

]

− [−𝑅1
−1 𝑅2
𝐼

]

[−𝑅1
−1 𝑅2
𝐼

]
]

 , 𝑏̃𝑖 =

[

 𝑏𝑖 − 𝐴𝑖 [

𝑅1
−1 𝑏𝑒,1
0

]

−𝑧𝐿 + [
𝑅1
−1 𝑏𝑒,1
0

]

𝑧𝐻 − [
𝑅1
−1 𝑏𝑒,1
0

]
]

(5.39)

Thus, the original problem has been formulated as the reduced problem as,

𝑚𝑖𝑛
𝑧2

1

2
 𝑧2
𝑇 𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2 (5.40)

subject to,

𝐴̃𝑖𝑧2 ≤ 𝑏̃𝑖 (5.41)

where 𝐻̃ is given by equation (5.32), 𝑐̃ is given by equation (5.33), 𝐴̃𝑖 and 𝑏̃𝑖 are given by

equation (5.39).

The reduced problem given by equations (5.40 & 5.41) does not have equality constraints

but it is equivalent to the original problem of (5.13). We can solve the reduced problem of

equations (5.40 & 5.41) using qpOASES solver in Simulink or quadprog solver in MATLAB.

Let us assume that the optimal values returned by the solver be denoted by 𝑧2
∗ . After finding

the optimal values 𝑧2
∗ of the reduced optimization problem of (5.40 & 5.41), we can find the

optimal values of the basic variables as,

𝑧1
∗ = 𝑅1

−1(𝑏𝑒,1 − 𝑅2𝑧2
∗) (5.42)

Finally, we have the optimal values of the unknown variables as, z∗ = [
z1
∗

z2
∗]

Notes:

(1) If the reduced problem does not have inequality constraints (because it had no inequality

constraints in the original problem) then the reduced problem is unconstrained in

nature. Under such condition, we can then find 𝑧2
∗ analytically without using any solvers

as,

𝜕

𝜕𝑧2
(
1

2
𝑧2𝐻̃𝑧2 + 𝑐̃

𝑇𝑧2) = 0 → First order derevative of unconstrained problem equated to zero

1

2
⋅ 2 𝐻̃𝑧2

∗ + 𝑐̃ = 0

 𝑧2
∗ = −𝐻̃−1𝑐̃

86

(2) If we check the eigen value of 𝐻̃ of the objective of the reduced problem (5.40) we can

know the information about whether the reduced objective function is convex or not. If

the eigen values of 𝐻̃ are all positive, then the objective function of the optimization

problem (5.39) is convex. This means that the solution z* is the global solution.

(3) A typical content of the unknown vector z of unknowns are,

𝑧𝑇 = (𝑢0
𝑇 , … , 𝑢𝑁−1

𝑇 , 𝑥1
𝑇 , … , 𝑥𝑁

𝑇 , 𝑒1
𝑇 , … , 𝑒𝑁

𝑇 , 𝑦1
𝑇 , … , 𝑦𝑁

𝑇)

However, using the QR decomposition, the reduced problem will be expressed as the

non-basic variable (𝑧2). Since for a control problem the unknowns that are of primary

importance to compute are the control inputs 𝑢0, 𝑢1, ……… . , 𝑢𝑁−1, it is a good idea to

make 𝑢0, 𝑢1, ……… . , 𝑢𝑁−1, as the non-basic variables. If we do so, we directly get the

optimal values of the control inputs from the solvers i.e. we do not need to do the

additional calculation using equation (5.28) to calculate 𝑧1
∗. We can make the control

inputs 𝑢0, 𝑢1, ……… . , 𝑢𝑁−1 as the non-basic variables by putting them at the end of the

vector 𝑧.

(4) By Lagrangian or QR decomposition, we may have reduced the order of the optimization

problem. But in doing so, we are paying some price. The penalty to be paid is that in the

reduced problem, the matrices 𝐻̃, 𝑐̃, 𝐴̃𝑖 & 𝑏̃𝑖 are dense and hence the sparse matrix

structure that is present in the original problem is lost.

In a sparse matrix, the majority of the elements are zeros. In a dense matrix, the majority

of the elements are non-zero. Good & efficient solvers use the advantage of sparsity for

memory management by:

 Storing only the nonzero elements of the matrix, together with their indices

 Elimination of unnecessary low level math operations on zero elements of the

matrix. For e.g. zero-adds (𝑥 + 0 is always 𝑥, and this zero-add operation can be

eliminated).

5.2.3 Grouping control input variables:

Another way to reduce the size of the optimization problem is by grouping the control input

variable.

IDEA:

Create blocks/groups over the prediction horizon. Within a block/group , keep the control

signals constant. As an example: for a prediction horizon = 20, we can have the following

grouping of control signals.

87

From 𝑘 = 0 to 𝑘 = 3,  group 1/block 1

From 𝑘 = 3 to 𝑘 = 8,  group 2/block 2

From 𝑘 = 8 to 𝑘 = 𝑁 = 20,  group 3/block 3

For group 1  𝑢0 = 𝑢1 = 𝑢2 = 𝑢̃0

For group 2  u3 = u4 = ⋯……………… . . = u7 = 𝑢̃1

For group 3  u8 = u9 = ⋯……………… . . = u19 = 𝑢̃2

So after grouping the control signals into three groups, we have only three unknown control

inputs to calculate (𝑢̃0, 𝑢̃1 and 𝑢̃2) instead of original 20 control inputs.

In general, due to grouping of signals, we introduce additional equality constraints,

𝑢̃0 = 𝑢0 = 𝑢1 = ………… .= 𝑢𝑁1−1

𝑢̃1 = 𝑢𝑁1 = 𝑢𝑁1+1 = …………… . 𝑢𝑁2−1

𝑢̃2 = 𝑢𝑁2 = 𝑢𝑁2+1 = …………… . 𝑢𝑁3−1

⋮ ⋮ ⋮ ⋮

𝑢̃𝑁̃−1 = 𝑢𝑁𝑁̃−1 = 𝑢𝑁𝑁̃+1 = …………… . 𝑢𝑁−1

Here, 𝑁1 is the length of the first control group, 𝑁2 the length of the second control group and

so on. 𝑁̃ is the number of groups/blocks.

Suppose 𝑛𝑢 = 3 = three control signals of a process, 𝑁 = 20 = prediction horizon, then

the optimizer have to calculate 20×3 = 60 unknown control inputs for the horizon length

without grouping of signals.

Now, let 𝑁̃ = 3 = number of groups/blocks. Now we need to calculate 3× 3 =9 unknown

control inputs for the whole prediction horizon length. It reduces the number of unknown

variables significantly.

Note:

(1) The length of each block can be made equal. However, variable length blocks can also be

used such that second block is a little longer than the first block, third block is longer than

second block and so on.

88

(2) The additional equality constraints that arise due to grouping of control inputs can also

be eliminated for e.g. using QR factorization.

(3) At the first glance it looks like the additional equality constraints due to grouping of

control inputs increase the size of control problem since there are now more equality

constraints than the original problem. Yes this is true, but the execution time for solving

an optimization problem is more dependent and affected by the number of variables to

optimize. So the increase in the number of equality constraints due to input signal

grouping has insignificant effect compared to the reduction of the execution time due to

decrease in the total number of variables to optimize.

5.3 Execution time for Linear MPC for reduced LQ optimal control problem with

QR factorization:
Look at the video https://web01.usn.no/~roshans/mpc/lecture5/linear-MPC-dense-

speed.mp4 for more details.

In this video, you can see that the linear MPC with reduced LQ optimal control problem can

be solved much faster than the original MPC. For this particular example of the inverted

pendulum, the execution time speed gain is about 4.

Note: The text for this section of the lecture note will not be updated by the end of this

semester. However, the video includes all of it.

5.4 Ensuring feasibility:
In an optimization problem, one question arises, "Does a feasible point or solution always

exist?"

Answer :- No.

The problem is said to be infeasible, if there is no feasible solution or simply the solution

does not exists.

What causes infeasibility?

Constraints, particularly inequality constraints on the output & states cause infeasibility.

Remember that the constraints define the boundary/region where the solution should lie. If

the solution does not lie in the feasible region then the constraints are not satisfied and

infeasibility occurs. Now let us define the two types of constraints that form a background

for feasibility studies.

5.4.1 Types of constraints

(i) Hard constraint:

Constraints that have to be always obeyed strictly are the hard constraints. A system must

adhere to hard constraints. Usually constraints on the input variables can be posed as hard

constraints. For example: the opening of a choke valve in a pipeline should be within 0 &

100% i.e. 0≤ 𝑢 ≤ 100 is a hard constraint. This constraint cannot be violated at any cost. The

valve cannot be opened more than 100% & cannot be closed below 0% (the physical

https://web01.usn.no/~roshans/mpc/lecture5/linear-MPC-dense-speed.mp4
https://web01.usn.no/~roshans/mpc/lecture5/linear-MPC-dense-speed.mp4

89

structure & the operational condition of the choke valve strictly puts this limit). Any value of

𝑢 outside 0 ≤ 𝑢 ≤ 100 is simply not possible/feasible.

Other examples of hard constraints can be: capacity of an equipment, limits on actuators,

completion time of a project (let’s say the group project of this course) etc.

(ii) Soft constraints:

Constraints which are fulfilled if possible, but if it is not possible, disobeying or breaking the

constraints is also allowed are the soft constraints. However, violating the constraint should

be made as gentle as possible.

With soft constraints, the system tries to adhere or stick to it, but the system can violate the

constraints if necessary in order to find a feasible solution (but of course a solution that

complies with the hard constraints).

For example: Process outputs like flow rate, temperature, pressure etc. (unless they are too

serious to disobey or too serious to violate) can be regarding as soft constraints depending

on the operating conditions. Also note that when disobeying or breaking the constraints, you

may have to compromise some other things like quality of the product.

Violating the soft constraint is also known as relaxing the constraints. The goal during

constraints relaxation is to minimize the total amount of violation of all the soft constraints.

Let us look at an example. Consider an optimization problem as,
𝑚𝑖𝑛
𝑢
 𝐽 = 𝑦2 + 0.1𝑢2

subject to,

𝑥𝑘+1 =
1

2
𝑥𝑘 + 𝑢𝑘

𝑦𝑘 = 𝑥𝑘

0 ≤ 𝑢𝑘 ≤ 100

For any value of 𝑢𝑘 such that 0 ≤ 𝑢𝑘 ≤ 100 , we can find a feasible solution. Now, let us add

another inequality constraints to the problem such that,

𝑦𝑘 ≥ 300 → inequality constraints on output variables

At steady state,

𝑥 =
1

2
𝑥 + 𝑢

↓
𝑥 = 2𝑢

and

 𝑦 = 𝑥 = 2𝑢

For any values of 𝑢 (of course between 0 & 100), the value of 𝑦 will never be greater than

200. Therefore, the inequality constraint 𝑦𝑘 ≥ 300 will never be satisfied and hence the

90

problem becomes infeasible. For this example, the infeasibility is due to the presence of the

inequality constraints on the output variables.

 Normally, inequality constraints on the control input variables cannot render the optimal

control infeasible.

5.4.2 Relaxing the constraints

Taking the infeasible problem from the example presented above (section 5.4.1), the major

question remains as: How to find a feasible solution in this case?

Answer:- If 𝑦𝑘 ≥ 300 is a soft constraint, then relax it.

Relaxation of inequality constraints if they are soft constraints is performed by using slack

variables. For relaxation, the inequality constraint 𝑦𝑘 ≥ 300 can be written as,

𝑦𝑘 ≥ 300 − 𝑆𝑘

where 𝑆𝑘 is the slack variable.

To soften the constraint, remember to minimize the amount of violation. This can be done

by adding the slack variables 𝑆𝑘 to the unknown to be optimized. Then the relaxed

optimization problem becomes,
𝑚𝑖𝑛
(𝑢, 𝑆)

 𝐽 = 𝑦2 + 0.1𝑢2 + 𝛽𝑆𝑘

subject to,

𝑥𝑘+1 =
1

2
𝑥𝑘 + 𝑢𝑘

𝑦𝑘 = 𝑥𝑘

𝑦𝑘 ≥ 300 − 𝑆𝑘

In general, an infeasible optimization problem can be relaxed by adding the slack variable to

the unknowns 𝑧 and then penalizing the degree of violation as,

𝑚𝑖𝑛
(𝑧, 𝑠𝑘

𝐿 , 𝑠𝑘
𝐻)
 𝐽 =

1

2
 ∑𝑒𝑘

𝑇 𝑄𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑢𝑘−1

𝑁

𝑘=1

+ ∆𝑢𝑘−1
𝑇 𝑅𝑢𝑘−1 + 𝛽𝐿

𝑇𝑆𝐾
𝐿 + 𝛽𝐻

𝑇𝑆𝐾
𝐻 + (𝑆𝐾

𝐿)𝑇𝑆1𝑆𝐾
𝐿 + (𝑆𝐾

𝐻)𝑇𝑆2𝑆𝐾
𝐻

subject to,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝐾 + 𝛤𝑣𝐾 , 𝑥0, 𝑢−1 given

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘

 𝑦𝐿 − 𝑆𝑘
𝐿 ≤ 𝑦𝑘 ≤ 𝑦𝐻 + 𝑆𝑘

𝐻 → additional of slack variables to relax the constraint

𝑢𝐿 ≤ 𝑢𝑘 ≤ 𝑢𝐻

∆𝑢𝐿 ≤ ∆𝑢𝑘 ≤ ∆𝑢𝐻

Note:

 (1) Here 𝑆𝑘
𝐿 and 𝑆𝑘

𝐻 are the slack variable that are added to the output constraint. A suitable

value of 𝑆𝑘
𝐿 and 𝑆𝑘

𝐻
 (of course which has to be calculated by the optimizer) will break

the violation in the most gentle way (with least violation error). Since you need to

minimize the violation, you consider 𝑆𝑘
𝐿 and 𝑆𝑘

𝐻
 as extra unknown variables and add

them to the optimization problem along with 𝑧.

91

(2) 𝑆1 and 𝑆2 are the weighting matrices for the slack variables such that S1 ≥ 0 and S2 ≥ 0

and 𝛽L & 𝛽H are the tuning parameters.

(3) The slack variables 𝑆𝑘
𝐿 and 𝑆𝑘

𝐻
 should be zero if the constraints are not violated. You don’t

need to relax the constraints if the constraints are already satisfied. The slack variables

should be non zero if and only if the corresponding constraints are violated.

(4) This above example was shown for the inequality constraints in the output. The same

relaxation technique can also be applied to other constraints in order to relax them.

92

Lecture 6

Output feedback MPC & state Estimation7

6.1 Need for state estimation:
In the Figure 4.1 (in lecture 4), you can see that in order to solve an optimal control problem

at any time step 𝑗 we need to know the initial value of the state of the process 𝑥𝑗 at the current

time. With the state feedback MPC in lecture 4, we made the assumption that all the states of

the process/plant are available to us i.e. they are measurable.

But the question/problem is,

i. In a real process, sometimes it is not possible to measure all the states of the system. The

reason could be simply that there are no sensors available for measuring some of the

states of the process, or that the measurements are too noisy. Under such circumstances

(which is very normal in real industrial processes), the assumption of having full state

information simply becomes unrealistic.

ii. It is often very tempting to thing that, one way to calculate the states of the system 𝑥𝑗 is

to excite the process by the control input 𝑢𝑗−1
∗ (the first optimal control input obtained

by solving optimal control problem at time 𝑗 − 1). We can then use the model of the

process to calculate 𝑥𝑗 by updating the process from t=j to t=j+1 using the control input

𝑢𝑗−1
∗ .

Computing 𝑥𝑗 by using the model of the process (which is merely a mathematical

representation of the physical process) does not account for errors in the model (e.g.

modeling error and remember that models of a process are never 100% accurate). In

addition, disturbances frequently occur in the system that may alter the states of the

system, and in many case, the disturbances are not measurable and are unknown. Under

such conditions, the predication of 𝑥𝑗 using the model of the process may not be accurate

and may deviate from the real value of the system states.

What is the solution to this problem?

⟹ It is better and more accurate to estimate the states by using the latest available

measurements from the real process. It makes sense to do so because the real measurements

from the process are due to the actual dynamics occurring in the real process. The estimates

of the states are usually computed using estimators and observers. Kalman filter is an

example of a widely used optimal estimator. For linear MPC where the process model is

linear, standard Kalman filter is used. For nonlinear systems, extended Kalman filter (EKF),

unscented Kalman filter (UKF) etc. are used.

Note: If the model of the process is an input output model, then concept of state is irrelevant.

The output of the system is a function of previous inputs and outputs. Quantities like 𝑦0,

7 In this course, we will not focus on the theoretical details of state estimators. This is outside the scope of this

course. However, you will learn about how a state estimator can be used along with an MPC.

93

𝑦−1, …… . . , 𝑢−1, 𝑢−2………, are measured directly. Therefore, there is no need for state

estimation for such models.

6.2 Output feedback MPC
The algorithm in lecture 4 (state feedback MPC) assumed that the states of the system are

perfectly known or measurable. However, in practice, it may not always be possible to know

the state of the system perfectly. In many cases, we may not be able to measure the states of

the system at all. In such cases, the states of the system should be "ESTIMATED". Estimation

of the states can be performed by utilizing the measurement data up to and including time 𝑘.

The use of the measurement data for state estimation along with predictive control will form

an output feedback model predictive controller. The algorithm for output feedback MPC will

be only a slight modification of the algorithm for state feedback MPC (i.e. with an addition of

a state estimator). The algorithm for output feedback MPC is listed under:

1) Start with a given initial state of the process 𝑥𝑘 = 𝑥0 and set 𝑡 = 𝑘 =0

2) Estimate the current state 𝑥̂𝑘 for the current time 𝑘 by using measurement data up to

and including time 𝑘.

3) Considering a prediction horizon 𝑁, solve the optimal control problem (dynamic

optimization). Use 𝑥̂𝑘 as the initial state of the system.

Compute 𝑢𝑘
∗ , 𝑢𝑘+1

∗ , …………… . . , 𝑢𝑁+𝑘−1
∗

4) Use only the first control move 𝑢𝑘
∗ and discard the others.

Update the system using 𝑢𝑘
∗

5) Slide one time step forward, 𝑘 = 𝑘 + 1

6) Repeat steps (2) to (5) until the program terminates.

A general block diagram of the output feedback MPC is shown in Figure 6.1.

Figure 6.1 : Output feedback MPC

𝑦̂k
𝑥̂𝑘

uk
yk

MPC Process

Estimator

Ref

94

6.3 Brief introduction to estimators
Kalman filter can be used as optimal estimator for estimating the states of a system. In this

course, use limit ourselves from the details of Kalman filter theories as it is not within the

scope of this course. Therefore, we focus only on the implementation of the algorithms.

Kalman filter is a probabilistic state estimator, a type of Bayesian estimator. It is a minimum

covariance estimator, thus optimal in this sense. In the algorithm of Kalman filter, we

encounter terms such as "priori" and "posteriori" state estimates. Kalman filter describes the

propagation of the mean of the states and propagation of covariance of the state estimation

errors (hopefully minimum).

We proceed to estimate the states in two steps:

i) a priori estimate (predictor)

ii) a posteriori estimate (corrector)

Remember that we make use of the measurement data 𝑦𝑘's to calculate the estimates.

 If the estimate is computed by using all measurement data up to time 𝑘 (but not including

time 𝑘), it is denoted as a priori estimate. We denote it by '__' in the superscript.

𝑥̂𝑘
− = 𝐸[𝑥𝑘|𝑦1, 𝑦2……… . 𝑦𝑘−1] = 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.

Note that ^ denotes the estimated value. To obtain the apriori estimate, the mathematical

model of the process is used. This is the prediction step.

 Now we make use of the current measurement at time 𝑘 obtained from the real plant, and

then improve the apriori estimate obtained from the model. It is denoted as a posteriori

estimate. We denote it by '+' in the superscript.

𝑥̂𝑘
+ = 𝐸[𝑥𝑘|𝑦1, 𝑦2……… . 𝑦𝑘] = 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑒𝑠𝑡𝑎𝑚𝑎𝑡𝑒.

The estimate 𝑥̂𝑘
+ is better than the estimate 𝑥̂𝑘

− because the current available measurement

is also included when calculating 𝑥̂𝑘
+ i.e. the latest new information about the measurement

is utilized. This is the correction step.

The estimation error is calculated as,

𝑥𝑘 − 𝑥̂𝑘
− for a priori estimate

𝑥𝑘 − 𝑥̂𝑘
+ for a posterior estimate

The covariance of the apriori estimation error (denoted by 𝑃𝑘
−) for, 𝑥̂𝑘

− is

𝑃𝑘
− = 𝐸[(𝑥𝑘 − 𝑥̂𝑘

−)(𝑥𝑘 − 𝑥̂𝑘
−)𝑇]

The covariance of the aposteriori estimation error (denoted by 𝑃𝑘
+) for 𝑥̂𝑘

+ is

𝑃𝑘
+ = 𝐸[(𝑥𝑘 − 𝑥̂𝑘

+)(𝑥𝑘 − 𝑥̂𝑘
+)𝑇]

For easier understanding, see the time line of Figure 6.2 .

95

Figure 7.2: Time line for apriori and aposteriori state estimates

At the time step 𝑘, before using the measurement at that time 𝑘, we calculate an estimate of

𝑥𝑘 (denoted by 𝑥̂𝑘
−, the apriori estimate by using the mathematical model of the process) and

covariance of the estimation error (denoted by 𝑃𝑘
−). The measurement data at the current

time 𝑘 is used to improve the state estimation. So, 𝑥̂𝑘
+, the aposteriori estimate is calculated

along with the covariance of the estimation error 𝑃𝑘
+ .

Note: What Kalman filter does is: Every time a measurement is available, it updates the

predicted state and covariance of the state estimation error. As the time propagates, the

estimated state will finally converge to the true value of the state. So Kalman filter is a

recursive estimator.

6.4 Discrete time standard Kalman filter
Let us first study the algorithm of a Kalman filter for a linear state space model of the process

given as,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , with initial states 𝑥0 known (6.1)

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 (6.2)

To make the process stochastic in nature, let us add process noise '𝑤𝑘' and measurement

noise '𝑣𝑘' to the model.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 , with initial states 𝑥0 known (6.3)

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘 (6.4)

Assume that the process and the measurement noises are white noises with zero-mean,

uncorrelated and have known covariance matrices 𝑊 and 𝑉 as,

𝑊 = 𝐸[𝑤𝑘𝑤𝑘
𝑇]

𝑉 = 𝐸[𝑣𝑘𝑣𝑘
𝑇]

These covariance matrices are used to tune the Kalman filter. The algorithmic steps of a

discrete-time Kalman filter for a linear process are:

1. Initialize the Kalman filter for time 𝑘 = 0. You can use the initial state of the

system (known) for initialization.

𝑥̂𝑘
+ = 𝑥̂0

+ = 𝐸(𝑥0)

𝑃𝑘
+ = 𝑃0

+ = 𝐸[(𝑥0 − 𝑥̂0
+)(𝑥0 − 𝑥̂0

+)𝑇]

2. Compute the Kalman filter gain (𝐾𝑓)

𝑃𝑘+1
− = 𝐴𝑃𝑘

+𝐴𝑇 +𝑊

𝑘𝑓𝑘 = 𝑃𝑘+1
− 𝐶𝑇(𝐶𝑃𝑘+1

− 𝐶𝑇 + 𝑉)−1

96

3. Compute a priori state estimate (predictor).

𝑥̂𝑘+1
− = 𝐴𝑥̂𝑘

+ + 𝐵𝑢𝑘

4. Compute output using a priori state estimate

𝑦̂𝑘
− = 𝐶𝑥̂𝑘+1

− + 𝐷𝑢𝑘

5. Compute a posteriori state estimate using the current measurement 𝑦𝑘 at time 𝑘

(corrector).

𝑥̂𝑘+1
+ = 𝑥̂𝑘+1

− + 𝐾𝑓𝑘 (𝑦𝑘 − 𝑦̂𝑘
−)

6. Update the covariance of the state.

𝑃𝑘+1
+ = (𝐼 − 𝐾𝑓𝑘C) 𝑃𝑘+1

− (𝐼 − 𝐾𝑓𝑘𝐶)
𝑇
+ 𝐾𝑓𝑘𝑉𝐾𝑓𝑘

𝑇

7. Set 𝑘: = 𝑘 + 1 i.e. set 𝑃𝑘
+ = 𝑃𝑘+1

+ and 𝑥̂𝑘
+ = 𝑥̂𝑘+1

+ & repeat step 2 to 6.

Important note:
In the above algorithm, as the iteration continues, the Kalman filter gain 𝑘𝑓𝑘 will attain a

steady state value and will remain constant. This is usually denoted as the steady state

Kalman filter gain 𝐾𝑓. In many applications, it is okay to use the steady state Kalman filter

gain right from the beginning. As a matter of fact it be calculated offline if you already know

the 𝐴, 𝐵, 𝐶, 𝐷 matrices of the linear state space model, and the process noise and

measurement noise covariance matrics 𝑊 and 𝑉. For example, in MATLAB, we can use the

function kalman to calculate the steady state Kalman gain as,
[Kest,Kf,P]= kalman(plant,W,V];

Here, 𝐾𝑓 is the steady state Kalman filter gain. 𝑝𝑙𝑎𝑛𝑡 is the linear model of the process in

discrete time domain. In MATLAB the following discrete linear model is used,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤𝑘 (6.5)

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝐻𝑤𝑘 + 𝑣𝑘 (6.6)

To make the discrete time model used in MATLAB (equation 6.5 and 6.6) equivalent to our

process model (equations 6.3 and 6.4), we have to set 𝐺 to be unity and 𝐻 to be zero as,
G = eye(nx);

H = zeros(ny,nx);

Here, 𝑛𝑥 = number of states and 𝑛𝑦 = number of outputs. We can then define 𝑝𝑙𝑎𝑛𝑡8 in

MATLAB as,
Plant = ss(A,[B G],C,[D H],-1);

By using the steady state Kalman filter gain 𝐾𝑓, the algorithm reduces to the following,

𝑥̂𝑘+1
+ = 𝐴𝑥̂𝑘

+ + 𝐵𝑢𝑘 + 𝐾𝑓 (𝑦𝑚𝑒𝑎𝑠 − 𝐶𝑥̂𝑘
+ − 𝐷𝑢𝑘), with initial value 𝑥̂0

+assumed

8 If the system matrix 𝐷 is not present, simply put 𝐷 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑦, 𝑛𝑢).

97

𝑥̂𝑘
+ = 𝑥̂𝑘+1

+ updating the states.

Here, 𝑥̂𝑘
+ is the estimated states, 𝑥̂0

+ is the initial values of the estimated states which you can

assume something reasonable and 𝑦𝑚𝑒𝑎𝑠 is the measurement from the plant. So what you can

see here is that a Kalman filter is infact a linear dynamic model (copy of the process model

+ the injection of the correction term). The correction term is the state estimation error

which is then multiplied with the Kalman filter gain.

7.5 State estimation with nonlinear process model
If the system model is nonlinear, its state can be estimated using nonlinear versions of the

Kalman filter. Extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) are two

widely used methods for estimating the states for nonlinear system.

EKF relies on linearization to propagate mean and covariance of the state. It assumes that a

linearized transformation of means and covariance of the states are approximately equal to

the true nonlinear transformation. However, the drawback of EKF is that the approximation

could be unsatisfactory.

Therefore, in this lecture, we focus our attention to a form of Kalman filter which directly

utilizes the nonlinear process model for state estimation. UKF is an example of such an

estimator. Again we do not go into details about the theory of UKF but we limit ourselves to

the algorithmic steps only (that can be coded for e.g. in MATLAB).

7.5.1 Unscented Kalman filter

Unscented Kalman filter is also probabilistic in nature and it is based on the concept of

Unscented transformation:

⟹ Unscented transformation is performed using nonlinear process model (both for the state

equations and for the measurement equations). A set of deterministic vector or points

known as sigma points are used for transformation.

Let us assume that we know the mean of the states and the covariance of the state errors at

the initial time of 𝑘 = 0. (This is true, because at time k=0, we already know 𝑥̂0
+and 𝑃0

+ or at

least we start with their assumed initial values)

The sigma points are generated in such a way that their ensemble mean and covariance at

any time 𝑘 is actually equal to 𝑥̂𝑘
+and 𝑃𝑘

+. These sigma points are then applied to the nonlinear

process model, for e.g. 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) and 𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) to obtain the transformed

vectors.

Good thing is: Ensemble mean of the transformed vector will give a good estimate of the

true mean. Covariance of the transformed vector will give a good estimate of the true

covariance.

So, what we need to do is to:

a. Generate the sigma points.

b. Use the sigma points with nonlinear model of the process to find the

transformed points or vectors.

98

c. Use the current/latest measurement from the process and the mean of the

transformed points (or vectors) to find a good estimate of the states.

Details about sigma point generation is not within the scope of the course. Let us now look

into the algorithmic steps of UKF.

First, let the nonlinear process model (stochastic) be given by,

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘) + 𝑤𝑘 nonlinear state equation with process noise 𝑤𝑘 (6.7)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘) + 𝑣𝑘 measurement equation with measurment noise 𝑣𝑘 (6.8)

Here, 𝑥𝜖ℝ𝑛𝑥 where 𝑛𝑥 is the number of states. 𝑓(.) is some nonlinear function of 𝑥𝑘 (states),

𝑢𝑘 (inputs), 𝜃𝑘 (parameters)and 𝑡𝑘 (time). 𝑔(.) is some non-linear function and 𝑣𝑘 is the

measurement noise at time 𝑘.

The process and the measurement noise are assumed to be white noises with zero mean,

uncorrelated and that their covariances 𝑊𝑘 and 𝑉𝑘 are known. These covariances are used

to tune the UKF. The algorithmic steps are:

1. Set the known initial mean 𝑥̂𝑘
+ = 𝑥̂0

+ for time 𝑘 = 0 and known initial covariance

𝑃𝑘
+ = 𝑃0

+ for time 𝑘 = 0 of the states of the system.

2. Generate 2𝑛𝑥 sigma points 𝑥̂𝑘
(𝑖)

 as,

𝑥̃(𝑖) = (√𝑛𝑥𝑃𝑘
+)
𝑖

𝑇
 , 𝑖 = 1,2, ………… . , 𝑛𝑥

𝑥̃(𝑛𝑥+𝑖) = −(√𝑛𝑥𝑃𝑘
+)
𝑖

𝑇
 , 𝑖 = 1,2, ………… . , 𝑛𝑥

𝑥̂𝑘
(𝑖)
= 𝑥̂𝑘

+ + 𝑥̃(𝑖) , 𝑖 = 1,2, ………… . , 2𝑛𝑥

Note: Here (√𝑛𝑥𝑃𝑘
+)
𝑖

 is the ith row of √𝑛𝑥𝑃𝑘
+ . Take the transpose after taking out

the ith row.

3. Using the nonlinear model 𝑓(.), perform the unscented transformation of the sigma

points to find the transformed vector 𝑥̂𝑘+1
(𝑖)

 of the states as,

𝑥̂𝑘+1
(𝑖)

= 𝑓(𝑥̂𝑘
(𝑖)
, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘) 𝑓𝑜𝑟 𝑖 = 1,2, ………… . , 2𝑛𝑥

4. Obtain a priori state estimate by finding the mean of the transformed vectors of the

states,

𝑥̂𝑘+1
− =

1

2𝑛𝑥
 ∑ 𝑥̂𝑘+1

(𝑖)

2𝑛𝑥

𝑖=1

5. Obtain a priori error covariance and add the known process noise covariance

matrix.

𝑃𝑘+1
− =

1

2𝑛𝑥
 ∑(𝑥̂𝑘+1

(𝑖) − 𝑥̂𝑘+1
−)

2𝑛𝑥

𝑖=1

(𝑥̂𝑘+1
(𝑖) − 𝑥̂𝑘+1

−)
𝑇

+𝑊𝑘 (7.9)

Note: Here 𝑊𝑘 is added to take into account the process noise.

6. Using a priori state estimate 𝑥̂𝑘+1
− and a priori covariance 𝑃𝑘+1

− , generate 2𝑛𝑥 sigma

points,

𝑥̃(𝑖) = (√𝑛𝑥𝑃𝑘+1
−)

𝑖

𝑇
 , 𝑖 = 1,2, ………… . , 𝑛𝑥

99

𝑥̃(𝑛𝑥+𝑖) = −(√𝑛𝑥𝑃𝑘+1
−)

𝑖

𝑇
 , 𝑖 = 1,2, ………… . , 𝑛𝑥

𝑥̂𝑘+1
(𝑖)

= 𝑥̂𝑘+1
− + 𝑥̃(𝑖) , 𝑖 = 1,2, ………… . , 2𝑛𝑥

7. Using nonlinear measurement/output equation 𝑔(.) of the model, transform the

sigma points 𝑥̂𝑘+1
(𝑖)

 to find transformed vector 𝑦̂𝑘
(𝑖)
 of the outputs as,

𝑦̂𝑘
(𝑖)
= 𝑔(𝑥̂𝑘+1

(𝑖)
, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘)

8. Calculate the predicated output at time 𝑘 by finding the mean of 𝑦̂𝑘
(𝑖)

,

𝑦̂𝑘 =
1

2𝑛𝑥
 ∑ 𝑦̂𝑘

(𝑖)

2𝑛𝑥

𝑖=1

9. Calculate the covariance of the predicated output and add the known measurement

noise covariance matrix 𝑉𝑘.

𝑃𝑦 =
1

2𝑛
 ∑(𝑦̂𝑘

(𝑖) − 𝑦̂𝑘)

2𝑛𝑥

𝑖=1

(𝑦̂𝑘
(𝑖) − 𝑦̂𝑘)

𝑇

 + 𝑉𝑘 (6.10)

Note: Here 𝑉𝑘 is added to take into account the measurement noises.

10. Obtain the cross covariance matrix between a priori states estimate 𝑥̂𝑘+1
− , and

measurements/output estimate 𝑦̂𝑘 .

𝑃𝑥𝑦 =
1

2𝑛𝑥
 ∑(𝑥̂𝑘+1

(𝑖)
− 𝑥̂𝑘+1

−)

2𝑛𝑥

𝑖=1

(𝑦̂𝑘
(𝑖)
− 𝑦̂𝑘)

𝑇

11. Use the current/latest measurement 𝑦𝑘 from the real process to find the aposteriori

states and convariance estimates.

𝐾𝑓𝑘 = 𝑃𝑥𝑦𝑃𝑦
−1 → 𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛9

𝑥̂𝑘+1
+ = 𝑥̂𝑘+1

− + 𝐾𝑓𝑘(𝑦𝑘 − 𝑦̂𝑘)

𝑃𝑘+1
+ = 𝑃𝑘+1

− − 𝐾𝑓𝑘𝑃𝑦𝐾𝑓𝑘
𝑇

12. Set 𝑘 ≔ 𝑘 + 1 i.e. i.e. set 𝑃𝑘
+ = 𝑃𝑘+1

+ and 𝑥̂𝑘
+ = 𝑥̂𝑘+1

+

13. Repeat steps (2) to (12) for 𝑘 = 1,2, ……. until the end of simulation time.

6.6 Some comments
1. Process and measurement noises are assumed to be additive (linear) i.e. the process

and measurement equations (equation (6.7) and equation (6.8)) are linear with

respect to the noises. But noises may enter the process and measurement equations

nonlinearly. If so, the nonlinear model of the stochastic system becomes,

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘 , 𝑤𝑘, 𝑡𝑘)

𝑎𝑛𝑑 𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘 , 𝑣𝑘 , 𝑡𝑘)

For such models the UKF algorithm may not be very rigorous and accurate.

9 For nonlinear Kalman filter, the steady state Kalman gain cannot be calculated offline or in advance.

100

2. Augmentation

 We can augment the noise with the state vector to handle such cases. Let us denote

the augmented state (original system state + process and measurement noises)

by 𝑥𝑘
(𝑎)
 → superscript (a) denotes augmented.

𝑥𝑘
(𝑎)
= [

𝑥𝑘
𝑤𝑘
𝑣𝑘
]

Then for such augmentation, we can remove the terms 𝑊𝑘 from equation (6.9) and

the term 𝑉𝑘 from equation (6.10). Rest of the algorithm remains the same as in section

6.5.1.

3. With an output feedback MPC, the tuning of MPC becomes more complicated. This is

because of the presence of the estimation loop (e.g. Kalman filter for state estimation)

which also has to be tuned. In general, the dynamics of the estimator should be

significantly faster than the MPC loop to limit interaction between the estimator and

the control loop.

4. There is also another class of state estimator known as moving horizon estimator

(MHE) which has a structure very similar to an MPC structure. MHE estimates the

states by solving an optimization problem formed by using the data upto M time steps

backwards i.e at times 𝑡𝑘−𝑀, 𝑡𝑘−𝑀+1, …… to current time 𝑡𝑘. The same solver that is

used to solve MPC can also be used to solve MHE. Again, details are not included in

this course.

6.7 Combined state and disturbance estimation
If disturbances act on the system we must ensure that the MPC will keep track of the

reference despite the disturbance. For this, the information about the disturbance should be

provided to the controller.

However, in many cases disturbances are not measurable and they are not known. In such

cases, disturbances can be estimated together with the states of the system. The controller

can then use these estimated disturbances.

One easy way to represent a disturbance is to assume that it is a constant signal acting on the

process. Then a simple model of the disturbance can be of the form as,

𝑑𝑘+1 = 𝑑𝑘 (6.11)

where 𝑑 denotes the disturbance acting on the system.

A linear state space model of the form

𝑥𝑘+1 = 𝐴𝑥𝐾 + 𝐵𝑢𝑘 + 𝐴𝑑𝑑𝑘 (6.12)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐶𝑑𝑑𝑘 (6.13)

can be augmented with the disturbance model given by 𝑑𝑘+1 = 𝑑𝑘 (a constant disturbance)

as,

101

[
𝑥𝑘+1
𝑑𝑘+1

]
⏟
𝑥̃𝑘+1

= [
𝐴 𝐴𝑑
0 𝐼

]
⏟

𝐴̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

+ [
𝐵
0
]

⏟
𝐵̃

𝑢𝑘

𝑦𝑘 = [𝐶 𝐶𝑑]⏟
𝐶̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

Then the augmented state space model can be written as,

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝐾 + 𝐵̃𝑢𝑘 (6.14)

𝑦𝑘 = 𝐶̃𝑥̃𝑘 (6.15)

In order to estimate the disturbance 𝒅𝒌, the augmented state space model of equation (6.14)

and (6.15) should be used with the Kalman filter algorithm of section 6.4 (but not the

original state space model of equation (6.12) and (6.13)).

For nonlinear system, the disturbance model can be written as,

𝑑𝑘+1 = ℎ(𝑑𝑘, 𝑡𝑘) → non − linear function for input disturbance. (6.16)

Let the nonlinear process model be,

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘, 𝑑𝑘, 𝑡𝑘) (6.17)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝜃𝑘 , 𝑑𝑘, 𝑡𝑘) (6.18)

The disturbance and the system states can be augmented as,

 𝑥𝑘+1
(𝑎)

= [
𝑥𝑘+1
𝑑𝑘+1

] = [
𝑓(𝑥𝑘, 𝑢𝑘, 𝜃𝑘 , 𝑑𝑘, 𝑡𝑘)

ℎ(𝑑𝑘, 𝑡𝑘)
]

⏟
𝑓̃

(6.19)

The augmented model is,

𝑥𝑘+1
(𝑎)

= 𝑓 (𝑥𝑘
(𝑎)
, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘) (6.20)

𝑦𝑘 = 𝑔 (𝑥𝑘
(𝑎)
, 𝑢𝑘 , 𝜃𝑘 , 𝑡𝑘) (6.20)

 In order to estimate the disturbance 𝒅𝒌, the augmented state space model of equation

(6.20) and (6.21) should be used with the Unscented Kalman filter algorithm of section 6.5.1

(but not the original state space model of equation (6.17) and (6.18)).

6.8 Example and demonstration for state estimation:

Example and demonstration will be presented in the classroom using the real helicopter unit

available at USN. The simulator for state estimation of the helicopter process is also available for

download from the homepage of the course.

Students who were not present in the classroom, please see the video of the lecture to understand

the example.

102

Lecture 7

Integral action and features of MPC

7.1 Offset free MPC: Integral action
When there is plant-model mismatch, i.e. if the model used for constructing the MPC is not the

same as the plant model which is being controlled, then there will be some offset between the

reference value and the actual plant output at the steady state. In other words, at the steady state,

the output of the process being controlled will not become exactly equal to the setpoint value, but

will show some deviation or offset. Two common scenarios where a plant-model mismatch may

occur are given below:

a) When a linear MPC is used to control a nonlinear plant away from the point of linearization:

In this case, the MPC is based on the linearized model of the plant. The linear plant model

shows correct behavior only at or around the point of linearization. If the plant is operated

at regions which lie away from the point of linearization, then the linearly approximated

model may not be able to show the true nonlinear behavior of the plant, and hence the

plant-model mismatch arises. Under such scenarios, linear MPC (based on the linearized

model of the plant) when applied to the nonlinear plant may show finite steady state error

or offset.

b) When an MPC (either linear or nonlinear) is applied to a plant having parametric

uncertainty: In this case, the plant model (either linear or nonlinear) which is used to create

the MPC (either linear or nonlinear) has parametric values that necessarily do not match

the true parameters of the target system (the plant being controlled). Under such cases, the

MPC will produce steady state error between the target system (actual plant) output and

the reference value.

In an offset free MPC, steady state errors are driven to zero i.e. at the steady state the output of the

process being controlled should become equal to the setpoint value. It is similar to adding integral

action to the controller. Integral action is necessary to account for the plant-model mismatch or

uncertainties in mathematical model of the process and/or to compensate for the effect of unknown

disturbances acting on the system. We will see different ways of achieving integral action with

MPC in this section.

Note: It may be very tempting to choose a large value for the weighting matrix for error i.e. a large

value for the 𝑄 matrix in the objective function of the optimal control problem to reduce the offset

due to plant-model mismatch. Well, with such a choice, the amount of offset may be decreased

slightly, but it will never be able to eliminate the offset completely.

7.1.1 Augmentation with integrating constant nonzero disturbance model

One of the reasons why we may have a steady state error between the setpoint and the process

output with an MPC is that various unknown disturbances may be affecting the process. The

mathematical model of the process may not be sufficient to reflect the effect of these disturbances.

103

Thus a way of obtaining an offset free MPC for integral action is to augment the model of the

process with an integrating constant nonzero disturbance model.

For simplicity, let us take the linear state space model of the process10 as,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (7.16)
𝑦𝑘 = 𝐶𝑥𝑘 (7.17)

Now let us consider an integrating constant nonzero disturbance model as,

𝑑𝑘+1 = 𝑑𝑘 (7.18)

To incorporate the effect of disturbances, let us modify the linear state space model of the process

as,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐵𝑑𝑑𝑘 (7.19)
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐶𝑑𝑑𝑘 (7.20)

Now the process model of Equation 7.19 and 7.20 can be augmented with the disturbance model

of Equation 7.18 as,

[
𝑥𝑘+1
𝑑𝑘+1

]
⏟
𝑥̃𝑘+1

= [
𝐴 𝐵𝑑
0 𝐼

]
⏟

𝐴̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

+ [
𝐵
0
]

⏟
𝐵̃

𝑢𝑘
(7.21)

𝑦𝑘 = [𝐶 𝐶𝑑]⏟
𝐶̃

[
𝑥𝑘
𝑑𝑘
]

⏟
𝑥̃𝑘

(7.22)

The augmented model is in a standard linear state space form as,

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃𝑢𝑘 (7.23)

𝑦𝑘 = 𝐶̃𝑥̃𝑘 (7.24)

Here, 𝑑𝑘 ∈ ℝ
𝑛𝑑 with 𝑛𝑑 = 𝑛𝑦 being the number of unmeasured disturbance variables and equal to

the number of available measurement. The matrices 𝐵𝑑 ∈ ℝ
𝑛𝑥×𝑛𝑑 and 𝐶𝑑 ∈ ℝ

𝑛𝑦×𝑛𝑑 are chosen

appropriately such that the following condition holds true for detectability.

𝑟𝑎𝑛𝑘 [
𝐼 − 𝐴 −𝐵𝑑
𝐶 𝐶𝑑

] = 𝑛𝑥 + 𝑛𝑦 (7.24)

Here 𝑛𝑥 , 𝑛𝑦, 𝑛𝑑 are the number of states, outputs and disturbance variables of the system.

The linear MPC (LQ optimal control structure + receeding horizon strategy) should be constructed

with the augmented model of Equation 7.23 and 7.24. If the conditions for detectability holds true,

then the resulting model predictive controller should produce offset free outputs i.e. integral action.

Obviously, it is also clear that since the disturbances 𝑑𝑘 are not measured, they should be

estimated. Here the standard Kalman filter algorithm for linear system based on Equation 7.23 and

7.24 may be used to estimate the augmented states 𝑥̃𝑘 = [
𝑥𝑘
𝑑𝑘
]. This augmented state estimated at

each time step should further be used as initial values for kronecker product formulation for LQ

optimal control problems.

10 In this lecture, I have dropped out deviation form (using 𝛿) of the linear state space model for easiness in typing.

But if your linear model is obtained by linearization of nonlinear model, then please make sure that your further

calculations are based on the deviation form of your linear model.

104

7.1.2 ∆𝒖 formulation for integral action

Another way to achieve integral action is the ∆𝒖 formulation. It can be easily implemented to

account for unknown disturbances which can be regarded as constant or slowly varying. The term

∆𝒖 is defined as,

𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 (7.25)

But at first, let us consider a linear system whose state space model11 is given by,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣 (7.26)
𝑦𝑘 = 𝐶𝑥𝑘 +𝑤 (7.27)

Here, 𝑣 and 𝑤 account for the unknown disturbances (process and measurement noise

respectively) which are either constant or slowly varying. To get rid of these unknown

disturbances, we can define ∆𝑥𝑘 = (𝑥𝑘 − 𝑥𝑘−1) or with one increment in 𝑘 index as ∆𝑥𝑘+1 =

(𝑥𝑘+1 − 𝑥𝑘). Then we have,

𝑥𝑘+1 − 𝑥𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣 − 𝐴𝑥𝑘−1 − 𝐵𝑢𝑘−1 − 𝑣 (7.28)

∆𝑥𝑘+1 = 𝐴(𝑥𝑘 − 𝑥𝑘−1) + 𝐵(𝑢𝑘 − 𝑢𝑘−1) (7.29)

∆𝑥𝑘+1 = 𝐴∆𝑥𝑘 + 𝐵∆𝑢𝑘 (7.30)

As, you can see in Equation 7.28, the effect of 𝑣 gets cancelled out, i.e. +𝑣 and − 𝑣 cancel out

each other.

Similarly, for the output equation we have,

𝑦𝑘 − 𝑦𝑘−1 = 𝐶𝑥𝑘 + 𝑤 − 𝐶𝑥𝑘−1 − 𝑤 (7.31)

𝑦𝑘 − 𝑦𝑘−1 = 𝐶(𝑥𝑘 − 𝑥𝑘−1) (7.32)

𝑦𝑘 = 𝑦𝑘−1 + 𝐶∆𝑥𝑘 (7.33)

As, you can see in Equation 7.31, the effect of 𝑤 gets cancelled out, i.e. +𝑤 and − w cancel out

each other.

Now we can augment Equation 7.30 and Equation 7.33 as,

[
∆𝑥𝑘+1
𝑦𝑘

]
⏟
𝑥̃𝑘+1

= [
𝐴 0
𝐶 𝐼

]
⏟

𝐴̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟
𝑥̃𝑘

+ [
𝐵
0
]

⏟
𝐵̃

∆𝑢𝑘
(7.34)

𝑦𝑘 = [𝐶 𝐼]⏟
𝐶̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟
𝑥̃𝑘

(7.35)

The augmented model is in a standard linear state space form as,

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 (7.36)

𝑦𝑘 = 𝐶̃𝑥̃𝑘 (7.37)

The linear MPC (LQ optimal control structure + receeding horizon strategy) should be constructed

with the augmented model of Equation 7.36 and 7.37. This way we achieve the integral action.

Since the augmented linear model of the process now contains ∆𝑢𝑘 instead of 𝑢𝑘, the formulation

11 In this lecture, I have dropped out deviation form (using 𝛿) of the linear state space model for easiness in typing.

But if your linear model is obtained by linearization of nonlinear model, then please make sure that your further

calculations are based on the deviation form of your linear model.

105

of the performance criteria for the MPC (i.e. the objective function) and the constraints should also

be modified to contain ∆𝑢𝑘 as,

𝑚𝑖𝑛
(∆𝑢𝑘)

 𝐽 =
1

2
 ∑𝑒𝑘

𝑇 𝑄𝑘𝑒𝑘 + ∆𝑢𝑘−1
𝑇 𝑃𝑘−1∆𝑢𝑘−1

𝑁

𝑘=1

 (7.38)

subject to,

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 with 𝑥̃𝑘𝜖ℝ
(𝑛𝑥+𝑛𝑦)×1 , ∆𝑢𝜖ℝ𝑛𝑢×1 and 𝑥̃0 known (7.39)

𝑦𝑘 = 𝐶̃𝑥̃𝑘 with 𝑦𝑘𝜖ℝ
𝑛𝑦×1 (7.40)

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 (7.41)

∆𝑢𝐿 ≤ ∆𝑢𝑘 ≤ ∆𝑢𝑈 (7.42)

𝑢𝐿 ≤ 𝑢𝑘 ≤ 𝑢𝑈 (7.43)

If any of the augmented states 𝑥̃𝑘 = [
∆𝑥𝑘
𝑦𝑘−1

] are not measurable then they should be estimated using

state estimators like the Kalman filter and used further in kronecker product formulation of LQ

optimal control problems.

Here the variables to be optimized are the rate of change of control input ∆𝑢𝑘. However, when

applying the control input to the target system, 𝑢𝑘 = ∆𝑢𝑘 + 𝑢𝑘−1 should be used.

7.1.3 Adding integrators to the output (MPC + I control): A practical approach

In practice, it is much easier to achieve integral action (or zero steady state offset) by directly

adding integrators to the measured outputs. The block diagram in Figure 7.4 illustrates the concept.

Here, integrator have been added to the outputs such that,

𝑢𝑖𝑛𝑡 = 𝐾𝑖∫ (𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑆𝑃)𝑑𝑡
(7.44)

In Equation 7.44, the error between the measured output (𝑦𝑚𝑒𝑎𝑠) and the setpoint (𝑦𝑆𝑃) is integrated

over time. 𝐾𝑖 is the integrator gain chosen by the user.

If 𝑢 is the control inputs obtained from the linear MPC structure, then the actual control input

applied to the process is,

𝑢𝑎𝑝𝑝 = 𝑢 + 𝑢𝑖𝑛𝑡 (7.44)

𝑢𝑎𝑝𝑝 = 𝑢 + 𝐾𝑖∫ (𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑆𝑃)𝑑𝑡 (7.45)

The Kalman filter block is used to estimate the unknown states. The MPC block (either linear or

nonlinear) contains the optimal control with receeding horizon strategy. An important thing to note

here is that the output integrator is not a direct part during the formulation of the optimal control

problem. Thus, it can be argued that the applied control inputs 𝑢𝑎𝑝𝑝 are sub-optimal instead of

being optimal. In practice this does not matter since in an MPC, the optimization is carried out not

just once but at every time step thus obtaining feedback action. Given that the user chooses proper

value of the integrator gain (𝐾𝑖), the question of sub-optimal solution (at least for the set point

tracking problems) becomes not very important.

106

Figure 7.4: Adding integrator to the outputs with MPC for integral action

7.2 Features of MPC:
A big advantage of MPC is that a systematic approach for handling constraints is included in the

design of MPC itself.

Constraints such as,

 Physical constraints, e.g. actuator limits.

 Safety constraints, e.g. temperature/pressure limits.

 Environmental constraints, quality constraints

 Performance constraints e.g. overshoot.

are integrated as a part of the optimal control problem of MPC. i.e. while formulating the

optimization problem, you can in a natural way also include constraints.

MPC is an optimal controller (because we solve an optimization problem at each time step). The

control actions generated by an MPC are optimal in nature. Upon the usage of these control actions,

the process operates in an optimal manner.

Classical controller (e.g. PID controller) do not necessarily operate a process/plant in an optimal

manner. The operation of the plant may be just suboptimal. Classical control methods may not be

able to handle constraints efficiently, even if they do, it will be unsystematic of adhoc constraint

management.

107

Another feature of MPC is that we can include different kinds of models such as,

 Linear

 nonlinear

 SISO (Single input Single output)

 MIMO (Multiple Input Multiple Output) with strong coupling

 Models with constraints

 Models with time delays.

 Models with inverse response

MPC can be formulated to include many different kinds of objectives (or performance

criteria). They could for e.g. be:

 sum of squared error ∑ 𝑒𝐾
𝑇𝑄𝑒𝑘,

 sum of absolute errors ∑ 𝜆𝑒|𝑒𝑘|,

 economic objectives like profit maximizing ,

 minimizing loss or minimizing production downtime,

 multi objective function etc.

Note: MPC not only can be used for tracking a reference, but it can also be used as an

optimizer. MPC can be designed to calculate optimal set points (for e.g. flow rates, pump

speed, value opening, temperature, pressure etc.). These optimal set points can be utilized

by lower level controllers (e.g. PID controllers) for operating the process. MPC providing set

points to lower level controllers is also known as a supervisory MPC.

Therefore, in this regard, we can say that an MPC is a high performance controller. However, there

are many challenges that arise when a finite horizon MPC is used as a controller (or as an

optimizer). Some of the challenges are:

i. Feasibility

There is no guarantee that an optimization problem will have a feasible solution at all

times. At any point of time, we may not find a solution to the optimization problem that

will satisfy all the constraints. This could (for example) be because of a large

disturbance acting on the system, say at time 𝑡𝑘 that may cause infeasiblity at the time

𝑡𝑘 and possibly also at future time steps 𝑡𝑘+1, 𝑡𝑘+2 etc.

ii. Stability

In a finite horizon MPC, closed-loop stability is not guaranteed i.e. the closed-loop

performance of the MPC may not converge. So, even if the process/plant is open-loop

stable, the closed-loop stability with MPC is not guaranteed.

iii. Robustness

Under the presence of uncertainties or disturbances, the performance of MPC is not

necessarily robust.

iv. Implementation

MPC problems are computationally demanding in general. If MPC is used for real time

applications, the MPC problem has to be solved within the sampling interval of the

process.

108

7.3 Stability of MPC
As also mentioned before, a finite horizon MPC cannot guarantee stability even if a feasible

solution exists at every time step. Let us write a finite horizon MPC in general as,

(𝐴)

{

 𝑚𝑖𝑛

(𝑢0, 𝑢1…………𝑢𝑁−1)
 𝐽 = ∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

𝑠. 𝑡. 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2, ……… . , 𝑁 − 1 → 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙, 𝑥0 𝑘𝑛𝑜𝑤𝑛

 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2,……… . , 𝑁 − 1 → 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

 ℎ𝑖(𝑥) − 𝑏𝑖 = 0 , 𝑖 = 1,2,……… . ,𝑚 → 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 𝐼𝑗(𝑥) − 𝑐𝑗 ≤ 0 , 𝑗 = 1,2, ……… . , 𝑟 → 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Here, 𝑞(𝑥𝑘, 𝑢𝑘) is any linear or nonlinear objective. The stability of the finite horizon constrained

optional control problem of (A) can be improved by making the horizon longer. As a rule of thumb,

the prediction horizon should be at least equal to the dominant dynamics (for e.g. , the longest time

constant of a stable system). However, to ensure stability, the prediction horizon can be extended

to infinity, i.e. by considering an infinite horizon MPC12. So, what we would like the MPC to be

is given by problem (B),

(𝐵)

{

 𝑀𝑖𝑛

(𝑢0, 𝑢1…………∞)
 𝐽 = ∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

∞

𝑘=0

𝑠. 𝑡. 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) , 𝑘 = 0, 1,2,……… . ,∞ , 𝑥0 𝑘𝑛𝑜𝑤𝑛

 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2, ……… . ,∞

 ℎ𝑖(𝑥) − 𝑏𝑖 = 0 , 𝑖 = 1,2,……… . ,𝑚

𝐼𝑗(𝑥) − 𝑐𝑗 ≤ 0 , 𝑗 = 1,2,……… . , 𝑟

But infinite horizon constrained optimal control problem of (B) is infinite dimensional

optimization problem. It cannot be computed or solved using conventional method because there

are infinite number of variables to optimize. At the same time, the objective function should also

be bounded i.e. 𝐽 < ∞.

The solution to the problem:

The idea is to split the infinite horizon of problem (B) into two parts:

 0, 1, …… . , 𝑁 − 1, : part 1

 𝑁,𝑁 + 1,…… . . , ∞ : part 2

Splitting is done in a way that the first part (0, 1, …… . , 𝑁 − 1) will represent a finite horizon

control problem. On the second part (𝑁,𝑁 + 1,…… . . ,∞), the problem is unconstrained. Then we

have,

12 The openloop trajectories of an infinite horizon optimal control problem is the same as the closed loop

trajectories. So, if the problem is feasible, the closed loop trajectories will be always feasible. If the problem is

stable, the closed loop stability is guaranteed.

109

(𝐶)

{

 𝑚𝑖𝑛
(𝑢0, 𝑢1…………𝑢∞)

 𝐽 = ∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

+ ∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

∞

𝑘=𝑁

𝑆. 𝑡. 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2,……… . ,∞

 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2,……… . ,∞

 ℎ𝑖(𝑥) − 𝑏𝑖 = 0 , 𝑖 = 1,2,……… . ,𝑚

𝐼𝑗(𝑥) − 𝑐𝑗 ≤ 0 , 𝑗 = 1,2,……… . , 𝑟

𝑥0 𝑘𝑛𝑜𝑤𝑛

𝑁 should be large enough to drive the system/process to a state 𝑥𝑁 ∈ 𝜒𝑓 where 𝜒𝑓 is a feasible set

from where the optimal trajectory is unconstrained. In other words, in the infinite horizon interval

(𝑁,𝑁 + 1,…… . . ,∞), none of the constraints are active (both in states and in control inputs). The

objective function in the infinite horizon interval is for simplicity can be written in quadratic form

as

∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

∞

𝑘=𝑁

= 𝑝(𝑥𝑁) =
1

2
𝑥𝑁
𝑇𝑆𝑥𝑁

where 𝑆 is the weighting matrix for 𝑥𝑁. The term 𝑝(𝑥𝑁) is also referred to as terminal cost or

terminal objective function. The term 𝑥𝑁 ∈ 𝜒𝑓 will give rise to terminal constraints. Then problem

(C) which is infinite horizon constrained problem can be reformulated as finite horizon constrained

problem or finite dimensional control problem (D) as,

(𝐷)

{

𝑀𝑖𝑛
(𝑢0, 𝑢1…………𝑢𝑁−1)

 𝐽 = ∑ 𝑞(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

+ 𝑝(𝑥𝑁)

𝑆. 𝑡. 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2,……… . , 𝑁 − 1

 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) , 𝑘 = 0, 1,2,……… . , 𝑁 − 1

 ℎ𝑖(𝑥) − 𝑏𝑖 = 0 , 𝑖 = 1,2,……… . ,𝑚

𝐼𝑗(𝑥) − 𝑐𝑗 ≤ 0 , 𝑗 = 1,2,……… . , 𝑟

𝑥0 𝑘𝑛𝑜𝑤𝑛

𝑥𝑁 ∈ 𝜒𝑓 → 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

Note that in the optimal control problem (D), 𝑈 ∈ [𝑢0, 𝑢1,…… , 𝑢𝑁−1] i.e. we have finite number

of variables to optimize. By introducing terminal cost and terminal constraint, stability is ensured

(of course for a proper choice of 𝑁) provided that the problem is feasible at all times.

𝜒𝑓 is a set or region where the optimal control problem becomes unconstrained in the infinite

horizon interval. 𝑝(𝑥𝑁) and 𝜒𝑓 are chosen to mimic or approximate infinite horizon problem with

finite horizon problem.

Note: For a proper choice of 𝑁, it can be proven that the terminal objective function 𝑝(𝑥𝑁)

becomes a Lyapunov function for the whole horizon that decays toward the origin i.e. stability is

guaranteed. The proof involves a good choice of 𝑁 and the generation of 𝜒𝑓 is a difficult task

(especially for nonlinear system) and it is out of the scope of the course. Generally, in practice,

terminal sets are not used i.e. simply neglected as long as there is feedback in the system.

110

7.4 Handling computational time delay and burden
MPC algorithms are computationally demanding. The algorithm is suitable for systems whose

sampling time is larger than the computational time required for solving the MPC problem at each

time step i.e. for slow processes. For processes with fast system dynamics, real time application of

MPC may be difficult to realize. Failing to properly address the computational time delay, may

lead the process to become unstable.

7.4.1 As input and output delay

If it is possible13 to define an upper bound '𝜏' on the computation time (i.e. to define the maximum

time required to solve MPC problem), then computational delay time ' 𝜏 ' can be handled in two

ways.

(i) Consider the computational delay ′𝜏′ as an input delay to the model i.e.

𝑢(𝑡𝑘) → 𝑢(𝑡𝑘 − 𝜏)

To do so, the model used in the MPC algorithm must be extended with the delay. This

simply means that when the control signal has been computed for time 𝑡𝑘, it is injected

or used into the system at time 𝑡𝑘 + 𝜏. The model must be able to handle the input delay.

This technique improves the closed loop response.

(ii) Consider the computational delay ′𝜏′ as an output delay:

 If 𝑑𝑡 is the sampling time, then the number of samples corresponding to the

computational delay can be calculated as,

𝑛𝜏 = round down (
𝜏

𝑑𝑡
)

Figure 7.5 shows a simplified diagram of an output delay.

Output Delay Model

Output delay
model

Figure 7.5: Output delay model

Without the output delay, the state space model of the process can be written as,

𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘 (7.46)
𝑦̅𝑘 = 𝐷𝑥𝑘 (7.47)

Let us assume that the state space model from 𝑦̅𝑘 to 𝑦𝑘 (i.e. the delay model) be

written as,

𝑥𝑘+1
𝜏 = 𝐴𝜏𝑥𝑘

𝜏 + 𝐵𝜏𝑦̅𝑘 (7.48)
𝑦𝑘 = 𝐷

𝜏𝑥𝑘
𝜏 (7.49)

Illustration 1: For a computational delay of 2 samples i.e. 𝑛𝜏 = 2,

13 The difficulty in determining the computational delay offline lies in that the computational times for different

optimization cycles are different even for the same optimization algorithm. Computational time is quite different in

each nonlinear optimization procedure for different initial points and optimum.

111

[
𝑥𝑘+1
1

𝑥𝑘+1
2] = [

0 0
1 0

]
⏟
𝐴𝜏

[
𝑥𝑘
1

𝑥𝑘
2]

⏟
𝑥𝑘
𝜏

+ [
1
0
]

⏟
𝐵𝜏

𝑦̅𝑘
(7.50)

𝑦𝑘 = [0 1]⏟
𝐷𝜏

[
𝑥𝑘
1

𝑥𝑘
2
]

⏟
𝑥𝑘
𝜏

(7.51)

Analysing equations (7.50) and (7.51) we get,

𝑥𝑘+1
1 = 𝑦̅𝑘

𝑥𝑘+1
2 = 𝑥𝑘

1 = 𝑦̅𝑘−1

𝑦𝑘 = 𝑥𝑘
2 = 𝑦̅𝑘−2

i.e. there is an output delay of 2 samples.

Illustration 2: For a computational delay of 3 samples i.e. 𝑛𝜏 = 3,

[

𝑥𝑘+1
1

𝑥𝑘+1
2

𝑥𝑘+1
3

] = [
0 0 0
1 0 0
0 1 0

]
⏟

𝐴𝜏

[

𝑥𝑘
1

𝑥𝑘
2

𝑥𝑘
3

]

⏟
𝑥𝑘
𝜏

+ [
1
0
0
]

⏟
𝐵𝜏

𝑦̅𝑘
(7.52)

𝑦𝑘 = [0 0 1]⏟
𝐷𝜏

[

𝑥𝑘
1

𝑥𝑘
2

𝑥𝑘
3

]

⏟
𝑥𝑘
𝜏

(7.53)

Analysing equations (8.7) and (8.8) we get,

𝑥𝑘+1
1 = 𝑦̅𝑘

𝑥𝑘+1
2 = 𝑥𝑘

1 = 𝑦̅𝑘−1

𝑥𝑘+1
3 = 𝑥𝑘

2 = 𝑦̅𝑘−2

𝑦𝑘 = 𝑥𝑘
3 = 𝑦̅𝑘−3

i.e. there is an output delay of 3 samples.

To handle the computational time delay, the process model without output delay

(equation 7.46 & 7.47) should be augmented with the output delay model (equation

7.48 & 7.49) as,

[
𝑥𝑘+1
𝑥𝑘+1
𝜏]

⏟
𝑥̃𝑘+1

= [
𝐴 0
𝐵𝜏𝐷 𝐴𝜏

]
⏟

𝐴̃

[
𝑥𝑘
𝑥𝑘
𝜏]

⏟
𝑥̃𝑘

+ [
𝐵
0
]

⏟
𝐵̃

𝑢𝑘
(7.54)

112

𝑦𝑘 = [0 𝐷𝜏]⏟
𝐷̃

[
𝑥𝑘
𝑥𝑘
𝜏]

⏟
𝑥̃𝑘

(7.55)

Augmented model is in a standard form as,

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃𝑢𝑘 (7.56)

𝑦𝑘 = 𝐷̃𝑥̃𝑘 (7.57)

The draw back with this idea is that additional states in 𝑥𝑘
𝜏 are involved which makes

the size of the control problem bigger than before.

7.4.2 Sampled-data MPC
In sampled-data MPC, the open-loop optimal control problem is only solved at the discrete

recalculation time instants14 as shown in Figure 7.6. The recalculation time instants should be at

least equal to (or greater than) the computational delay. In other words, the recalculation time

instants can be many times larger than the sampling time 𝑑𝑡 of the system.

Let us assume that we are going to solve the following MPC problem with the objective function

as,

𝑚𝑖𝑛
𝑢
 𝐽 = ∑𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑢𝑘−1

𝑁

𝑘=1

 (8.58)

When an open-loop optimal control problem is solved at any recalculation time 𝑡𝑘, it will take

certain time (computational delay time, 𝜏) to solve it i.e. the problem will be solved only at 𝑡𝑘 + 𝜏.

Between this time [𝑡𝑘 𝑡𝑘 + 𝜏], the solution (optimal control input) is not available because the

optimal control problem is still being solved. Thus, it makes no sense to optimize the control profile

between the time [𝑡𝑘 𝑡𝑘 + 𝜏] from time 𝑡𝑘. Instead, at time 𝑡𝑘, it makes sense to optimize the

control sequence for the time [𝑡𝑘 + 𝜏 𝑡𝑘 + 𝜏 + 𝑁]. If 𝑛𝜏 is the number of samples

corresponding to the computational delay , then at time 𝑡𝑘, optimal control problem with the

modified objective function is solved as,

𝑚𝑖𝑛
𝑢
 𝐽 = ∑ 𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑢𝑘−1

𝑁

𝑘=𝑛𝜏

 (8.59)

To formulate this modified objective function, the initial value of the state at 𝑡𝑘 + 𝜏 is needed and

thus this is predicted as 𝑥(𝑡𝑘 + 𝜏). Then this problem is started to be solved at 𝑡𝑘. However, the

solution of this problem is only available at 𝑡𝑘 + 𝜏. During this time [𝑡𝑘 𝑡𝑘 + 𝜏], the optimal

input signal calculated at the previous recalculation time instant 𝑡𝑘 − 𝜏 is applied to the system as

shown in Figure 7.6.

14 If the open-loop optimal control problem is solved at each time step, then it is called instantaneous MPC.

113

Figure 7.6: Sampled-data MPC timeline

For explanation, let, 𝜏 = 3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is the highest computational time delay. Let us for simplicity

also assume that the recalculation time instant is equal to the computational time delay. Let 𝑑𝑡 =

 1 second be the sampling time or step length.

Let us assume that the current time is 𝑡𝑘 = 3 seconds. The value of the states at 𝑡𝑘 + 𝜏 =

6 second is predicted i.e. 𝑥6 is predicted at the time 𝑡𝑘 = 3 second. Using 𝑥6 as the initial state,

at current time 𝑡𝑘 = 3 seconds, an optimal control problem is formulated to compute 𝑢6
∗ . The

optimal control inputs 𝑢6
∗ will be available only at the next recalculation time instant (𝑡𝑘 =

6 second). While the calculation of 𝑢6
∗ is still going on (for the time between 3 and 6 seconds), the

optimal control input 𝑢3
∗ computed at the previous recalculation time instant (𝑡𝑘 = 0 sec) is used.

This is repeated at each recalculation time instant as shown in Figure 7.6.

7.5 Hierarchy of control and optimization system
There are many layers inter-communicating with each other that make up a hierarchy of a control

and optimization system. Figure 7.7 shows such a hierarchy with the information and function of

each layer.

114

Figure 7.7: Control and optimization hierarchy of a system

The MPC layer (with is often a part of the Advanced Process Control layer) can serve as a supervisory

dynamic control and dynamic constraint control. It can provide optimal setpoints to the layer below it. In

the basic dynamic control layer, there are classical controllers (e.g. PID controllers) which control process

variables like pressure, temperature, flow rates, speed etc. In industrial applications, the lower level classical

controllers are a part of the distributed control system (DCS) or Programmable logic controllers (PLC).

These controllers in the DCS or PLC system then send control signals to the actuators (e.g. valves, motor,

pumps, compressor etc.). They also read measurements from the sensors and provide it to the upper levels.

The local optimization layer which performs local steady state optimization (for example of a specific unit

of the industrial process) can interact with the MPC to provide/receive information. The communication

method between the layers can be for example the Open Process Control (OPC) protocols.

7.6 Commercial predictive controllers

It is difficult to give an exhaustive overview of commercially available model predictive controller. It is

even more difficult to provide detailed information about where and how have they been used for industrial

applications. Nevertheless a list of companies and their commercial MPC product have been listed in Table

1 (for linear MPCs) and Table 2 (for nonlinear MPC). These tables have been extracted from the article

written by Qin and Badgwell [1].

Table 1: Companies and products included in Linear MPC technology

Company Product Name Description

Adersa HIECON Hierarchical constraint control

 PFC Predictive functional control

 GLIDE Identification package

Aspen Tech DMC-plus Dynamic matrix control package

 DMC-plus model Identification package

Honeywell RMPCT Robust model predictive control technology

Shell Global solutions SMOC-II Shell multivariable optimizing control

Invensys Connoisseur Control and Identification package

ABB 3d MPC Three dimensional model predictive control

Plant wide optimization

Local Optimization

MPC

Distributed Control System

(PID)

Actuators and sensors

Global steady State Optimization

(every day)

Local steady state Optimization

(every hour)

Supervisory dynamic control
Dynamic Constraint Control
(every minute)

Basic Dynamic control
(every second)

Control signals and measurements

(continuous)

115

Table 2: Companies and products included in Nonlinear MPC technology

Company Product Name Description

Adersa PFC Predictive functional control

Aspen Tech Aspen Target Nonlinear MPC package

Continental Controls Inc. MVC Multivariable control

DOT Products NOVA-NLC NOVA nonlinear controller

Pavilion Technologies Process Perfecter Nonlinear control

Statoil SEPTIC Statoil’s Estimation and Prediction tool for

identification and control

[1] Qin, S.J. and Badgwell, T. A., “A survey of industrial model predictive control technology”, Control

Engineering Practice, Vol. 11, pp. 733-764, 2003.

116

Lecture 8

Nonlinear optimal control, Nonlinear MPC

8.1: Goal
In this chapter, we will formulate a nonlinear optimal control problem as a general nonlinear

optimization problem. We will then solve the nonlinear optimization problem using the

solver fmincon in MATLAB15. The nonlinear model of the process will be directly utilized to

make the nonlinear optimization problem i.e. there is no necessity for performing

linearization. Thus, formulation and the solution of the nonlinear optimization problems is

the backbone for nonlinear optimal control problems.

Secondly, to create a nonlinear MPC, receeding horizon strategy can be utilized to the

nonlinear optimal control problem.

8.2 Well structured problem formulation?
It is difficult to create well structured matrices for nonlinear optimal control problem. In fact,

it is very difficult (almost impossible) to generalize a well defined structure for nonlinear

optimal control problems and to solve them analytically. This is due to the presence of

nonlinearities in the system model, which cannot be generalized. So, unlike the linear case

(in lecture 3) where Kronecker product formulation resulted in a specific well structured QP

problem formulation, for the nonlinear case, such a structure is absent.

In other words, we cannot transform a nonlinear optimal control problem to a specific well

structured NLP by making use of nonlinear algebra. Instead we have to treat a nonlinear

optimal control problem as a general mathematical nonlinear optimization problem, and

rely on nonlinear optimization solvers to obtain its solution. Since we rely heavily (almost

completely) on the nonlinear solver, the accuracy of the solution and how fast we can solve

a nonlinear MPC depends very much on the ability of the chosen solver/algorithm.

However, before we begin to formulate the nonlinear optimal control problem, let us first

have the basic understanding about different terms associated with nonlinear optimization.

8.3 Nonlinear Programming (NLP)

8.3.1 Basic Introduction

A general non-linear optimization problem can be written as,

(A) {

𝑀𝑖𝑛
𝑥
 𝑓(𝑥) , 𝑥𝜖𝑅𝑛 → Objective function

ℎ𝑖(𝑥) = 𝑏𝑖 , 𝑖 = 1, 2, ………… . ,𝑚 →
′ 𝑚′ number of equality constraints

𝑔𝑗(𝑥) ≤ 𝑐𝑗 , 𝑗 = 1, 2, ………… . , 𝑟 → ′𝑟′ number of inequality constraints

15 We will not use graphical tool like Simulink for solving Nonlinear optimization problems in this course. Instead

we will use scripting language like MATLAB. You can then modify the MATLAB scripts for Python, Julia etc.

117

Here 𝑥𝜖ℝ𝑛 is the 𝑛 number of decision variables (the variable that should be optimized or

the unknown variables that should be calculated by the optimizer).

Note: If the bounds on the decision variables i.e. 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻 is present, it can be easily

expressed as two inequality constraints 𝑥 ≤ 𝑥𝐻 and −𝑥 ≤ −𝑥𝐿. So, it is assumed that such

bounds are already the part of the general inequality constraint 𝑔𝑗(𝑥) ≤ 𝑐𝑗 .

For a nonlinear programming problem one or more of the function 𝑓(𝑥) , ℎ𝑖(𝑥) & 𝑔𝑖(𝑥) are

nonlinear. In other words if any of the 𝑓(𝑥) , ℎ𝑖(𝑥) & 𝑔𝑖(𝑥) are non-linear functions, then the

problem (A) is a NLP problem (example: problem with a quadratic objective and one or more

of the constraints being nonlinear is also a NLP).

By solving the optimization problem of (A), we try to find the optimal value of the decision

variables 𝑥. We denote the optimal values as 𝑥∗.

A value of 𝑥 that satisfy all the constraints of (A) is known as a feasible solution. A group of

or a set of such feasible points will make a feasible region denoted by 𝛺 .

Example:

Consider the optimization problem,
𝑀𝑖𝑛
𝑥𝜖ℝ2

 𝑓(𝑥) = 𝑥1
2 + 3𝑥2

s.t.

 ℎ1(𝑥) = 𝑥1
2 + 𝑥2

2 − 1 = 0

𝑔1(𝑥) = 𝑥1 + 𝑥2 ≤ 0

The feasible region is,

𝛺 = {𝑥𝜖ℝ2|𝑥1
2 + 𝑥2

2 = 1 ∧ 𝑥1 + 𝑥2 ≤ 0}

The feasible region 𝛺 is half circle with radius 1 (shown with bold line in Figure 8.1)

𝑥1
2 + 𝑥2

2 − 1

𝑥1 + 𝑥2 = 0 Ω

Figure 8.1: Illustration of a feasible region

118

8.3.2 Global and local minimum:

A point 𝑥∗𝜖 𝛺 is called a global solution if 𝑓(𝑥∗) ≤

𝑓(𝑥) for all , i.e. for all 𝑥 in the feasible region 𝛺 .

Point b is the global solution in Figure 8.2.

But many such minimum points or valley may be

present in the entire space of . A point 𝑥∗𝜖 𝛺 is

called a local solution if

𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 𝜖 ‖𝑥 − 𝑥∗‖ < 𝜖

i.e. for all 𝑥 in the neighborhood around 𝑥∗ rather

than the whole feasible region.

Note: fmincon solver in MATLAB is a local solver i.e.

it finds only the local optimal solutions and global

solution is not guaranteed.

8.3.3 Convexity

An optimization problem is convex iff:

a) The objective function is a convex function.

b) The feasible set or region 𝛺 is a convex set.

A convex function cannot have any values

larger than the values of a linear function

(line) between two points a & c (any two

points on the function).

For any point that lies between a and c, (for

e.g. point b) in Figure 8.3,

f(b) ≤ fl(b)

where f(b) is the value of the convex function

at point b. fl(b) is the value of the linear

function (line) at point b.

If the optimization problem is a convex

optimization problem, there will be only one minimum point and this point is the global

minimum point.

An example of a non-convex function is shown below in Figure 8.4:

Figure 8.2: Illustration of local and global minima

Figure 8.3: Example of a convex function

119

Figure 8.4: Example of a non-convex function

Q. How to determine whether a function is convex or concave?

The Hessian matrix of a function 𝑓(𝑥) can be analysed for convexity. Let us assume that the

function 𝑓(𝑥) is continuous and twice differentiable on a feasible region 𝛺 𝜖 ℝ𝑛. Let 𝐻(𝑥) be

the Hessian matrix of a function 𝑓(𝑥), 𝑥 𝜖 ℝ𝑛 i.e. with 𝑛 decision variables.

By definition :

𝐻(𝑥)
𝑑𝑒𝑓𝑛

≡

𝜕2𝑓(𝑥)

𝜕𝑥𝑖
2 , 𝑖 = 1, 2, …… . . , 𝑛

For a set of feasible points 𝑥, different cases can be listed:

a) If 𝐻(𝑥) is positive semi-definite (𝑖. 𝑒. 𝑖𝑓𝑓 𝑥𝑇𝐻𝑥 ≥ 0) for all 𝑥 ≠ 0,

or,

If all the eigen values of 𝐻(𝑥) are positive (zero included) i.e. if 𝑒𝑖𝑔(𝐻(𝑥)) ≥ 0, then 𝑓(𝑥)

is convex on 𝛺. It means it has at most one minimum and this minimum is the global

minimum.

b) If 𝐻(𝑥) is positive definite (𝑖. 𝑒. 𝑖𝑓𝑓 𝑥𝑇𝐻𝑥 > 0) for all 𝑥 ≠ 0,

or,

If all the eigen values of 𝐻(𝑥) are positive i.e. if 𝑒𝑖𝑔(𝐻(𝑥)) > 0, then 𝑓(𝑥) is strongly

convex on 𝛺. It means it has a strict local minimum at 𝑥.

c) If 𝐻(𝑥) is negative semi-definite (𝑖. 𝑒. 𝑖𝑓𝑓 𝑥𝑇𝐻𝑥 ≤ 0) for all 𝑥 ≠ 0,

or,

If all eigen values of 𝐻(𝑥) ≤ 0, then 𝑓(𝑥) is concave. It means it has at most one

maximum which is also the global maximum.

d) If 𝐻(𝑥) is negative definite (𝑖. 𝑒. 𝑖𝑓𝑓 𝑥𝑇𝐻𝑥 < 0) for all 𝑥 ≠ 0,

or,

If all eigen values of 𝐻(𝑥) < 0, then f(x) is strongly convex. It means it has a strict local

maximum at 𝑥.

8.3.4 Active and Inactive constraints

In solving any optimization problem, all the equality constraint ℎ𝑖(𝑥) = 0 are active i.e. they

are always ‘ON’ or active at a feasible point since they have to be exactly satisfied. However,

inequality constraints may be either active or inactive (not active) at a feasible point.

For an example, consider an inequality constraint,

120

𝑦2 + 𝑦 ≤ 20

If, 𝑦 = 3 then 𝑦2 + 𝑦 = 12

i.e. the constraint 𝑦2 + 𝑦 ≤ 20 or 12 ≤ 20 is satisfied but is NOT active for this feasible

point 𝑦 = 3.

If 𝑦 = 4, then 𝑦2 + 𝑦 = 20

i.e. the constraint 𝑦2 + 𝑦 ≤ 20 or 20 ≤ 20 is satisfied and at the same time also active for

this feasible point 𝑦 = 4.

When an inequality constraint becomes active, then it changes into equality constraint.

8.3.5 Lagrangian function

The Lagrangian function of the nonlinear optimization problem of (A) can be written as,

𝐿(𝑥,⋋, 𝜇) = 𝑓(𝑥) + ∑⋋𝑖

𝑚

𝑖=1

[ℎ𝑖(𝑥) − 𝑏𝑖] +∑𝜇𝑗

𝑟

𝑗=1

[𝑔𝑗(𝑥) − 𝑐𝑗]

Here, ⋋𝑖 are the Lagrange multiplier for the m equality constraints.

Here, 𝜇𝑗 are the Lagrange multiplier for the r inequality constraints.

Then, the reduced form of the nonlinear optimization problem of (A) becomes,

𝑀𝑖𝑛
(𝑥,⋋, 𝜇)

 𝐿(𝑥,⋋, 𝜇) = 𝑓(𝑥) + ∑⋋𝑖

𝑚

𝑖=1

[ℎ𝑖(𝑥) − 𝑏𝑖] +∑𝜇𝑗

𝑟

𝑗=1

[𝑔𝑗(𝑥) − 𝑐𝑗]

Conditions for optimality:

Assume that in the optimization problem of (A), 𝑓(𝑥), 𝑔𝑗 (𝑥) & ℎ𝑖 (𝑥) are continuous function

and at least twice differentiable. We can use Karush-Kuhn-Tucker (KKT) conditions to define

the conditions for optimality of optimization problem of (A).

First order necessary conditions:

Assume the 𝑥∗ is a local solution of (A) and that 𝑓(𝑥), 𝑔𝑗 (𝑥) & ℎ𝑖 (𝑥) are differentiable and

their derivatives are continuous. Further, assume that all the active constraint gradients are

linearly independent at 𝑥∗. Then there exists Lagrange multipliers ⋋𝑖
∗ and 𝜇𝑗

∗ for 𝑖 =

1,2, ………… . ,𝑚 and 𝑗 = 1,2, ……… , 𝑟 such that the following conditions (KKT conditions)

hold or are satisfied at (𝑥∗, ⋋∗, 𝜇∗):

∇𝐿 (𝑥∗,⋋∗, 𝜇∗) = ∇𝑓(𝑥∗) + ∑⋋𝑖
∗

𝑚

𝑖=1

∇ℎ𝑖(𝑥
∗) +∑𝜇𝑗

∗

𝑟

𝑗=1

∇𝑔𝑗(𝑥
∗) = 0

 ℎ𝑖(𝑥
∗) = 𝑏𝑖

and with complementary slackness holding true for inequality constraints such that,

𝜇𝑗
∗ ≥ 0 𝑓𝑜𝑟 𝑔𝑗(𝑥

∗) = 𝑐𝑗 → 𝑓𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡.

𝜇𝑗
∗ = 0 𝑓𝑜𝑟 𝑔𝑗(𝑥

∗) < 𝑐𝑗 → 𝑓𝑜𝑟 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡.

The property that inactive inequality constraints will have zero multipliers is called

complementary slackness. The reason why 𝜇𝑗 = 0 for inactive inequality constraints is that,

121

when an inequality constraint is inactive, it is the same as considering that is was not present

in the system i.e. it does not constraint the process operation when it is not active.

Second order sufficient conditions:

The first order necessary conditions does not say anything about whether it is minimum

optimal or maximum optimal. So to guarantee an optimality (either maximum or minimum),

the second order sufficient conditions are posed. Suppose that for some feasible point 𝑥∗𝜖 ℝ𝑛

there exists Lagrange multipliers such that KKT first order necessary conditions are

satisfied. Also suppose that 𝑓(𝑥), ℎ𝑖(𝑥) & 𝑔𝑗(𝑥) are twice differentiable and their derivatives

are continuous. KKT second order sufficient conditions states that for a minima to exit,

∇2𝐿(𝑥∗,⋋∗, 𝜇∗) > 0 (8.1)

i.e. the second order partial derivatives of the Lagrangian function of the original NLP

problem should be positive definite. So, if (𝑥∗,⋋∗, 𝜇∗) is a KKT point for problem (A) and 2nd

order sufficiency conditions are satisfied at that point, optimality is guaranteed.

Note : If there are no active constraints (𝑥∗ is an unconstrained stationary point) and the

Lagrange multipliers in equation (8.1) ⋋∗ & 𝜇∗ are zero. Then condition given by (8.1) then

reduces to the condition discussed in the section 8.3.3 (under topic "convexity": How to

determine whether a function is convex or concave?)

8.3.6 Solution methods:

To solve the optimization problem of (A), most of the solvers follow iterative solution

procedure. In this course, we do not go into details about the methods and steps involved in

those methods. However, it will be interesting to understand the basic algorithmic steps used

by many different methods and solvers.

1. Start with the chosen initial point 𝑥0 and initial iteration number k,

2. Find or calculate the search direction, 𝑃𝑘

3. Calculate the step length ∝𝑘 to be taken in the search direction calculated in step 2.

This step is also called "line search".

4. Compute the new solution using 𝑃𝑘 & ∝𝑘 i.e. move one step forward in the search

direction by stepping with a length of ∝𝑘,

𝑥𝑘+1 = 𝑥𝑘+∝𝐾 𝑃𝑘

5. At this new point, check the termination criteria.

e.g.: Check if 𝑓(𝑥𝑘+1) ≤ 𝜀 where 𝜀 is a tolerance number

6. If termination criteria is fulfilled stop the iteration otherwise go to step (2) & repeat

the process.

7. Stop

Note: (1): There are many methods that can be used for calculating the search direction 𝑃𝑘.

Examples are the steepest descent method (Newton's methods, Quasi-Newton

method), conjugate gradient method etc.

122

Note (2): Gradients needed for finding the search direction 𝑃𝑘 can also be calculated using

finite difference methods. E.g. forward difference, central difference method etc.

However, using these methods for approximating gradients may not always be very

accurate.

Note: (3): Some methods are derivative free method where no gradient information is

needed to calculate 𝑃𝑘. e.g. Pattern search method, mesh adaptive direct search etc.

8.4 Some widely used algorithms for solving NLPs
Below you will find the description of two widely used methods for solving nonlinear

optimization problems. They are:

(a) SQP (Sequential Quadratic Programming).

(b) GRG (Generalized Reduced Gradient)

8.4.1. Sequential Quadratic Programming

Let us consider a general nonlinear constrained optimization problem as,

min 𝑓(𝑥)

subject to

 ℎ𝑖(𝑥) = 0 𝑖 𝜖 𝜀 (8.2)

 𝑔𝑖(𝑥) ≤ 0 𝑗 𝜖 𝐼

where 𝑓(𝑥) such that 𝑥 𝜖 ℝ𝑛is the objective function to be minimized, ℎ𝑖(𝑥), 𝑖 =

1,2, …… . . , 𝑚 are the m equality constraints and 𝑔𝑗(𝑥), 𝑗 = 1,2, …… . . , 𝑟 are r inequality con-

straints. SQP is an iterative method which approximates a Quadratic Programming (QP)

subproblem from the nonlinear constrained optimization problem for each given iterate 𝑥𝑘 .

The QP subproblem is solved and the solution is updated to a better solution 𝑥𝑘+1. The new

iterate is used again to solve the approximated QP subproblem and the process is repeated

to create a sequence of 𝑥𝑘 which will converge to a local minimum 𝑥∗ of the NLP of Equation

(8.2) as 𝑘 → ∞.

Let us define the Lagrangian function of the NLP problem of Equation (8.2) as,

ℒ(𝑥,⋋, 𝜇) = 𝑓(𝑥) + ∑⋋𝑖

𝑚

𝑖=1

ℎ𝑖(𝑥) +∑𝜇𝑗

𝑟

𝑗=1

𝑔𝑗(𝑥) (8.3)

where ⋋𝑖 are the Lagrange multipliers for the equality constraints and 𝜇𝑗 are the Lagrange

multipliers for the inequality constraints. For any local minimum 𝑥∗, Karush Kuhn-Tucker

Conditions (KKT) or the first order necessary conditions are satisfied.

∇ℒ (𝑥∗,⋋∗, 𝜇∗) = ∇𝑓(𝑥∗) + ∑⋋𝑖
∗

𝑚

𝑖=1

∇ℎ𝑖(𝑥
∗) +∑𝜇𝑗

∗

𝑟

𝑗=1

𝑔𝑗(𝑥
∗) = 0 (8.4)

The complementary slackness hold true for the inequalities at 𝑥∗.
𝜇𝑗
∗𝑔𝑗(𝑥

∗) = 0, 𝑗 = 1,2, …… . . , 𝑟

𝜇𝑗
∗ > 0, 𝑗 𝜖 𝐼𝑎𝑐(𝑥

∗)
 (8.5)

123

For any given 𝑥 𝜖 ℝ𝑛, ∇𝑓(𝑥), ∇ℎ𝑖(𝑥) 𝑎𝑛𝑑 ∇𝑔𝑖(𝑥) are the gradient of 𝑓(𝑥), ℎ𝑖(𝑥)𝑎𝑛𝑑 𝑔𝑖(𝑥) at 𝑥

respectively. The QP subproblem is created by approximating the Lagrangian of

Equation(8.3) using the first three terms of its Taylor's series. For a given current iterate

(𝑥∗,⋋∗, 𝜇∗), the quadratic approximation for the Lagrangian is written as,

ℒ (𝑥𝑘 ,⋋𝑘, 𝜇𝑘) = ∇ℒ(𝑥𝑘,⋋𝑘, 𝜇𝑘)𝑇∆𝑥 +
1

2
∆𝑥𝑇∇2∇ℒ(𝑥𝑘,⋋𝑘, 𝜇𝑘)𝑇∆𝑥 (8.6)

Similarly the nonlinear constraints can be linearized by using the first two terms of their

Taylor's series at the given current iterate (𝑥𝑘,⋋𝑘, 𝜇𝑘). The term ∇2ℒ(𝑥𝑘 ,⋋𝑘, 𝜇𝑘) is the

Hessian of the Lagrangian function which is given by,

∇2ℒ (𝑥𝑘,⋋𝑘, 𝜇𝑘) = ∇2𝑓(𝑥𝑘) + ∑⋋𝑖
𝑘

𝑚

𝑖=1

∇2ℎ𝑖(𝑥
𝑘) +∑𝜇𝑗

𝑘

𝑟

𝑗=1

∇2𝑔𝑗(𝑥
𝑘) (8.7)

To compute the Hessian ∇2ℒ (𝑥𝑘,⋋𝑘, 𝜇𝑘) of the Lagrangian function, it is necessary to

compute the second derivative of all the problem functions. Also, the Hessian matrix might

not be positive definite making the QP subproblem difficult to solve. So, instead of

calculating the Hessian, it is approximated by 𝐵𝑘 and updated at each iteration. There are

many methods available for approximating and updating 𝐵𝑘 like Powel symmetric Broyden

(PSB) update, Broyden Fletcher Goldfarb Shanno (BFGS) update, Powell SQP update,

SALSA-SQP update etc. Later in this section, only a very brief description of the BFGS update

is given. Then the QP subproblem to be minimized at the current iterate (𝑥𝑘 ,⋋𝑘 , 𝜇𝑘) using

the approximated Hessian of the Lagrangian function can be written as,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∆𝑥

 ∇ℒ(𝑥𝑘,⋋𝑘, 𝜇𝑘)𝑇∆𝑥 +
1

2
∆𝑥𝑇B𝑘∆𝑥

subject to ℎ𝑖(𝑥
𝑘) = ∇ℎ𝑖(𝑥

𝑘)𝑇∆𝑥 = 0, 𝑖 ∈ 𝜀 (8.8)

 𝑔𝑗(𝑥
𝑘) = ∇𝑔𝑗(𝑥

𝑘)𝑇∆𝑥 ≤ 0, 𝑗 ∈ 𝐼

By solving the QP subproblem of (8.8), the optimal search direction ∆𝑥 and the corre-

sponding Lagrange multipliers ⋋𝑘 and 𝜇𝑘of the subproblem can be obtained. In the simple

case, the optimal Lagrange multipliers for the QP subproblem can be used for the next

iteration such that ⋋𝑘+1= ⋋𝑘 and 𝜇𝑘+1 = 𝜇𝑘 The new iterate 𝑥𝑘+1can be obtained as,

 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘∆𝑥 (8.9)

where 𝛼𝑘 is the search or step length for the 𝑘𝑡ℎ iteration. A suitable value of 𝛼𝑘 can be

calculated and the convergence properties of the SQP algorithm can be improved by using a

line search which provides the choice of distance to be moved along the direction generated

by the QP subproblem. Merit functions 𝑀(𝑥) are used to make sure that the reduction in

𝑀(𝑥) takes the iterates of the SQP algorithm eventually close to x* such that

 𝑀(𝑥𝑘 + 𝛼𝑘∆𝑥) < 𝑀(𝑥𝑘) (8.10)

Two commonly used merit functions are the 𝑙1 penalty merit function and the augmented

Lagrangian merit function. For constrained problems, the interest lies in the next iterate to

not only decrease the objective function but also to come closer to satisfying the constraints.

The relative importance are weighted and penalized. The 𝑙1 penalty merit function is written

as,

124

𝑀1(𝑥
𝑘, 𝜂) = 𝑓(𝑥𝑘) + ∑ 𝜂𝑖|ℎ𝑖(𝑥

𝑘)|𝑚
𝑖=1 + ∑ 𝜂𝑗max (𝑔𝑗(𝑥

𝑘, 0))𝑟
𝑗=1 (8.11)

where 𝜂𝑖 > 0 𝑎𝑛𝑑 𝜂𝑗 > 0 are the penalty parameters. If (𝑥𝑘,⋋𝑘, 𝜇𝑘) satisfies the second order

sufficiency condition, then 𝑥∗ is a local minimum of 𝑀1 if the penalty parameters are chosen

such that 𝜂𝑖 > |⋋𝑖| and 𝜂𝑗 > |𝜇𝑗| For details about the 𝑙1 penalty merit function and the

augmented Lagrangian merit function, refer to other literature. The BFGS update for 𝐵𝑘 is

given as,

 𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑦𝑇

𝑦𝑇𝑠
−

𝐵𝐾𝑠𝑠𝑇𝐵𝑘

𝑠𝑇𝐵𝑘𝑠

 𝑠 = 𝑥𝑘+1 − 𝑥𝑘 (8.12)

 y = ∇ℒ(𝑥𝑘+1,⋋𝑘, 𝜇𝑘) − ∇ℒ(𝑥𝑘+1,⋋𝑘, 𝜇𝑘)

If 𝐵𝑘 is positive-definite and 𝑦𝑇𝑠 > 0, then 𝐵𝑘+1 is also

positive-definite. In case 𝐵𝑘 is not sufficiently positive, Powell-SQP update which modifies y

such that 𝑦𝑇𝑠 > 0 is always satisfied can be used.

To summarize, a simple and short algorithm of SQP is given below:

1. Set k = 0

2. Start with the user defined initial values 𝑥𝑘 = 𝑥𝑖𝑛𝑖 , 𝐵
𝑘 = 𝐵𝑖𝑛𝑖 (positive definite matrix)

⋋𝑘=⋋𝑖𝑛𝑖, 𝜇
𝑘 = 𝜇𝑖𝑛𝑖

3. Form the approximated QP subproblem (Equation 8.8) 𝑄𝑃(𝑥𝑘,⋋𝑘, 𝜇𝑘, 𝐵𝑘) and solve it

for the optimal ∆𝑥∗. Compute the optimal Lagrange multipliers ⋋∗ 𝑎𝑛𝑑 𝜇∗.

4. Is termination criteria satisfied? (e.g. Is ∆𝑥∗ < ∈𝑥? where ed is the specified tolerance. If

yes goto step 9 else goto step 5.

5. Choose the step length 𝛼𝑘 using the merit function such that 𝑀(𝑥𝑘 + 𝛼𝑘∆𝑥) < 𝑀(𝑥𝑘).

6. Update to find new iterate

 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘∆𝑥∗ ,⋋𝑘+1= ⋋∗, 𝜇𝑘+1 = 𝜇∗ (8.13)

7. Update the matrix using BFGS algorithm (Equation 11)

 𝐵𝑘+1 = ∅(𝐵𝑘, ∆ℒ(𝑥𝑘, 𝑥𝑘+1,⋋𝑘, 𝜇𝑘), 𝑥𝑘+1, 𝑥𝑘) (8.14)

8. Set 𝑘 ← 𝑘 + 1 and go to step 3

9. Optimal solution of the problem is 𝑥𝑜𝑝𝑡 = 𝑥𝑘 .Terminate the program.

8.4.2. Generalized Reduced Gradient Method

Generalized Reduced Gradient (GRG) is a method for solving general nonlinear optimization

problem. It was first developed by Jean Abadie in 1969. As the name implies, the main idea

of GRG method is to transform a general nonlinear problem with constraints and bounds to

a reduced problem with only the upper and lower bounds. For this, the n decision variables

are divided into two subsets of basic and nonbasic variables. Then the equality constraints

are solved to express the basic variables in terms of nonbasic variables.

The general nonlinear Equation to be solved by the GRG method is written as,

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) (8.15)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑋) = 0 , 𝑖 = 1,2, …… ,𝑚 (8.16)

 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑙𝑖 ≤ 𝑋𝑖 ≤ 𝑢𝑖 0 , 𝑖 = 1,2, …… , 𝑛 (8.17)

125

Here, X is a vector of 𝑛 decision variables and 𝑙𝑖 and 𝑢𝑖 are the lower and upper bounds to

the decision variables. The independent decision variables are divided into 𝑚 basic variable

denoted by 𝑦 and (𝑛 — 𝑚) nonbasic variables denoted by vector 𝑥. The basic variables can

be expressed in terms of the nonbasic variables by using the equality constraint. Remember

that 𝑔𝑖(𝑥) is a general nonlinear function. So the basic variables will be expressed as

nonlinear functions of non-basic variables. Let us denote the non basic variable as 𝑦(𝑥). The

basic variables are then substituted in the objective function 𝑓(𝑋) and can be written as,

 𝐹(𝑥) = 𝑓(𝑦(𝑥), 𝑥) (8.18)

 𝐺(𝑥) = 𝑔(𝑦(𝑥), 𝑥) = 0 (8.19)

Now,

𝑑𝐺

𝑑𝑥
= 0 =

𝜕𝑔

𝜕𝑦

𝜕𝑦

𝜕𝑥
+
𝜕𝑔

𝜕𝑥
 (8.20)

𝑑𝐹

𝑑𝑥
=
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑥
 (8.21)

From Equations 8.19 and 8.20 we get,

𝑑𝐹

𝑑𝑥
=
𝜕𝑓

𝜕𝑥
−

𝜕𝑓

𝜕𝑦
(
𝜕𝑔

𝜕𝑦
)
−1 𝜕𝑔

𝜕𝑥
 (8.22)

The term
𝜕𝑓

𝜕𝑦
(
𝜕𝑔

𝜕𝑦
)
−1

 in Equation (8.22) is the Karush-Kuhn-Tucker multiplier vector. The

nonlinear optimization problem is changed to a reduced problem that is unconstrained in

nature with only the upper bound (𝑢𝑖) and the lower bound (𝑙𝑖) as,

 Minimize

 𝐹(𝑥) (8.23)

subject

 𝑙𝑖 ≤ 𝑥 ≤ 𝑢𝑖 (8.24)

Note: The above optimization problem has only nonlinear equality constraints. If there are

nonlinear inequality constraints, they can be expressed as nonlinear equality constraints

using slack variables 𝑆. For e.g., consider the general nonlinear inequality constraint as,

 ℎ𝑗(𝑋) ≤ 0, 𝑗 = 1,2, …… . , 𝑟 (8.25)

The above inequality constraints can be written as equality constraints by adding slack

variable 𝑆𝑗 to each inequality constraint as,

 ℎ𝑗(𝑋) + 𝑆𝑗 = 0, 𝑗 = 1,2, …… . , 𝑟 (8.26)

 𝑆𝑗 ≥ 0, 𝑗 = 1,2, …… . , 𝑟 (8.27)

Remember that you should also include the slack variables 𝑆𝑗 as unknown decision variables

to be optimized. So the number of decision variables will be increased from 𝑛 𝑡𝑜 𝑛 + 𝑟.

The procedure for solving the reduced problem of Equations 8.23 and 8.24 is explained

below in steps. The general optimization problem could contain multiple local solutions

(because it may not always be a convex optimization problem). In a non-convex optimization

problem, to make sure that we obtain the best local solution, multiple starting points (N

different initial points, but all feasible points) are used. The optimization problem is solved

Lagrange multiplier

126

for each of the initial starting point. We will then obtain N number of local solutions. The best

one (the solution which minimizes the objective function the most) out of N solutions is then

selected as the optimal solution. This procedure is called multi-start optimization.

1. Call the multi-start search routine to create 50 different feasible starting points and

set the first starting point index 𝑁 = 1.

2. Set the initial iteration number 𝑘 = 0 and pick a starting point 𝑥𝑘
𝑁 which are the

nonbasic variables and proceed to step 3.

3. Use the nonbasic variables vector 𝑥𝑘
𝑁 to solve the nonlinear equality constraints of

Equation 8.19 and determine the values of the basic variable vector 𝑦𝑘
𝑁.

If the value of 𝑦𝑘
𝑁 violates the bounds, stop the iterative procedure and perform the

change of basis. The basic variable which exceeded the bounds is made nonbasic and

one of the nonbasic variable which is not on bound is made basic. The change of basis

will produce a new set of nonbasic variables 𝑥𝑘
𝑁 , basic variable vector 𝑦𝑘

𝑁 and a new

reduced function F(𝑥𝑘
𝑁).

If the change of basis was active, goto step 3. If the change of basis was not active, go

to step 4.

4. For the set of nonbasic variables, calculate the direction of movement 𝑑𝑘
𝑁.

The equation for calculating the search direction is given by Goldfarb's algorithm and

simplified for the special case of bounded variables as,

 𝑑𝑘
𝑁 = −𝐻𝑘

𝑁∇𝐹(𝑥𝑘
𝑁) (8.28)

Here 𝐻𝑘
𝑁 ∈ ℝ(𝑛−𝑚)×(𝑛−𝑚) is a positive semi-definite matrix whose diagonal element is

set to zero if the corresponding nonbasic variable is at a bound. ∇𝐹(𝑥𝑘
𝑁) is the

derivatives of the reduced objective function given by Equation 8.22.

5. Perform line search to determine the step size 𝛼 to be taken in the direction 𝑑𝑘
𝑁 by

minimizing the one dimensional search problem F(𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁). The next point is

given by,

 𝑥𝑘+1
𝑁 = 𝑥𝑘

𝑁 + 𝛼𝑑𝑘
𝑁 (8.29)

𝛼 should be chosen such that 𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁satisfies the bounds on the nonbasic variables

x.

a. First calculate with a full Newton step (𝛼 = 1) to get 𝑥𝑘+1
𝑁 . If the rate of

descent from 𝑥𝑘
𝑁 to 𝑥𝑘+1

𝑁 is at least some prescribed fraction of the initial rate

of descent in the search direction i.e. if 𝐹(𝑥𝑘
𝑁 + 𝑑𝑘

𝑁) ≤ 𝐹(𝑥𝑘
𝑁) + 𝛾𝛼∇𝑇𝐹(𝑥𝑘

𝑁)𝑑𝑘
𝑁

with 𝛾 = 10−4 and if 𝑥𝑘+1
𝑁 satisfies all the bounds then accept 𝛼 = 1, then goto

step 6. If not goto step 5(b).

b. Perform quadratic interpolation to get the value of 𝛼 where the objective

function 𝐹(𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁) is minimized. With 𝛼 = 0, we know the values of

𝐹(𝑥𝑘
𝑁) and ∇𝑇𝐹(𝑥𝑘

𝑁)𝑑𝑘
𝑁. With 𝛼 = 1 we know the value of 𝐹(𝑥𝑘

𝑁 + 𝑑𝑘
𝑁). Using

these three pieces of information we can perform the quadratic interpolation

to get the value of 𝛼 as,

127

 𝛼̂ =
 ∇𝑇𝐹(𝑥𝑘

𝑁)𝑑𝑘
𝑁

2[𝐹(𝑥𝑘
𝑁+ 𝑑𝑘

𝑁)−𝐹(𝑥𝑘
𝑁)−∇𝑇𝐹(𝑥𝑘

𝑁) 𝑑𝑘
𝑁)]

 (8.30)

If 𝑥𝑘+1
𝑁 found out using 𝛼̂ satisfy all the bounds, accept 𝛼̂. Then goto step 6. If

not goto step 5(c).

c. As the last defense, use the scanning method to find 𝛼 which minimizes

𝐹(𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁) as well as satisfies all bounds in 𝑥𝑘+1
𝑁 . In the scanning method,

iteration is started from a very small value of 𝛼 = 10-4 and at the end of each

iteration the value of 𝛼 is increased by a small incremental value 𝑑𝛼 = 10−3.

At each iteration, 𝐹(𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁) is calculated and checked whether the

bounds are satisfied. The iteration is stopped under two conditions:

 when one of the components of 𝑥𝑘+1
𝑁 violates the bound, say the 𝑖𝑡ℎ

component (𝑥𝑘
𝑁)𝑖 then keep it at the bound (𝑥𝑏𝑜𝑢𝑛𝑑

𝑖) and calculate the

value of 𝛼 as,

 𝛼 =
𝑥𝑏𝑜𝑢𝑛𝑑
𝑖 −(𝑥𝑘

𝑁)
𝑖

(𝑑𝑘
𝑁)

𝑖 (8.31)

 when 𝐹(𝑥𝑘
𝑁 + 𝛼𝑑𝑘

𝑁) > 𝐹(𝑥𝑘
𝑁), stop the iteration and calculate the

value of 𝛼 as,

 𝛼 = 𝛼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑑𝛼 (8.32)

6. Check for optimality by simply looking at absolute value of the difference of original

objective functional values with 𝐹(𝑦𝑘
𝑁 + 𝑥𝑘

𝑁) and 𝐹(𝑦𝑘+1
𝑁 + 𝑥𝑘+1

𝑁) . If

 |𝑓(𝑦𝑘+1
𝑁 + 𝑥𝑘+1

𝑁) − 𝑓(𝑦𝑘
𝑁 + 𝑥𝑘

𝑁)| < ∈1, ∈1= 10
−6 (8.33)

goto step 7 else put k = k + 1 and goto step 3.

7. Store the value of (𝑦(𝑥𝑘+1
𝑁), 𝑥𝑘+1

𝑁) set N = N + 1 and goto step 2. If N >50 goto step

8.

8. Compare the 50 local optimal values and choose the one for which the original

objective function is maximum. This best solution will be closet to the global solution.

9. Terminate the program.

8.5 Solvers in MATLAB
In this course, you do not need to develop your own optimization routine. We will be using

optimization solvers that are already developed and made available for use. There are many

solvers for solving nonlinear optimization problem. Some of them are commercial (like the

ones found in MATLAB optimization toolbox). Luckily, the open source community has also

been active in this area. Therefore, there are also many efficient open-source solvers that are

freely available to the users. A survey of optimization software has been listed at

ascend4.org/Survey_of_optimisation_software. COIN-OR also has many open-source projects for the

development of optimization solvers. You can see it at http://www.coin-or.org/projects/. One

good solver (open-source) is the IPOPT solver. It can be interfaced with MATLAB using the

OPTI toolbox which is a free MATLAB toolbox for optimization. It was developed and been

file:///C:/Users/Roshan/OneDrive/Documents/documents-for_mpc-videos/lectureNotes/ascend4.org/Survey_of_optimisation_software
http://www.coin-or.org/projects/

128

maintained by Industrial Information and Control Centre under Auckland University of

Technology and The University of Auckland. OPTI toolbox also incorporate many other freely

available solvers (in addition to IPOPT) for solving different types of optimization problem.

You can read more about OPTI toolbox at:

 http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage

MATALB optimization toolbox also has a good solver called fmincon for solving constrained

nonlinear optimization problem. You can use fmincon solver with algorithms such as SQP,

active set, interior point etc. for designing a Model Predictive Controller (MPC). In this

course, we will use MATLAB and fmincon solver for solving the nonlinear constrained

optimization problems. To understand the structure and input arguments of fmincon use

MATLAB help or see the documentation from Mathworks. The general syntax is,
options = optimset ('Algorithm', 'sqp',);

obj_func = @ (z) your_obj_func (z); % function for calculating objective f(z)

cons_func = @ (z) your_constraint_func(z); % function for calculating constraints

 [𝑧_𝑜𝑝𝑡, 𝑓𝑣𝑎𝑙] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑜𝑏𝑗_𝑓𝑢𝑛𝑐, 𝑧𝑖𝑛𝑖 , 𝐴𝑖, 𝑏𝑖 , 𝐴𝑒𝑞 , 𝑏𝑒𝑞 , 𝑧𝐿 , 𝑧𝑈, 𝑐𝑜𝑛𝑠_𝑓𝑢𝑛𝑐, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠);

 to solve the problem of the form,

Minimize

𝑧 𝑓(𝑧) (8.34)

subject to,

 𝐴𝑖𝑧 ≤ 𝑏𝑖 (𝑙𝑖𝑛𝑒𝑎𝑟, 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) (8.35)

 𝐴𝑒𝑞𝑧 = 𝑏𝑒𝑞 (𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) (8.36)

 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 (𝑏𝑜𝑢𝑛𝑑𝑠) (8.37)

 𝑔(𝑧) ≤ 0(𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟, 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) (8.38)

 ℎ(𝑧) = 0 (𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟, 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) (8.39)

𝑧𝑖𝑛𝑖 is the initial staring point for the solver to look for optimal solution of 𝑧. If any of the

input arguments to 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 is not present, replace it by []. For e.g. if linear inequality and

linear equality constraints are not present in the optimization problem, use 𝐴𝑖 = [], 𝑏𝑖 =

 [], 𝐴𝑒𝑞 = [] 𝑎𝑛𝑑 𝐵𝑒𝑞 = [].

obj_func = @ (z) your_obj_func (z) is the handle for defining your objective function. The handle

obj_func is used as input argument to 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 to tell the optimizer that the objective function

is defined in the function named your_obj_func.

Similarly, cons_func = @ (z) your_constraint_func(z) is the handle for defining the nonlinear

constraints. The handle cons_func is used as input argument to 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 to tell the optimizer

that the nonlinear constraints function is defined in the function named your_obj_func.

options = optimset ('Algorithm', 'sqp',) is the solver options. Here it tells the solver to choose the

SQP algorithm for solving the nonlinear optimization problem.

The solver will find the optimal values of the decision variables and return it back to you as

[𝑧_𝑜𝑝𝑡, 𝑓𝑣𝑎𝑙]. Here, 𝑢_𝑜𝑝𝑡 is the optimal value and 𝑓𝑣𝑎𝑙 is the functional value of the objective

function.

8.5.1 A general example:

http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage

129

Let us consider a continuous through- circulation dryer as shown in the Figure 8.5.

The dryer takes in wet material as the input feed, dries it up and then the dry material come out of

the dryer. This happens continuously i.e. the wet materials are continuously fed into the dryer and

dried materials are obtained from the dryer continuously i.e. it is not a batch process.

Let 𝑥1 be the velocity of the material/fluid fed into the dryer and 𝑥2 be the depth of the dryer bed.

For this example, the variables to be optimized are 𝑥1 and 𝑥2, i.e. 𝑧 = [𝑥1; 𝑥2] The production rate

𝑅 of the dryer is given by a nonlinear functions of 𝑥1 and 𝑥2 as,

𝑅 = 0.0064𝑥1[1 − 𝑒
−0.184𝑥1

0.3𝑥2]

For obtaining a maximum production rate, the motors, pumps and heater for the circulating

blowers will be operating at the maximum allowed level and the moisture content of the dried

material that comes out of the dryer will be tight. The power (𝑃) consumed by the process is also

a nonlinear function of 𝑥1 and 𝑥2 and is expressed as,

𝑃 = (3000 + 𝑥1) 𝑥1
2𝑥2

The moisture content (𝑀𝑐) of the dried material is measured using a complex exponential function

which is also dependent on 𝑥1 and 𝑥2 as,

𝑀𝑐 = 𝑒
0.184𝑥1

0.3𝑥2

Let us formulate an optimization problem where we would like to maximize the production rate 𝑅

when the power constraint 𝑃 (due to pumps, motors and heaters) and the moisture content

constraint 𝑀𝑐 are specified. In other words, we would like to answer the question: For a given

power consumption of 1.2 × 103 watt and a regulated moisture content of 4.1, what can be the

maximum production rate?

The nonlinear optimization problem can be formulated as minimization problem (taking –𝑅) as,

𝑚𝑖𝑛
(𝑥1, 𝑥2)

 𝐽 = 𝑓(𝑥) = −𝑅 = 0.0064𝑥1 [1 − 𝑒
−0.184𝑥1

0.3𝑥2]  nonlinear objective function (8.40)

subject to,

(3000 + 𝑥1) 𝑥1
2𝑥2 = 1.2 × 10

13  Power constraint (8.41)

𝑒0.184𝑥1
0.3𝑥2 = 4.1  moisture content constraints (5.42)

The NLP problem given by Equations 8.40 - 8.42 can be solved by using 'fmincon' solver in

MATLAB. The 'fmincon' solver accepts the nonlinear constraints in the form,

𝑔(𝑥) = 0  nonlinear equality constraints

Blower

Circulation

dryer

Hot air

Dry Material

Out

Wet Material

In

Figure 8.5: Block diagram of circulation dryer

130

ℎ(𝑥) ≤ 0  nonlinear inequality constraints

So, the constraints of Equations 8.41 - 8.42 has to be written in the following form,

(3000 + 𝑥1) 𝑥1
2𝑥2 − 1.2 × 10

13 = 0  Power constraint (8.43)

𝑒0.184𝑥1
0.3𝑥2 − 4.1 = 0  moisture content constraints (8.44)

The MATLAB code for solving the optimization problem of the dryer can be found in the home

page of the course. The script dryer_main.m is the main file which should be run. The interior-

point algorithm is chosen using optimset. The objective function is defined in the script

obj_func_dryer.m. The nonlinear constraints is defined in the script con_func_dryer.m. Handle to

the objective function obj_func and the handle to the constraints con_func are passed into the

fmincon routine to solve the problem. The initial values of the unknowns 𝑥0 = [28000,1]
𝑇.

>>[x_opt,fx_opt]=fmincon(obj_func,x0,[],[],[],[],[],[],con_func,options)

x_opt =

 3.1766e+04

 3.4207e-01

fx_opt =

 1.5371e+02

Practice: Find the optimal solution to Rosenberg banana function subject to certain constraints

using fmincon solver in MATLAB. ,

𝑚𝑖𝑛
(𝑥1, 𝑥2)

 𝐽 = 𝑓(𝑥) = 100(𝑥2 − 𝑥1
2)2 + (1 − 𝑥1)

2  nonlinear objective function (8.45)

subject to,

𝑥1 > 0 (8.46)

𝑥2 > 0 (8.47)

8.6 Nonlinear Optimal control

To make a nonlinear MPC, let us first create a nonlinear optimal control problem. Then, we can

use the receeding horizon strategy to the nonlinear optimal control problem to create a nonlinear

MPC.

For an optimal control problem, we need to look ahead into the future, say with a prediction

horizon of 𝑁 time steps and predict the future behavior of the process using the mathematical

model of the process. The predicted behavior of the process is optimized to fulfill the control

objective (here tracking the reference line “Refline” as shown in Figure 8.6). The concept is

exactly the same as we discussed for LQ optimal control in Lecture 3. For simplicity the diagram

showing optimal control concept is shown here as well.

131

Figure 8.6: Conceptual diagram for nonlinear optimal control

The process model is used to predict the future states and the outputs, and this process model can

be a nonlinear model. We then need to define the objective function to be minimized (or

maximized) over the prediction horizon . The objective function can be any nonlinear function

(scalar function though) denoted by 𝑓(𝑧). The quadratic objective covers most of the practical

cases with respect to process control (e.g. set point tracking, profit maximization etc.). For the set

point tracking optimal control problem, we can express the objective as,

Minimize 𝑓(𝑧) =
1

2
 ∑ 𝑒𝑘

𝑇 𝑄𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑢𝑘−1

𝑁𝑝

𝑘=1

+ ∆𝑢𝑘−1
𝑇 𝑅∆𝑢𝑘−1 (8.48)

subject to,

 h𝑖(𝑧) − 𝑏𝑖 = 0, 𝑖 = 1,2, …… ,𝑚 (8.49)

 g𝑗(𝑧) − 𝑐𝑗 ≤ 0, 𝑗 = 1,2, …… , 𝑟 (8.50)

Here, 𝑓(𝑧) is a quadratic objective function. It has 𝑧 ∈ ℝ𝑛, i.e. 𝑛 number of unknown variables

to be optimized. Usually the variable to be optimized are the control inputs 𝑢𝑘 (or sometimes rate

of change of control inputs, ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1).

For calculating the objective function, we must at first calculate some variables over the prediction

horizon of 𝑁𝑝 from 𝑘 = 1 𝑡𝑜 𝑘 = 𝑁𝑝 (thus the ∑ sign in Equation 8.48). For example: In the

objective function of Equation 8.48, there is the error term 𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘. The reference signal 𝑟𝑘

is known or defined for the whole prediction horizon length. But the process output is not known

for the whole prediction horizon length. Thus 𝑦𝑘 has to be calculated first before we can calculate

the objective function. To calculate the process output 𝑦𝑘, we should solve the nonlinear model

of the process. If the nonlinear model of the system is in continuous time form (with differential

equations for the states and in addition some algebraic equations), then you should solve the

continuous time dynamic model to calculate 𝑒𝑘 for each time step from 𝑘 = 1 to 𝑘 = 𝑁𝑝.

132

You can use the built-in ODE solvers in MATLAB (ode 45, ode15s etc.) for each time step to

calculate 𝑒𝑘 or any other variables of interest. However, for nonlinear optimal control and for

MPC, use of the built-in solver in MATLAB is not recommended16. It is advised that you

implement the Runge-Kutta (or Euler) algorithm for solving the ODEs. And remember that for

solving process model described by the ODEs, you must know the initial values of the states 𝑥0.

h𝑖(𝑧) − 𝑏𝑖 = 0 are the 𝑚 number of nonlinear (could be linear also) equality constraints. g𝑗(𝑧) −

𝑐𝑗 ≤ 0 are the 𝑟 number of nonlinear (could also be linear) inequality constraints. If any bounds

on 𝑧 are present like 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝐻, then it can be directly passed as the input arguments to the

fmincon solver. It may also be necessary to solve the process model (the nonlinear ODEs) to

calculate the equality and inequality constraints.

From a process control point of view, the control inputs 𝑢 are the manipulated variables. Unlike

the LQ optimal control problems where 𝑧 could contain 𝑧 = [𝑢, 𝑥, 𝑒, 𝑦]𝑇, for the nonlinear optimal

control problem, it is necessary for us to include only 𝑢 as the element of 𝑧. This is because, no

well structured matrices/vectors is present that aids in the optimization the other elements of the

vector. Therefore for nonlinear optimal control, the decision variable 𝒛 can simply contain

only 𝒖.

To solve the optimal control problem of Equation (8.48 – 8.50) which actually is an optimization

problem formed by predicting the process behavior N steps ahead of the current time, 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 of

the MATLAB optimization toolbox or IPOPT of OPTI toolbox can be used. The optimization

solver will calculate the unknown variables (or decision variables) not only for the current time

step but for the whole prediction horizon length, for e.g. it will calculate N number of control inputs

𝑢, N number of control deviation ∆𝑢 etc. We then apply these 𝑁 number of optimal control moves

to achieve the needed control behavior.

8.7 Example of nonlinear optimal control problem

Nonlinear optimal control of the pressure at the bottom of a tank

To get started, we will first look at a very basic and simple example. In this example, we will

formulate a nonlinear optimal control problem to control the pressure at the bottom of a tank.

Process description:

The tank has an inlet pipe used to pour liquid into it (𝑄𝑖𝑛) using a pump as shown in Figure 8.7. It

also has an outlet pipe with a choke valve. The choke valve can be opened/closed to regulate the

amount of liquid flowing out (𝑄𝑜𝑢𝑡) of the tank. The pressure at the bottom of the tank (𝑃𝑐) is due

to the liquid column present inside the tank. This pressure is dependent on how much amount of

16 A huge amount of time is lost i.e. there is a huge overhead in calling and executing built-in ode solver from inside

a for loop.

133

liquid is present inside the tank. If the inflow/outflow varies, the amount of liquid present in the

tank varies and hence the pressure at the bottom of the tank also varies.

Figure 8.7: Liquid tank with inlet and outlet

For this example, let us fix the inflow and change only the outflow to change the pressure at the

bottom of the tank. The outflow can be changed by opening/closing the choke valve. Thus for our

case, the choke valve opening is the control input (𝑢). The inflow (𝑄𝑖𝑛) which is kept constant is

the input disturbance.

The dynamic model of the pressure at the bottom of the pipe is given the ordinary differential

equation of 8.51.

𝑑𝑃𝑐
𝑑𝑡

=
1

𝐶𝑓
𝑄𝑖𝑛(𝑡) −

𝐾𝑣𝑢

𝑅𝑓𝐶𝑓
𝑃𝑐 with initial state 𝑃𝑐0 known (8.51)

Here, 𝐶𝑓 , 𝑅𝑓 are the parameters of the process and 𝐾𝑣 is the gain of the outlet valve. The

parameters/variables of the process are listed in Table 8.1.

Table 8.1: Parameter and variables

Parameters Value

𝐶𝑓 2.04 × 10−4

𝑅𝑓 1 × 10−6

𝐾𝑣 1.5

𝑄𝑖𝑛 1

𝑢 [0 1]

The objective is to design a nonlinear optimal controller that will control the pressure at the

bottom of the tank to their given set points.

The nonlinear optimal control problem can be written as,

𝑚𝑖𝑛
𝑢
 𝐽 =

1

2
 ∑(𝑟𝑘 − 𝑃𝑐,𝑘)

𝑇
 𝑄(𝑟𝑘 − 𝑃𝑐,𝑘) + 𝑢𝑘−1

𝑇 𝑃𝑢𝑘−1

𝑁𝑝

𝑘=1

 (8.52)

subject to,

134

0 ≤ 𝑢𝑘 ≤ 1 8.53(a)

where 𝑃𝑐,𝑘 is the predicted pressure at the bottom of the tank for each time step 𝑘 throughout the

prediction horizon, which is obtained by solving the process model,

𝑑𝑃𝑐
𝑑𝑡

=
1

𝐶𝑓
𝑄𝑖𝑛(𝑡) −

𝐾𝑣𝑢

𝑅𝑓𝐶𝑓
𝑃𝑐 with initial state 𝑃𝑐0 known 8.53(b)

Here 𝑟𝑘 is the reference value of the pressure (which has to be pre-defined for the whole prediction

horizon), 𝑢𝑘 is the valve opening of the outlet valve, 𝑁𝑝 is the prediction horizon, 𝑄 is the

weighting matrix for the error (difference between setpoint and the bottom pressure) and 𝑃 is the

weighting matrix for the control inputs. The vector of unknowns to be optimized for this example

are the 𝑁𝑝 number of the control inputs 𝑢𝑘.

Important note:

To determine the objective function of Equation 8.52, the values of 𝑃𝑐,𝑘 are needed for each time

step from 𝑘 = 1 to 𝑘 = 𝑁𝑝. To calculate 𝑃𝑐 for each time step 𝑘 throughout the prediction horizon,

the nonlinear ordinary differential equation (8.51) (which is the model of the process) should be

solved. To solve this ODE, it is advised that that Runge-Kutta algorithm be used instead of using

the built-in MATLAB solver.

In addition, let us also consider that the valve cannot be opened/closed by more than 0.1 at each

time step. In other words, we have a constraint for the rate of change of valve opening as,

−0.1 ≤ ∆𝑢𝑘 ≤ 0.1 (8.54)

The rate of change of valve opening is defined as, ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1. Constraints given by (8.53)

and (8.54) can be written as inequality constrains as,

𝑢𝑘 − 1 ≤ 0 (8.55)

−𝑢𝑘 + 0 ≤ 0 (8.56)

∆𝑢𝑘 − 0.1 ≤ 0 (8.57)

−∆𝑢𝑘 + (−0.1) ≤ 0

Let us choose the prediction horizon 𝑁𝑝 = 136 with a time step 𝑑𝑡 = 6 seconds. Let the initial

state of the pressure be 10 × 105 𝑁/𝑚2. The dynamic optimization problem (i.e. the optimal

control problem given by Equations 8.52, 8.55 – 8.57) is solved in MATLAB using the fmincon

solver. The solver calculates the optimal values of 136 number of control moves/actions to be

taken. With NLP optimal control problem, all of these 136 number of control actions are applied

to the process to obtain the required controlled dynamics. Figure 8.8 shows the simulation results.

The source code of the optimal control problem implemented in MATLAB with the fmincon solver

is available in the homepage of this course for download. The main file to be run in MATLAB is

“main_file_NL_tank.m”. In general, the objective function and the constraints are calculated

separately. But it is also possible to calculate the objective function and the constraints together at

the same time. This reduces the number of calculations by half. The objective function and the

135

constraints are calculated in a single file “compute_both.m” by solving the model equations only

once. It is advised that the students see the code and read the comments/notes in the codes (many

concepts are explained using the comments in the MATLAB codes). The source codes (a complete

set) for this example is also written below. For applying nonlinear optimal control to other

processes, you can simply modify these source codes.

Figure 8.8: Nonlinear Optimal Control of the pressure at the bottom of a tank

The complete MATLAB source code is given below. The explanation of the source code

follows after the codes.

<%the main file to be run> % main_file_NL_tank.m

clc

clear

%choose prediction horizon Np

Np = 136; %Np time steps ahead in the future

%sampling time

dt = 0.1*60; %sampling time in seconds %dt = 6 seconds

%initial values of the states

state_ini_values = 10e5; %intial pressure at the bottom of the tank

%initial value for optimizer

u_ini = ones(Np,1).*1; %the unknowns are initialized as full valve opening

%Reference

%make the reference vector offline (for the whole prediction horizon length).

Ref = [ones(Np/4,1)*10e5;ones(Np/4,1)*12e5;ones(Np/4,1)*16e5;ones(Np/4,1)*11e5];

136

%make the nonlinear optimization problem and solve it

u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref,Np);

%we now have optimal values of 'u' to fulfill the objective function

%we can use the optimal values of 'u' to calculate the variables of interest

%to us.

%the ouput variables and the states are of interest. They should be

%calculated using the optimal values of 'u'. We use the model to calculate

%the output and the states.

%for storing

%storage place for the output

Pc = zeros(Np,1);

%Important note: We don't need this loop for MPC, only for NL opt. control

for i = 1:Np

 %calculate the outputs: for this example, outputs are the states

 %store the outputs

 Pc(i,1) = state_ini_values;

 %update the state with the optimal control inputs

 %with RK method

 x_next = my_runge_kutta(state_ini_values,dt,u_k_ast(i));

 state_ini_values = x_next;

end

%make time steps for plotting

tspan = linspace(0,Np-1,Np);

figure,

subplot(211)

plot(tspan,Ref,'b-',tspan,Pc,'k-')

legend('ref Pc','Pc','Orientation','horizontal')

ylabel('Pc, Ref'); title('NL optimal control of tank pressure');

subplot(212)

plot(tspan,u_k_ast,'r-')

xlabel('time [sec]'); ylabel('u');

legend('Control input: valve opening');

%### main file: main_file_NL_tank.m ends%###############################

--- x------------------------------x---

<function: optimization_tank.m: starts>%

function u = optimization_tank(u_ini,state_ini_values,dt,Ref,Np)

%In this function we:

%define functions for objective and constraints

%choose the slover types + other options to the solver

%######## Structure 2 ############################### %efficient

%reduces computation time by half

%We can cut the computational time by NOT repeating the same calculations

%for calculating the objective function and the nonlinear constraints

%let us try by making use of nested function

%options for chosing the type of method for optimization and other options

ops = optimset('Algorithm','sqp','Display','off','MaxIter',5000);

%ops =optimset('Algorithm','interior-point','Display','off','MaxIter',5000);

%ops = optimset('Algorithm','active-set','Display','off','MaxIter',20);

uLast = [];% Last place compute_both was called

myJ = [];% Use for objective at xLast

myG = [];% Use for nonlinear inequality constraint

myHeq = [];% Use for nonlinear equality constraint

%define the function where the objective function will be calculated

137

obj_func = @(u)objfun_tank(u,state_ini_values,dt,Ref,Np);

%define the function where the nonlinear constraints will be

%calculated (both equality and inequality constraints will be calculated in

%the same function

cons_func = @(u)confun_tank(u,state_ini_values,dt,Ref,Np);

%use the fmincon solver

[u,fval,exitflag,output,solutions] = fmincon(obj_func,u_ini,[],[],[],[],[],[],cons_func,ops);

 function J = objfun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: objective call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute objective function

 J = myJ;

 end

 function [G Heq] = confun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: constraint call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute constraints

 G = myG;

 Heq = myHeq;

 end

end

%######### Structure 2 ENDS ##################################

<function: optimization_tank.m: ends>%

--- x------------------------------x---

<function: compute_both.m: starts>%

function [myJ myG myHeq] = compute_both(u_ini,state_ini_values,dt,Ref,Np)

%this is the function where we compute the objective function and the

%constraints together at the same time.

%weighting matrices for error and control inputs

Qe = eye(Np).*1; %weighting matrix for the error

Pu = eye(Np).*1; %weighting matrix for the control inputs

%to store the output variable

Pc = zeros(Np,1);

%since we need to calculate the outputs for the whole prediction horizon we use a for loop and

%solve the ODE (model of the nonlinear process) using runge kutta. To solve the ODEs we need to

%know the initial values of the states. Thus they are passed into the “compute_both” function.

for i = 1:Np

 %find out which control input to use for each time step within the prediction horizon.

 u_k = u_ini(i,:);

 %use runge kutta to update the states

 x_next = my_runge_kutta(state_ini_values,dt,u_k);

 %use the states to calculate the output

 %in this case, the output is simply the state.

 %//Note: Sometimes outputs have to be calculated using algebriac

 %equations and the states. In such a case, please make a separate

 %function for calculating the output variables.

 Pc(i,1) = x_next;

 %update the state

 state_ini_values = x_next;

138

end

%now make the objective function

J = (Ref-Pc)'*Qe*(Ref-Pc) + u_ini'*Pu*u_ini;

myJ = J/2;

%if there are equaltiy constraints, it should be listed as a column vector

%here we don't have equality constraints so we use empty matrix

myHeq = [];

%For this example, there is also constraint on the rate of change of control input variables (du)

%such that -0.1<=du<=0.1

%since in the objective function, we don't have 'du' but only 'u', we have to calculate 'du'

ourself.

%find du from the input signals

du = u_ini(2:end)-u_ini(1:end-1);

%//Important Note: If the objective function was formulated such that it

%had " (du)'P du ",then we don't have to calculate 'du' here because 'du' would be passed to

%this function “compute_both” by the optimizer and so we already would have it.

%list the inequality constraints as column vector

myG =[u_ini-1; % valve opening should be less than 1

 -u_ini+0; %valve opening should be greater than 0

 du - (0.1); % du should be less than 0.1 for each sample

 -du-(0.1); % du should be greater than -0.1 for each sample

];
<function: compute_both.m: ends>%

--- x------------------------------x---

<function: my_runge_kutta.m: starts>%

function x_next = my_runge_kutta(states_ini_values,dt,u_k_ast)

%the 4th oder runge kutta algorithm

K1 = tankPressure_equations([],states_ini_values,u_k_ast);

K2 = tankPressure_equations([],states_ini_values+K1.*(dt/2),u_k_ast);

K3 = tankPressure_equations([],states_ini_values+K2.*(dt/2),u_k_ast);

K4 = tankPressure_equations([],states_ini_values+K3.*dt,u_k_ast);

x_next = states_ini_values + (dt/6).*(K1+2.*K2+2.*K3 + K4);

<function: my_runge_kutta.m: ends>%

--- x------------------------------x---

<function: tankPressure_equations.m: starts>%

function dP_dt = tankPressure_equations(t,x0,u)

%this is the function where we write the differential equations of the

%given model.

%needed parameters

Cf = 2.04e-4;

Rf = 1e6;

Qin = 1; %constant inflow

Kv = 1.5; %gain of the valve

dP_dt = Qin/Cf - (x0*u*Kv)/(Rf*Cf);

< tankPressure_equations.m: ends>%

--- x------------------------------x---

139

8.7.1 Explanation of the source code for nonlinear optimal control
In this section, the source code has been explained in detail for all important steps involved in

formulating and solving a nonlinear optimal control problem.

Step 1: Set a simulation environment

Define the prediction horizon length, the sampling time, initial values of the states of the process,

and the initial guess for the variables to be optimized, which in this example is the valve opening.
clc

clear

%choose prediction horizon Np

Np = 136; %Np time steps ahead in the future

%sampling time

dt = 0.1*60; %sampling time in seconds %dt = 6 seconds

%initial values of the states

state_ini_values = 10e5; %intial pressure at the bottom of the tank

%initial value for optimizer

u_ini = ones(Np,1).*1; %the unknowns are initialized as full valve opening

Step 2: Define the reference for the whole prediction horizon length

The references are known variables and they should be defined for the whole prediction horizon

length.
%Reference

%make the reference vector offline (for the whole prediction horizon length).

Ref = [ones(Np/4,1)*10e5;ones(Np/4,1)*12e5;ones(Np/4,1)*16e5;ones(Np/4,1)*11e5];

Here, the references are changed in step. So, specifying the changed reference values in a vector

is simple and direct. If the references are to be changed in other ways (like ramped up/down,

sinusoidal etc.) then you may also use a for loop (an offline loop) for generating the values of the

references for the whole prediction horizon length.

Example:
%Reference

%make the reference vector offline (for the whole prediction horizon length).

for i = 1: N

Ref(i,1) = sin(…);

 %or

if i>= 1 && i<=5

 Ref(I,1) = …

elseif if i>5&& i<=10

 Ref(I,1) = …

else

 Ref(I,1) = …

end

end

Step 3: Make a nonlinear optimization problem and solve it using fmincon

The nonlinear optimization problem is created inside the user defined MATLAB script
optimization_tank.m

%make the nonlinear optimization problem and solve it

u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref,Np);

140

To this function, the initial guess for the optimizer u_ini , the initial values of the states

state_ini_values , sampling time dt , the values of the reference Ref for the whole prediction horizon

Np are passed. These information are needed to make the optimal control problem inside this

function. If other variables are needed, please pass it into this function.

Now inside this function optimization_tank, the handles to create the objective function and the

constraints are defined.
%define the function where the objective function will be calculated

obj_func = @(u)objfun_tank(u,state_ini_values,dt,Ref,Np);

%define the function where the nonlinear constraints will be

%calculated (both equality and inequality constraints will be calculated in

%the same function

cons_func = @(u)confun_tank(u,state_ini_values,dt,Ref,Np);

objfun_tank is the function to create the objective, and confun_tank is the function to create the

nonlinear constraints.

In addition, the options for the solver to select SQP as the algorithm are also set.
%options for chosing the type of method for optimization and other options

ops = optimset('Algorithm','sqp','Display','off','MaxIter',5000);

The process model has to be solved using a suitable ODE solver to make the objective. Now let us

assume that the same process model has to be solved again to create the nonlinear constraints. In

this particular example, we do not need to do so, but let us assume so for general explanation and

concept. Under such condition, the same process model has to be solved twice (once for the

objective function, and second time for the constraints) for the same control input sequence which

is clearly a repetitive task. It is possible to create both the objective function and the constraints at

the same time by solving the process model only once. To do so, we can make use of nested

function. Then, both the objective and the nonlinear constraints can be computed in the

compute_both function.

uLast = [];% Last place compute_both was called

myJ = [];% Use for objective at xLast

myG = [];% Use for nonlinear inequality constraint

myHeq = [];% Use for nonlinear equality constraint

function J = objfun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: objective call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute objective function

 J = myJ;

 end

 function [G Heq] = confun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: constraint call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute constraints

 G = myG;

 Heq = myHeq;

141

 end

Then the fmincon solver is called to solve the constrained nonlinear optimization problem.
%use the fmincon solver

[u,fval,exitflag,output,solutions] = fmincon(obj_func,u_ini,[],[],[],[],[],[],cons_func,ops);

All the actions needed to make the objective function and the nonlinear constraints happen inside

the compute_both function.
function [myJ myG myHeq] = compute_both(u_ini,state_ini_values,dt,Ref,Np)

Inside this function, the weighting matrices have been defined as,
%weighting matrices for error and control inputs

Qe = eye(Np).*1; %weighting matrix for the error

Pu = eye(Np).*1; %weighting matrix for the control inputs

These matrices could also have been passed into this function from outside.

To make the objective function

𝑚𝑖𝑛
𝑢
 𝐽 =

1

2
 ∑(𝑟𝑘 − 𝑃𝑐,𝑘)

𝑇
 𝑄(𝑟𝑘 − 𝑃𝑐,𝑘) + 𝑢𝑘−1

𝑇 𝑃𝑢𝑘−1

𝑁𝑝

𝑘=1

we need to know 𝑟𝑘, 𝑃𝑐,𝑘 and 𝑢𝑘−1 for the whole prediction horizon from 𝑘 = 1 to 𝑘 = 𝑁𝑝. The

reference values 𝑟𝑘 is known as this is passed into the compute_both function as Ref . Similarly, the

control sequence 𝑢𝑘−1is known since this is passed into the compute_both function as u_ini.

However, the process output 𝑃𝑐,𝑘 is not known and this has to be predicted throughout the

horizon using the model of the process. For this the ODE (model of the process) have to be

solved by using the state_ini_values as the initial value for solving the ODE. This can be done

using a for loop as,
for i = 1:Np

 %find out which control input to use for each time step within the prediction horizon.

 u_k = u_ini(i,:);

 %use runge kutta to update the states

 x_next = my_runge_kutta(state_ini_values,dt,u_k);

 %use the states to calculate the output

 %in this case, the output is simply the state.

 %//Note: Sometimes outputs have to be calculated using algebriac

 %equations and the states. In such a case, please make a separate

 %function for calculating the output variables.

 Pc(i,1) = x_next;

 %update the state

 state_ini_values = x_next;

end

To solve the model, we have to use the control input sequence that is passed into this function.

During the internal iteration of the optimization, the optimizer will internally change the values

of u_ini , i.e. the optimizer will try to adjust u_ini to minimize the objective function while still

satisfying the constraints. So we excite the system with u_ini to predict the future values of the

process outputs. Inside the loop, choose the control input for the corresponding time step from

𝑘 = 1 to 𝑘 = 𝑁𝑝

142

u_k = u_ini(i,:);

Then solve the ODE using Runge Kutta 4th order algorithm.
x_next = my_runge_kutta(state_ini_values,dt,u_k);

You can also use other ODE solvers like Euler method, trapezoidal methods, etc.

The goal is to predict the values of process output 𝑃𝑐,𝑘. For this example, the process output is the

state. So the values of the state at each time step within the prediction horizon can be directly

stored.
Pc(i,1) = x_next;

If the measurement equation for the process output is some nonlinear function of the states, i.e. if

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) this has to be calculated inside this loop. Similarly, if there are constraints which

are some nonlinear function of the states and control inputs, then they can also be calculated inside

this loop. This way you can calculate the outputs and the nonlinear constraints (if any) for each

time step within the prediction horizon and store it. The stored values of the constraints can later

be used to make the constraints. For these purposes, you can make separate MATLAB scripts

(separate .m files) and call the scripts from inside the loop.

Then we are ready to create the objective function.
%now make the objective function

J = (Ref-Pc)'*Qe*(Ref-Pc) + u_ini'*Pu*u_ini;

myJ = J/2;

The nonlinear constraints (both equality and inequality constraints) can then be formulated as,
%if there are equaltiy constraints, it should be listed as a column vector

%here we don't have equality constraints so we use empty matrix

myHeq = [];

%For this example, there is also constraint on the rate of change of control input variables (du)

%such that -0.1<=du<=0.1

%since in the objective function, we don't have 'du' but only 'u', we have to calculate 'du'

ourself.

%find du from the input signals

du = u_ini(2:end)-u_ini(1:end-1);

%//Important Note: If the objective function was formulated such that it

%had " (du)'P du ",then we don't have to calculate 'du' here because 'du' would be passed to

%this function “compute_both” by the optimizer and so we already would have it.

%list the inequality constraints as column vector

myG =[u_ini-1; % valve opening should be less than 1

 -u_ini+0; %valve opening should be greater than 0

 du - (0.1); % du should be less than 0.1 for each sample

 -du-(0.1); % du should be greater than -0.1 for each sample

];

In this particular example, the variable to be optimized is the control input 𝑢. Thus, the rate of

change of control inputs are calculated as,
du = u_ini(2:end)-u_ini(1:end-1);

If the objective function was formulated such that it had ∆𝑢 instead of 𝑢 as the variable to be

optimized, then we don’t have to calculate the rate of change of control as shown above. In this

case, would be passed into the function directly.

143

All the constraints should be constructed as a column vector. For example, u_ini-1 means,

𝑢 ≤ 1

Similarly, -du-(0.1) means,

−∆𝑢 ≤ 0.1 i. e. − 0.1 ≤ ∆𝑢

If the nonlinear constrains were calculated and stored inside the loop for solving the process

model, they can be used here to make the constraints.

Step 4: Use the optimal values of the control sequence returned by fmincon

The fmincon solver will calculate the optimal values of the control sequence u_k_ast for the

whole prediction horizon. For optimal control problems (without receeding horizon strategy), we

will apply all the control sequence obtained by solving the optimization problem to the process.

Here a for loop is used to apply all the control sequence in order to see the controlled process

outputs and states. Once again, Runge Kutta algorithm is used to solve the process model i.e. to

excite the system with optimal control sequence and to update it.

%make the nonlinear optimization problem and solve it

u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref,Np);

%we now have optimal values of 'u' to fulfill the objective function

%we can use the optimal values of 'u' to calculate the variables of interest

%to us.

%the ouput variables and the states are of interest. They should be

%calculated using the optimal values of 'u'. We use the model to calculate

%the output and the states.

%for storing

%storage place for the output

Pc = zeros(Np,1);

%Important note: We don't need this loop for MPC, only for NL opt. control

for i = 1:Np

 %calculate the outputs: for this example, outputs are the states

 %store the outputs

 Pc(i,1) = state_ini_values;

 %update the state with the optimal control inputs

 %with RK method

 x_next = my_runge_kutta(state_ini_values,dt,u_k_ast(i));

 state_ini_values = x_next;

end

Step 5: Plot the results

The results are then plotted as MATLAB figures.
%make time steps for plotting

tspan = linspace(0,Np-1,Np);

figure,

subplot(211)

plot(tspan,Ref,'b-',tspan,Pc,'k-')

legend('ref Pc','Pc','Orientation','horizontal')

ylabel('Pc, Ref'); title('NL optimal control of tank pressure');

subplot(212)

plot(tspan,u_k_ast,'r-')

xlabel('time [sec]'); ylabel('u');

legend('Control input: valve opening');

144

8.8 Nonlinear MPC
To create a nonlinear MPC, receeding horizon strategy is applied to the nonlinear optimal control

problem which is already explained in detail in section 8.6. Similarly, the receeding horizon

strategy has already been explained in detail in lecture 4. Thus, the details of the problem

formulation (the nonlinear optimal control problem) + the receeding horizon are not explained in

this section. In MATLAB script, a for loop can be used for implementing the receeding horizon

strategy to the nonlinear optimal control problem.

The problem formulation remains the same as for the nonlinear optimal control problem. For

simplicity it is re-written here for setpoint tracking optimal control problem by making use of a

running variable 𝑖 to denote the current prediction horizon length as,

Minimize
𝑧

 𝐽 =
1

2
 ∑ 𝑒𝑖

𝑇 𝑄𝑒𝑖 + 𝑢𝑖−1
𝑇 𝑃𝑢𝑖−1

𝑘+𝑁𝑝

𝑖=𝑘

+ ∆𝑢𝑖−1
𝑇 𝑅∆𝑢𝑖−1 (8.58)

subject to,

 h𝑙(𝑧) − 𝑏𝑙 = 0, 𝑙 = 1,2, …… ,𝑚 (8.59)

 g𝑗(𝑧) − 𝑐𝑗 ≤ 0, 𝑗 = 1,2, …… , 𝑟 (8.60)

As also explained in detail in Section 8.6, for nonlinear MPC, the decision variable 𝒛 can simply

contain only 𝒖 or ∆𝒖.

The main algorithmic steps for implementing a nonlinear MPC are:

a) Choose an initial value of the states 𝑥0 and the initial guess 𝑢𝑖𝑛𝑖 of decision variables

(control inputs) for the optimizer. Set the start time 𝑡𝑘 = 0, for 𝑘 = 0.

b) Using 𝑥𝑘 at current time 𝑡𝑘 and the nonlinear model of the process, create an optimal

control problem for the given prediction horizon length 𝑁𝑝.

c) Solve the optimal control problem using for example fmincon solver in MATLAB and

obtain the optimal control sequence 𝑢𝑖 for the whole prediction horizon for 𝑖 = 𝑘 to 𝑖 =

𝑘 + 𝑁𝑝.

d) Select the first control move 𝑢𝑘 for 𝑖 = 𝑘 at current time 𝑡𝑘.

e) Warm start: Update the initial guess for decision variables as, 𝑢𝑖𝑛𝑖 = 𝑢𝑖 for 𝑖 = 𝑘 to 𝑖 =

𝑘 + 𝑁𝑝.

f) Apply the first control move 𝑢𝑘 to the process and update the state 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘).

g) Move one time step forward: Set, 𝑘 = 𝑘 + 1 and 𝑥𝑘 = 𝑥𝑘+1.

h) Go to step (b) until the end of the simulation time.

Note:

Just like for the linear output feedback MPC, if some of the states of the system are not measurable,

then to make an output feedback nonlinear MPC, a state estimator should be utilized to estimate

the unmeasured states. The estimated states are then used further to create an optimal control

problem. Please look lecture 6 for details.

145

8.8.1 Example of a Nonlinear MPC
Let us again consider the previous example of controlling the pressure at the bottom of a tank. In

Section 8.7, a nonlinear optimal controller (openloop dynamic optimization as control problem)

for this process was designed and implemented in MATLAB. Please look section 8.7 for the

description of the process.

In this example, we will be introducing feedback to the nonlinear optimal controller by using the

sliding horizon strategy. In MATLAB, we will make use of a for loop for sliding forward in time

with a step size of 𝑑𝑡. At each time step, we will use only the first control input to slide forward

by one time step.

Since the only thing we are adding to the openloop dynamic optimization problem (of section 8.7)

is the sliding horizon strategy, the formulation of the optimal control remains the same as before.

For easiness it has been repeated here and a running variable 𝑖 has been used to denote the whole

prediction horizon length.

The nonlinear MPC problem for controlling the pressure at the bottom of the tank can be written

as,

𝑚𝑖𝑛
𝑢
 𝐽 =

1

2
 ∑(𝑟𝑖 − 𝑃𝑐,𝑖)

𝑇
 𝑄(𝑟𝑖 − 𝑃𝑐,𝑖) + 𝑢𝑖−1

𝑇 𝑃𝑢𝑖−1

𝑘+𝑁

𝑖=𝑘

 (8.61)

subject to,

𝑢𝑘 − 1 ≤ 0 (8.62)

−𝑢𝑘 + 0 ≤ 0 (8.63)

∆𝑢𝑘 − 0.1 ≤ 0 (8.64)

−∆𝑢𝑘 + (−0.1) ≤ 0 (8.65)

Where 𝑃𝑐,𝑖 is the predicted pressure at the bottom of the tank (please see the description of the

process in section 8.7) for the whole prediction horizon from 𝑖 = 𝑘 to 𝑖 = 𝑘 + 𝑁𝑝. 𝑃𝑐,𝑖 is obtained

by solving the process model given by the following ODE.

𝑑𝑃𝑐
𝑑𝑡

=
1

𝐶𝑓
𝑄𝑖𝑛(𝑡) −

𝐾𝑣𝑢

𝑅𝑓𝐶𝑓
𝑃𝑐 with initial state 𝑃𝑐0 known 8.66

The complete source code for the nonlinear MPC for this example can be downloaded from the

homepage of the course. The MATLAB code is also available at end of this section. Here, the main

steps involved in making the nonlinear MPC will be provided.

Step 1: Set a simulation environment

Define the prediction horizon length, the sampling time, initial values of the states of the process,

and the initial guess for the variables to be optimized, which in this example is the valve

opening. Let us assume that the prediction horizon is 𝑁𝑝 = 20 samples into the future, sampling

time 𝑑𝑡 = 6 sec and ending time for simulation is tend = 14 min = 14 × 60 sec. We can then

146

define the timespan (i.e. the time vector) as a vector and then calculate the length/size of this

time vector to know how many number of times the sliding has to be performed to reach the end

of simulation time.

%start time

tstart = 0;

tend = 14*60; %in sec

%sampling time

dt = 0.1*60; %sampling time in seconds %dt = 6 seconds

%time span

tspan = tstart:dt:tend;

%length of the sliding loop: how many times to slide

looplen = length(tspan);

%choose prediction horizon

Np = 20; %Np time steps ahead in the future

The ordinary differential equation that represents the model of the process needs an initial value

state_ini_values. Let us assume that initial value of the pressure for solving the ODE is 10 ×

105 N/m2. Similarly, the optimizer also needs a guess/starting value u_ini for the variables to

optimize Let us put the guess that the valve is at fully opened condition.

%initial values of the states

state_ini_values = 10e5; %intial pressure at the bottom of the tank

%initial value for optimizer

u_ini = ones(Np,1).*1; %full valve opening

Step 2: Define the reference for the whole simulation time

Since reference values are known variables, they can be calculated offline (i.e. before entering into

the main sliding loop). You can make a separate .m function for calculating the known variables

(like reference values and/or input disturbances) for the whole simulation time (and not just for

prediction horizon length). For this example, a separate make_reference.m function is created.

%make the reference vector offline (for the whole simulation time).

Ref = make_reference(tspan);

Inside this function, the references for the whole simulation time length (which is the tspan) is

defined as,

function Ref = make_reference(tspan)

Ref = zeros(length(tspan),1);

for i = 1:length(tspan)

 if tspan(i) <=2*60

 Ref(i,1) = 10e5;

 elseif tspan(i) >2*60 && tspan(i) <=6*60

 Ref(i,1) = 13e5;

 elseif tspan(i) >6*60 && tspan(i) <=10*60

 Ref(i,1) = 11e5;

 else

 Ref(i,1) = 15e5;

 end

end

Here, a simple, if-else statements have been used for defining references for the whole simulation

time length as a simple example. Other ways can also be explored.

147

Note:

Let us look at the timeline of Figure 8.9. In this figure, tend is the end of the simulation

time, and 𝑁𝑝 is the prediction horizon length. Using the make_reference function, the values

for the references from time 𝑡 = 0 to 𝑡 = tend is already defined.

t = 0
t = tend



looplen number of samples

looplen - Np

Prediction horizon Np

looplen - Np+1

Prediction horizon Np

Np extra samples
after tend

R
ef

er
en

ce

Prediction horizon Np

Figure 8.9: Timeline to explain why 𝑁𝑝 extra samples are needed after tend.

However, when we reach to a time point which is at (𝑙𝑜𝑜𝑝𝑙𝑒𝑛 − 𝑁𝑝) i.e. when we are

exactly at 𝑁 time steps before the end of the simulation time, we can see that the end of the

prediction horizon from this point will coincide with the end of the simulation time. Now

when you want to slide one time step further to (𝑙𝑜𝑜𝑝𝑙𝑒𝑛 – 𝑁𝑝 + 1) time point, you can

see that the prediction horizon window extends one time step further from the end of the

simulation time. But we have not defined any values for the references for this extra time

step. We must define it.

In the same way, if would like to simulate/slide until the end of the simulation time tend,

we can see that we need 𝑁𝑝 extra/additional values for the references after the end of the

simulation time. Thus we need to provide information about these extra 𝑁𝑝 values for the

references (and/or input disturbances if present). One way to do so is to use the value of

the reference defined for the end of the simulation time (i.e. the last value of the reference)

and extend it for the extra 𝑁𝑝 values. For example,

%add the extra Np number of values for simulating it until “tend”

Ref = [Ref;ones(Np,1).*Ref(end)];

148

However, as an alternative, we could have stopped the simulation when we have reached

the timepoint (𝑙𝑜𝑜𝑝𝑙𝑒𝑛 − 𝑁𝑝). This way we could have only performed simulation from

tstart (𝑡 = 0) to (tend – 𝑁𝑝 ∗ 𝑑𝑡), and not completely until the defined tend.

In addition, as another alternative, we also could have stopped sliding further when we

have already slid for (𝑙𝑜𝑜𝑝𝑙𝑒𝑛 − 𝑁𝑝) number of times. If we do so, the last 𝑁 optimal

values of the control inputs are obtained as the solution of the optimal control problem

which was solved at timepoint (𝑙𝑜𝑜𝑝𝑙𝑒𝑛 − 𝑁𝑝). Then all these last 𝑁𝑝 optimal values of

the control inputs could also be applied to the process to simulate the remaining 𝑁 number

of steps so that we ultimately reach tend.

Which of these alternatives to use?: Well, the choice is yours.

In this example, I have implemented the first choice (adding the extra 𝑁𝑝 values for the

references by extending the last value of the references).

Step 3: Make a for loop for applying the receeding horizon strategy to the nonlinear optimization

problem

The main sliding loop can be formed as,

%make a loop for sliding each time step forward

for i = 1:looplen

 %store the output

 %if output is not directly the states, make a separate .m file for calculating

 %it.

 Pc(i,1) = state_ini_values;

 %step (b) and step (c) of the algorithmic steps in Section 8.8

 %call the optimizer

 %make the nonlinear optimization problem and solve it

 u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref(i:i+Np-1,1),Np);

 %step (d) of the algorithmic steps in section 8.8

 %use only the first control move

 u_first = u_k_ast(1);

 %store the optimal control input for plotting

 u(i,1) = u_first;

 %step (e)of the algorithmic steps in section 8.8

 %for warm start

 u_ini = u_k_ast;

 %step (f) of the algorithmic steps in section 8.8

 %use the first control move to slide one time step forward

 %with RK method

 x_next = my_runge_kutta(state_ini_values,dt,u_first);

 %step (g) of the algorithmic steps in section 8.8

 state_ini_values = x_next;

end

149

Inside this loop, all the algorithmic steps (from step b to step g) explained in Section 8.8 for

nonlinear MPC are implemented. Let’s look at these steps one by one.

At first, for the purpose of plotting later, the output variables can be saved inside this loop. For this

example the output is the state so it can be saved directly as,

%store the output

 %if output is not directly the states, make a separate .m file for calculating

 %it.

 Pc(i,1) = state_ini_values;

If the output is some nonlinear functions of the state and control inputs, 𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘), then you

should calculate the output. For this you can for example make a separate .m file/script.

Step (b) and step (c) of the algorithmic steps in section 8.8:

A nonlinear optimal control problem is formulated and solved using fmincon solver in MATLAB

at each time step as,

%step (b) and step (c) of the algorithmic steps in Section 8.8

 %call the optimizer

 %make the nonlinear optimization problem and solve it

 u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref(i:i+Np-1,1),Np);

When formulating the nonlinear optimal control problem at any given time step, make sure that

you define the values for the reference for the whole prediction horizon starting from that particular

time step. For this you can extract the values for the references belonging to that particular

prediction horizon length from the variable Ref. Remember that the variable Ref contains the

values for the references for all the simulation time + extra 𝑁𝑝 for extending the horizon after the

end of simulation. Selection of suitable values for reference at each time step has been done using

proper indexing as,

Ref(i:i+Np-1,1)

Just note that:

If some input disturbances are present in your system and they have been defined offline

(just like for the output references) for the whole simulation time + extra 𝑁𝑝 , then you also

extract the values for the input disturbances (for the prediction horizon length) at any given

current time step by using proper indexing (just like for the output references).

In addition, you need to supply the initial state values state_ini_values (current state values at any

given time step) and the initial guess for the optimizer u_ini.

What happens inside the optimization_tank function has already been described in details in Section

8.7.1 (under step 3). This has not been repeated here since it is exactly the same i.e. a nonlinear

optimal control problem is formed for a given prediction horizon length and solved using fmincon

solver in MATLAB. When this optimization_tank function is placed inside the for loop, a nonlinear

150

optimal control problem is re-formed, re-optimized and re-solved at each time step as we slide

forward (i.e. as the loop progresses).

The optimizer will return back 𝑁𝑝 optimal values of the control inputs denoted here as u_k_ast .

Step (d) of the algorithmic steps in section 8.8:

However, instead of applying all these 𝑁𝑝 optimal values, we only select the first control move

(denoted here as u_first) for all the control inputs. They are then stored for plotting later on.

 %step (d) of the algorithmic steps in section 8.8

 %use only the first control move

 u_first = u_k_ast(1);

 %store the optimal control input for plotting

 u(i,1) = u_first;

Step (e) of the algorithmic steps in section 8.8:

For warm start, the current optimal values (u_k_ast) returned by the optimizer is allocated as the

starting point or initial guess (u_ini) for the optimizer for the next time step i.e. for re-solving an

optimal control problem in the next time step or next iteration of the loop.
%step (e)of the algorithmic steps in section 8.8

 %for warm start

 u_ini = u_k_ast;

Step (f) of the algorithmic steps in section 8.8:

The first control move for all the control inputs are then applied to the nonlinear process to move

one time step forward. Since the nonlinear process is described by ODE, we have to solve the

model equation by using u_first and the known initial values state_ini_values of the system at

the current time step. To solve the ODE, Runge Kutta 4th order algorithm have been used in this

example as,

%step (f) of the algorithmic steps in section 8.8

 %use the first control move to slide one time step forward

 %with RK method

 x_next = my_runge_kutta(state_ini_values,dt,u_first);

You can also use other ODE solvers like Euler method, trapezoidal methods, etc. Just avoid

using the built-in solvers in MATLAB inside a loop (it will make execution very slow).

Step (g) of the algorithmic steps in section 8.8:

The states are updated i.e. we move one time step forward by setting 𝑘 = 𝑘 + 1.
%step (g) of the algorithmic steps in section 8.8

 %update the system, set k = k+1

 state_ini_values = x_next;

After this step (g), the whole process of re-formulating, re-optimizing and re-solving of a

nonlinear optimal control problem is repeated at each time step by the for loop. This creates

151

feedback to the system. This also turns a nonlinear optimal control problem into a nonlinear

MPC.

Step 4: Plot the results

After the loop has terminated, we can finally plot the variables that are of interests to us. The results

are plotted as MATLAB figures. Figure 8.10 shows the output variable, the reference and the

control input.

tspan = tspan./60; %to plot in minutes as time axis

%plot figures,

figure,

subplot(211)

plot(tspan,Ref(1:looplen,1),'b-',tspan,Pc,'k-')

legend('ref Pc','Pc','Orientation','horizontal')

ylabel('Pc, Ref'); title('MPC for tank pressure');

subplot(212)

plot(tspan,u,'r-')

xlabel('time [sec]'); ylabel('u');

legend('Control input: valve opening');

As you may have observed, the major part of the code remains the same as for NLP optimal control

(Section 8.7). The only change (difference) is that a 𝑓𝑜𝑟 𝑙𝑜𝑜𝑝 has been utilized to implement the

sliding horizon strategy.

Figure 8.10: Nonlinear Model Predictive control of pressure at bottom of a tank

The complete MATLAB source code for this example of NMPC is given below:

152

<%the main file to be run> % main_file_tankPressure_MPC.m
%the main file to be run

clc

clear

%start time

tstart = 0;

tend = 14*60; %in sec

%sampling time

dt = 0.1*60; %sampling time in seconds %dt = 6 seconds

%time span

tspan = tstart:dt:tend;

%length of the sliding loop: how many times to slide

looplen = length(tspan);

%choose prediction horizon

Np = 20; %Np time steps ahead in the future

%initial values of the states

state_ini_values = 10e5; %intial pressure at the bottom of the tank

%initial guess for the optimizer

u_ini = ones(Np,1).*1; %full valve opening

%Reference

%make the reference vector offline (for the whole simulation time).

Ref = make_reference(tspan);

%add the extra Np number of values for simulating it until tend

Ref = [Ref;ones(Np,1).*Ref(end)];

%make space for storing variables of interest

Pc = zeros(looplen,1);

u = zeros(looplen,1);

%make a loop for sliding each time step forward

for i = 1:looplen

 %store the output

 %if output is not directly the states, make a separate .m file for calculating

 %it.

 Pc(i,1) = state_ini_values;

 %step (b) and step (c) of the algorithmic steps in Section 8.8

 %call the optimizer

 %make the nonlinear optimization problem and solve it

 u_k_ast = optimization_tank(u_ini,state_ini_values,dt,Ref(i:i+Np-1,1),Np);

 %step (d) of the algorithmic steps in section 8.8

 %use only the first control move

 u_first = u_k_ast(1);

 %store the optimal control input for plotting

 u(i,1) = u_first;

 %step (e)of the algorithmic steps in section 8.8

 %for warm start

 u_ini = u_k_ast;

 %step (f) of the algorithmic steps in section 8.8

 %use the first control move to slide one time step forward

 %with RK method

 x_next = my_runge_kutta(state_ini_values,dt,u_first);

 %step (g) of the algorithmic steps in section 8.8

 state_ini_values = x_next;

end

tspan = tspan./60; %to plot in minutes as time axis

%plot figures,

153

figure,

subplot(211)

plot(tspan,Ref(1:looplen,1),'b-',tspan,Pc,'k-')

legend('ref Pc','Pc','Orientation','horizontal')

ylabel('Pc, Ref'); title('MPC for tank pressure');

subplot(212)

plot(tspan,u,'r-')

xlabel('time [sec]'); ylabel('u');

legend('Control input: valve opening');

<function: main_file_tankPressure_MPC.m: ends>%

--- x------------------------------x---

<function: make_reference.m: starts>%

function Ref = make_reference(tspan)

Ref = zeros(length(tspan),1);

for i = 1:length(tspan)

 if tspan(i) <=2*60

 Ref(i,1) = 10e5;

 elseif tspan(i) >2*60 && tspan(i) <=6*60

 Ref(i,1) = 13e5;

 elseif tspan(i) >6*60 && tspan(i) <=10*60

 Ref(i,1) = 11e5;

 else

 Ref(i,1) = 15e5;

 end

end

<function: make_reference.m: ends>%

--- x------------------------------x---

<function: optimization_tank.m: starts>%

function u = optimization_tank(u_ini,state_ini_values,dt,Ref,Np)

%In this function we:

%define functions for objective and constraints

%choose the slover types + other options to the solver

%######## Structure 2 ############################### %efficient

%reduces computation time by half

%We can cut the computational time by NOT repeating the same calculations

%for objective function and the nonlinear constraints

%let us try by making use of nested function

%options for chosing the type of method for optimization and other options

ops = optimset('Algorithm','sqp','Display','off','MaxIter',5000);

%ops =optimset('Algorithm','interior-point','Display','off','MaxIter',5000);

%ops = optimset('Algorithm','active-set','Display','off','MaxIter',20);

uLast = [];% Last place compute_both was called

myJ = [];% Use for objective at xLast

myG = [];% Use for nonlinear inequality constraint

myHeq = [];% Use for nonlinear equality constraint

%define the function where the objective function will be calculated

obj_func = @(u)objfun_tank(u,state_ini_values,dt,Ref,Np);

%define the function where the nonlinear constraints will be

%calculated (both equality and inequality constraints will be calculated in

%the same function

154

cons_func = @(u)confun_tank(u,state_ini_values,dt,Ref,Np);

%use the fmincon solver

[u,fval,exitflag,output,solutions] = fmincon(obj_func,u_ini,[],[],[],[],[],[],cons_func,ops);

 function J = objfun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: objective call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute objective function

 J = myJ;

 end

 function [G Heq] = confun_tank(u,state_ini_values,dt,Ref,Np)

 if ~isequal(u,uLast) %check if computation is necessary

% disp('button pressed: constraint call');

% pause;

 [myJ myG myHeq] = compute_both(u,state_ini_values,dt,Ref,Np);

 uLast = u;

 end

 %now compute constraints

 G = myG;

 Heq = myHeq;

 end

end

%######### Structure 2 ENDS ##################################

<function: optimization_tank.m: ends>%

--- x------------------------------x---

<function: compute_both.m: starts>%

function [myJ myG myHeq] = compute_both(u_ini,state_ini_values,dt,Ref,Np)

%this is the function where we compute the objective function and the

%constraints.

%weighting matrices for error and control inputs

Qe = eye(Np).*1; %weighting matrix for the error

Pu = eye(Np).*1; %weighting matrix for the control inputs

%to store the output variable

Pc = zeros(Np,1);

for i = 1:Np

 %find out which control input to use for each time step within the prediction horizon.

 u_k = u_ini(i,:);

 %use runge kutta to update the states

 x_next = my_runge_kutta(state_ini_values,dt,u_k);

 %use the states to calculate the output

 %in this case, the output is simply the state.

 %//Note: Sometimes outputs have to be calculated using algebriac

 %equations and the states. In such a case, please make a separate

 %function for calculating the output variables.

 Pc(i,1) = x_next;

 %update the state

 state_ini_values = x_next;

end

%now make the objective function

J = (Ref-Pc)'*Qe*(Ref-Pc) + u_ini'*Pu*u_ini;

myJ = J/2;

155

%if there are equaltiy constraints, it should be listed as a column vector

%here we don't have equality constraints so we use empty matrix

myHeq = [];

%For this example, there is also constraint on the rate of change of control input variables (du)

%such that -0.1<=du<=0.1

%since in the objective function, we don't have 'du' but only 'u', we have to calculate 'du'

ourself.

%find du from the input signals

du = u_ini(2:end)-u_ini(1:end-1);

%//Important Note: If the objective function was formulated such that it

%had " (du)'P du ",then we don't have to calculate 'du' here because 'du' is passed to this

%function by the optimizer and so we already would have it.

%list the inequality constraints as column vector

myG =[u_ini-1; % valve opening should be less than 1

 -u_ini+0; %valve opening should be greater than 0

 du - (0.1); % du should be less than 0.1 for each sample

 -du-(0.1); % du should be greater than -0.1 for each sample

];
<function: compute_both.m: ends>%

--- x------------------------------x---

<function: my_runge_kutta.m: starts>%

function x_next = my_runge_kutta(states_ini_values,dt,u_k_ast)

K1 = tankPressure_equations([],states_ini_values,u_k_ast);

K2 = tankPressure_equations([],states_ini_values+K1.*(dt/2),u_k_ast);

K3 = tankPressure_equations([],states_ini_values+K2.*(dt/2),u_k_ast);

K4 = tankPressure_equations([],states_ini_values+K3.*dt,u_k_ast);

x_next = states_ini_values + (dt/6).*(K1+2.*K2+2.*K3 + K4);

<function: my_runge_kutta.m: ends>%

--- x------------------------------x---

<function: tankPressure_equations.m: starts>%

function dP_dt = tankPressure_equations(t,x0,u)

%this is the function where we write the differential equations of the

%given model.

%needed parameters

Cf = 2.04e-4;

Rf = 1e6;

Qin = 1; %constant inflow

Kv = 1.5; %gain of the valve

dP_dt = Qin/Cf - (x0*u*Kv)/(Rf*Cf);

< tankPressure_equations.m: ends>%

--- x------------------------------x---

156

8.8.2 Grouping of control inputs for faster execution time
Perhaps the most efficient way of reducing the executing time for nonlinear MPC is by grouping

the control inputs into blocks. Let the number of control signals available for controlling a process

is denoted by 𝑛𝑢 and the prediction horizon is denoted by 𝑁𝑝. Then for each time step, the MPC

algorithm has to calculate 𝑛𝑢𝑁𝑝 number of optimal control signals for the whole prediction horizon

length. The greater the number of variables to optimize, the greater is the computational time

needed by the optimization solver to solve the problem. However, it can be significantly reduced

by grouping of control inputs into blocks.

Let us consider a process with three inputs as shown in Figure 8.9. For 𝑛𝑢 = 3 & a prediction

horizon of 𝑁𝑝 = 20, the number of variables to optimize without grouping is 3 × 20 = 60

variables.

Now, just for comparison, let us group each control input into two blocks17. For any time 𝑡𝑘 and

for the control input 1 as an example,

Control input 1 =

[

𝑢𝑘
1 , 𝑢𝑘+1

1 , 𝑢𝑘+2
1 , ………𝑢𝑘+8

1 , 𝑢𝑘+9
1

⏟
𝑓𝑖𝑟𝑠𝑡 10 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 (𝑔𝑟𝑜𝑢𝑝 1)

𝑢𝑘+10
1 , 𝑢𝑘+11

1 , ………𝑢𝑘+18
1 , 𝑢𝑘+19

1
⏟
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 10 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 (𝑔𝑟𝑜𝑢𝑝 2)⏟

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁𝑝=20]

Now suppose that for the first 10 time steps of the prediction horizon (group 1), we will use the

same value for the control inputs. Denote it by 𝑢𝑔𝑟1
1 . Also suppose that for the remaining 10 time

steps of the prediction horizon (group 2), let us use the same value for the control inputs. Denote

it by 𝑢𝑔𝑟2
1 . Then in compact form we can write,

Control input 1 = [𝑢𝑔𝑟1
1 , 𝑢𝑔𝑟2

1]

Thus, 20 different values of control input 1 have been reduced to only 2 different values by

grouping them into two blocks.

With the same logic, for the remaining control input signals,

Control input 2 = [𝑢𝑔𝑟1
2 , 𝑢𝑔𝑟2

2]

Control input 3 = [𝑢𝑔𝑟1
3 , 𝑢𝑔𝑟2

3]

17 It is possible to group control inputs into more than two blocks. In general, the length of the latter blocks are

shorter than the preceeding blocks.

Control input 1

Control input 2

Control input 3

…

States

Process
output

⋮

Figure 8.9: A MIMO system

157

Now after grouping, the total number of variables to optimize at any time 𝑡𝑘 is (2 values for control

input 1 + 2 values for control input 2 + 2 values for control input 3) i.e. 6 variables to

optimize. Without grouping, there were 60 variables to optimize. Thus the total number of

variables to be optimized by the solver has been reduced drastically. This results in quicker

execution time when solving the optimization problem.

However, a question remains to be answered: Does the grouping of control inputs affect the closed

loop response of the system? Well, the short answer is NO in general. Grouping of the control

inputs into blocks does not severely affect the closed loop response. However, it is suggested that

you test it for stability through simulations.

8.8.3 Example of Grouping of control inputs for faster execution time
To be consistent, let us once again look back into the previous example in section 8.8.2 for

controlling pressure at the bottom of the tank. Here, a nonlinear MPC will be used. But this time,

the control inputs will be grouped into 4 groups. If you recall from Section 8.8.2, without control

input grouping, the total number of variables to optimize were 20 (given that that prediction

horizon 𝑁𝑝 = 20 and the number of control inputs present in the system 𝑛𝑢 = 1).

If we group the sequence of control inputs within the prediction horizon into 4 groups, then we

will have only 4 variables to optimize (instead of 20) at any given current time step. To implement

the control input grouping, most of the code will remain the same as in Section 8.8.2 for nonlinear

MPC without grouping. This section will only highlight those areas in the code implementation

which needs to be changed or modified.

Let us group the control inputs within the prediction horizon of 20 samples as,

Grp1: from sample no. 1 to sample no. 2 (first part of the prediction horizon)

Grp 2: from sample no. 3 to sample no. 5 (second part of the prediction horizon)

Grp 3: from sample no. 6 to sample no. 11 (third part of the prediction horizon)

Grp 4: from sample no. 12 to sample no. 20 (fourth part of the prediction horizon)

At first, since with control input grouping we now have only 4 variables to optimize, the initial

guess for the optimizer should be modified as,

%initial guess for the optimizer with control input grouping

Ngrp = 4;

u_ini = ones(Ngrp,1).*1; %full valve opening

The next change we have to make is during the use of process model for prediction i.e. when

calculating 𝑃𝑐,𝑖 for the whole prediction horizon from 𝑖 = 𝑘 to 𝑖 = 𝑘 + 𝑁𝑝 at any given time 𝑡𝑘.

𝑃𝑐,𝑖 is obtained by solving the process model given by the following ODE.

158

𝑑𝑃𝑐
𝑑𝑡

=
1

𝐶𝑓
𝑄𝑖𝑛(𝑡) −

𝐾𝑣𝑢

𝑅𝑓𝐶𝑓
𝑃𝑐 with initial state 𝑃𝑐0 known 8.67

 But when solving this model for the whole prediction horizon at any time, only 4 control inputs

are available for 20 time steps of the prediction horizon (instead of 𝑁𝑝 = 20 number of them).

Thus we need to specify that:

For the first 2 samples (from sample no. 1 to sample no. 2 within the prediction horizon),

the control input corresponding to first group i.e. u_ini(1,1)should be used to solve the

model (to excite the system). For the next 3 samples (from sample no. 3 to sample no. 5

within the prediction horizon), the control input corresponding to second group i.e.

u_ini(2,1)should be used to solve the model (to excite the system). And similarly, for the

next 6 samples (from sample no. 6 to sample no. 11 within the prediction horizon), the

control input corresponding to third group i.e. u_ini(3,1)should be used to solve the model

(to excite the system). Finally, for the last remaining 9 samples (from sample no. 12 to

sample no. 20), the control input corresponding to the fourth group i.e. u_ini(3,1) should

be used.

We can make use of if-else statement in MATLAB to specify the control inputs. To make this

change, we can directly go to the compute_both function and specify the appropriate control inputs

when solving the process model inside the for loop. This can be performed as,

function [myJ myG myHeq] = compute_both(u_ini,state_ini_values,dt,Ref,Np)

%this is the function where we compute the objective function and the

%constraints.

%weighting matrices for error and control inputs

Qe = eye(Np).*1; %weighting matrix for the error

Pu = eye(4).*1; %weighting matrix for the control inputs

%to store the output variable

Pc = zeros(Np,1);

for i = 1:Np

 %find out which control input to use for each time step within the prediction horizon.

 %with control input grouping

 if i<=1 %for the first two samples within the prediction horizon

 u_k = u_ini(1,:);

 elseif i>1 && i<=3 %for the next three samples within the prediction horizon

 u_k = u_ini(2,:);

 elseif i>3 && i<=6 %for the next 6 samples within the prediction horizon

 u_k = u_ini(3,:);

 else %for the remaining 9 samples witin the prediction horizon

 u_k = u_ini(4,:);

 end

 %use runge kutta to update the states

 x_next = my_runge_kutta(state_ini_values,dt,u_k);

 %use the states to calculate the output

 %in this case, the output is simply the state.

 %//Note: Sometimes outputs have to be calculated using algebriac

 %equations and the states. In such a case, please make a separate

 %function for calculating the output variables.

 Pc(i,1) = x_next;

 %update the state

 state_ini_values = x_next;

159

end

%now make the objective function

J = (Ref-Pc)'*Qe*(Ref-Pc) + u_ini'*Pu*u_ini;

myJ = J/2;

%if there are equaltiy constraints, it should be listed as a column vector

%here we don't have equality constraints so we use empty matrix

myHeq = [];

%For this example, there is also constraint on the rate of change of control input variables (du)

%such that -0.1<=du<=0.1

%since in the objective function, we don't have 'du' but only 'u', we have to calculate 'du'

ourself.

%find du from the input signals

du = u_ini(2:end)-u_ini(1:end-1);

%//Important Note: If the objective function was formulated such that it

%had " (du)'P du ",then we don't have to calculate 'du' here because 'du' is passed to this

%function by the optimizer and so we already would have it.

%list the inequality constraints as column vector

myG =[u_ini-1; % valve opening should be less than 1

 -u_ini+0; %valve opening should be greater than 0

 du - (0.1); % du should be less than 0.1 for each sample

 -du-(0.1); % du should be greater than -0.1 for each sample

];

A small change also has to be made when defining the weighting matrices for the control inputs in

this function. Since after grouping, the number of control inputs (number of decision variables)

are reduced to 3, the weighting matrix Pu has to be defined for these 3 control inputs as,

Pu = eye(3).*1; %weighting matrix for the control inputs with control input grouping

The remaining part of the code is the same as explained in section 8.8.2.

Figure 8.10 shows the computation time needed to complete the simulation both with and without

grouping of the control inputs.

Figure 8.10: Comparison of the execution time with nonlinear MPC with/without control input grouping

160

Clearly, we can see that with grouping of control inputs, the nonlinear MPC can be executed

relatively faster in general. Note that since the solver fmincon in MATLAB is optimized for

performance, when the process reaches the steady state, the execution time for nonlinear MPC

without grouping of control inputs is relatively smaller. However, optimizing the performance of

solver may not be a service with other platforms. In general, grouping of control inputs usually

results in faster execution time.

But how about the performance of the nonlinear MPC with grouping of control inputs? Will the

performance be degraded with grouping of control inputs for this example? Figure 8.11 shows the

simulation results.

Figure 8.11: Comparison of nonlinear MPC with/without control input grouping

As can be seen from Figure 8.11, the performance of the controller are relatively similar. So we

can say that grouping of control inputs does not severely degrade the performance.

Multi-objective and Pareto Optimization:
Applications to MPC

Model Predictive Control

University of South-Eastern Norway,

Porsgrunn, Norway.

Oct. 2018, Roshan Sharma

Lecture supplement for

Lecture Content

• Introduction

• Single objective optimization
• Example of climbing a hill

• Multi-objective optimization (MOO)
• Example of buying a car

• Dominance

• Pareto optimal solutions, Pareto front

• Different methods to solve MOO
• Weighted sum

• ℇ - Constraint method

• Goal Attainment method

• Hierarchical method

• Applications

• Utopia tracking MPC

Introduction: Single objective

Courtesy: VR&D
www.vrand.com

Objective:

Min/Max f(x)

Constraints

gi(x) ≤ 0, i = 1,2,…,m

hj(x) = 0, j = 1,2,…,r

x = [x1, x2,…,xn]

x

• The objective is to reach to the top of the hill blind folded. (only a single objective)
• The person should walk up the hill by staying inside the fences (constraints)

Introduction: Single Objective

Courtesy: VR&D
www.vrand.com

Objective:

Min/Max f(x)

Constraints

gi(x) ≤ 0, i = 1,2,…,m

hj(x) = 0, j = 1,2,…,r

x = [x1, x2,…,xn]

x

• One possible path that the person can undertake to reach to the top of the hill.
• The single objective is fulfilled and the constraints are also satisfied or obeyed.

Introduction: Multi-objective

Objective:

Min/Max J(x) = [F1(x), F2(x),…,Fk(x)]

Constraints

gi(x) ≤ 0, i = 1,2,…,m

hj(x) = 0, j = 1,2,…,r

x = [x1, x2,…,xn]

Fi(x) =[F1(x), F2(x),…,Fk(x)], i=1,2,…,k

Examples of objectives:

Revenue Production
Cost Safety
Energy Environmental
Time Range

efficiency Speed
etc….

• More than one objectives F1(x), F2(x),…,Fk(x) : k number of objectives
• All the objectives of the given problem should be addressed at once

x

Introduction: Multi-objective, example

• Often the objective functions are conflicting to each other

comfort

Price (Minimize)

(Maximize)

F1

F2

Buying a car:
• Two conflicting objectives

• First Objective: Maximize Comfort
• Second Objective: Minimize price

Introduction: Dominance
• No solution is optimal for all objectives simultaneously.

• For compromised solution, non-dominating points are what we are looking after.

F1

(maximize)

F2 (maximize)

4

2

1

3

5

5 dominates 3: F1and F2 both are improved at the same
time. Too obvious.
1 dominates 5: F2 is improved and F1 remains the same.
Too obvious
4 and 3 : Non-dominated
2 and 4 : Non-dominated

F1 is improved but only
when F2 is worsened

Introduction: Pareto optimal solutions

Non- dominating x* are Pareto optimal solutions

In words: Improvement in one objective function is possible only by worsening of at least
one other objective function.

For e.g: Points A, B, C, D are all solutions (non-dominating points). At point D (which is a
solution), F2 is improved but at the same time F1 is worsened, when compared to point B.

ref: Gambier (2008) • In a given MOO, there can be more than one Pareto optimal solutions.
• Collection of Pareto Optimal solution is known as Pareto Front

Introduction: Pareto optimal solutions

• All points in Pareto front are equally acceptable solutions.

• Here, solutions A, B, C and D are all valid solutions.

• Decision maker decides the trade-off

• For compromised solution

• Which one to choose among them? It depends on which objective you want to
improve more by sacrificing the other objective.

ref: Gambier (2008)

Introduction: Solution Methods, How to solve MOO?

• Methods to solve MOO.

ref: Anderson (2000), Marler and Arora (2004) , Gambier (2008)

MOO
Methods

Scalarization Methods

Weighted Sum

Goal
Attainment

Lexicographic/
Hierarchial

Pareto Methods

Non
Evolutionary Evolutionary

MOGA
(multi objective genetic alg.)

NSGA, NSGA-II
(non dominated sorting Gen. Alg.)

SPEA, SPEA-2
(Strength Pareto Evol. Alg.)

NPGA
(Niched Pareto Gen. Alg.)

Non-Pareto Methods

ɛ- constraint

VEGA
(Vector Evaluating Gen. Alg.)

NBI
(Normal Bounded Intersection)

NC
(Normal Constraint)

MOO = Multi Objective Optimization

Introduction: Solution Methods, How to solve MOO?

• Methods to solve MOO.

• Only Green colored will be explained in brief.

ref: Anderson (2000), Marler and Arora (2004) , Gambier (2008)

MOO
Methods

Scalarization Methods

Weighted Sum

Goal
Attainment

Lexicographic/
Hierarchial

Pareto Methods

Non
Evolutionary Evolutionary

MOGA
(multi objective genetic alg.)

NSGA, NSGA-II
(non dominated sorting Gen. Alg.)

SPEA, SPEA-2
(Strength Pareto Evol. Alg.)

NPGA
(Niched Pareto Gen. Alg.)

Non-Pareto Methods

ɛ- constraint

VEGA
(Vector Evaluating Gen. Alg.)

NBI
(Normal Bounded Intersection)

NC
(Normal Constraint)

MOO = Multi Objective Optimization

Solution Methods: Weighted Sum

• Weighted Sum

Min J(x) = [F1(x), F2(x),…,Fk(x)]
s.t Constraints

𝐽 𝑥 = ෍

𝑖=1

𝑘

𝑤𝑖𝐹𝑖(𝑥)

Weights assigned to the ith objective 𝑤𝑖 =

Ref: Marler and Arora (2004)Courtesy: Kim (2014)

• All the k objectives are added
together

• Each objective is assigned a
weighing factor wi > 0

• The slope of the line L depends on the
weighing factors.

• At each iteration while solving J(x), (an NLP
with multi-objective), the value of c changes
i.e. J(x) becomes better and better with
iteration and the line slides towards the
feasible region.

• The point where the line L touches the feasible
region is the solution.

Min

s.t Constraints

Solution Methods: Weighted Sum

• Weighted Sum (disadvantages)

• Difficult to assign weights (based on experience or trial and error).

• For non-convex problems, certain non-dominated solutions are not accessible.
• Any point lying between A and B is not accessible by this method.

Ref: Marler and Arora (2004)

Non-Convex Solution Boundary

Solution Methods, Ԑ - constraint method

• ɛ - constraint method (can handle the disadvantage of weighted sum method)

𝑀𝑖𝑛 𝐹𝑝(𝑥)
𝑥

𝑠. 𝑡
𝐹𝑖 𝑥 ≤ ɛ𝑖 𝑖 = 1,2, … , 𝑘 𝑖 ≠ 𝑝

Ref: Marler and Arora (2004)

• Choose one of the objective as primary objective (𝐹𝑝(𝑥))

• Minimize the primary objective
• Express other objectives as inequality constraints using ɛ such that the secondary

objectives should be at least equal to or less than user defined ɛ.

But….
May have difficulty in the
selection of suitable ɛ.

plus the constraints of the original optimization problem

For properly selected ɛ , it can
also find non-convex solution.

Solution Methods: Goal Attainment Method
• Goal Attainment Method (can be thought as relaxation of ɛ - constraint method)

-- Express a set of goals (𝐹𝑖
∗) for each objectives.

-- In MOO, it is difficult to achieve all goals simultaneously.
-- Use slack variables (𝜆) to violate the unachieved goals but minimize the violation.

𝑀𝑖𝑛 𝜆

goal or aspiration level for the ith objective 𝐹𝑖
∗ =

𝑥, λ
𝑠. 𝑡

𝐹𝑖 𝑥 − 𝑤𝑖𝜆 ≤ 𝐹𝑖
∗ 𝑖 = 1,2, … 𝑘

𝑤𝑖 = weights to control the degree of under or over achievement. It allows user to
express a measure of relative tradeoffs between the objectives.

Ref: Wang (2003)

• The idea is to achieve the value of each objective function 𝐹𝑖 𝑥 at
least equal or less than the defined goal for the objective.

• The goals are under or over achieved by making use of weights.

𝐹𝑖 𝑥

slack variable𝜆 =

𝑤𝑖𝜆 introduces an element of slackness into the problem. If 𝑤𝑖 is zero, it simply means
that the goals has to be rigidly met.

Solution Methods: Goal Attainment Method

Courtesy: Kim (2014)

• The choice of the goals 𝐹𝑖
∗ defines the goal point P.

• Weighting vector 𝑤𝑖 for slack variables defines direction of
search

• 𝑠𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝜆 is varied during optimization
• Size of feasible region changes

• Converge to a unique solution point
• (F1s and F2s)

Solution Methods: Hierarchical method (Lexicographic method)

𝑀𝑖𝑛 𝐹𝑖(𝑥)
𝑥

𝑠. 𝑡

𝐹𝑗 𝑥 ≤ 𝐹𝑗 𝑥𝑗
∗ , 𝑗 = 1,2, … , 𝑖 − 1, 𝑖 > 1

Ref: Gambier (2008) , Marler and Arora (2004), Wang (2003)

• Objectives functions are arranged in the order of importance with highest prioritized
objective at the top.

• One after the other, each objective function is minimized starting with the most
important one and proceeding according to the order of importance.

• At any given iteration, the prioritized objectives (appearing before the given iteration)
form constraints inorder not to sacrifice its performance.

• We obtain one optimum for a given lexicographic order.
• Normally objectives with lower priorities will not be properly satisfied (disadvantage).

• 𝐹𝑗 𝑥𝑗
∗ is the optimum of the jth objective function, found in the jth iteration.

• Optimal objective values of the higher prioritized objectives impose constraints.

• The constraints 𝐹𝑗 𝑥 ≤ 𝐹𝑗 𝑥𝑗
∗ ensures that the objective function 𝐹𝑖(𝑥) at current ith iteration

is minimized such that the higher prioritized objectives (from j=1,2…,i-1) are either equal to or
less than their optimum values in the jth iteration.

Introduction: Solution Methods, Brief

• Evolutionary Algorithms

Evolutionary

MOGA
(multi objective genetic alg.)

NSGA, NSGA-II
(non dominated sorting Gen. Alg.)

SPEA, SPEA-2
(Strength Pareto Evol. Alg.)

NPGA
(Niched Pareto Gen. Alg.)

• Natural selection

• Survival of the fittest

Applications: Multi-objective and Pareto

Applications to multi-objective optimization

Application: Reservoir planning

• Production optimization

• Water flooding oil recovery

Courtesy: Adam (2009)
www.adamrlee.org

Application: Production planning

Ref: Essen et al. (2009), Fronseca et al. (2012)

• Two objectives:

• Maximize long term reservoir performance (life cycle)

• Maximize short term reservoir performance (weeks)

𝐽 = ෍

𝑘=1

𝐾
𝑞𝑜,𝑘 . 𝑟𝑜 − 𝑞𝑤𝑝,𝑘 . 𝑟𝑤𝑝 − 𝑞𝑤𝑖,𝑘). 𝑟𝑤𝑖 ∆𝑡𝑘

(1 + 𝑏)𝑡𝑘/𝜏𝑡

• Net Present Value (NPV)

Application: Production planning

Ref: Hof (2013)

• For a given well configuration and reservoir model:

• Solved using Hierarchical method

Best
Compromise

Application: Reservoir planning

Ref: Isebor and Durlofsky (2014) PSO-MADS = Particle Swarm Optimization- Mesh Adaptive Direct Search

• More detailed study: Field Development Plan

• PSO-MADS method (Evolutionary algorithm)

Applications: Multi-objective and Pareto

Applications to multi-objective MPC

Application: MPC

Olive Oil extraction Mill

• Multi-Objective MPC formulated in three different ways

(i) Weighted MPC (weighted sum method)

(ii) Prioritized MPC (Hierarchical method)

(iii) Structured MPC

Application: MPC, Olive oil extraction

Ref: Reyes et al. (2002)

Multi-Objectives:

i) Maximize extracted oil O1 = |y-y
op

|≤ ɛy

ii) Keep Thermomixer temperature (Quality): O2 = |u1-u1op
|≤ ɛu1

iii) Reduce water flow: O3 = |u3-u3op
|≤ ɛu3

iv) Keep paste flow: O4 = |u2-u2op
|≤ ɛu2

Application: MPC, Olive oil extraction

Ref: Reyes et al. (2002)

Multi-Objective MPC:

i) Maximize extracted oil O1 = |y-y
op

|≤ ɛy

ii) Keep Thermomixer temperature (Quality): O2 = |u1-u1op
|≤ ɛu1

iii) Reduce water flow: O3 = |u3-u3op
|≤ ɛu3

iv) Keep paste flow: O4 = |u2-u2op
|≤ ɛu2

𝐽 = ෍

𝑖=1

𝑚

𝛽𝑖𝑂𝑖,𝑘

Subject to

min

𝑅𝑖𝑢 ≤ 𝑎𝑖 i = 1,2,...,m

Weighted MPC

𝐽 = 𝛿 𝑦 − 𝑦𝑜𝑝
2

+ 𝜆 ∆𝑢 2 + 𝛾 𝑢 − 𝑢𝑜𝑝
2

• Difficult to assign weights.

• Control objectives may be
qualitative.

e.g.

Application: MPC, Olive oil extraction

Ref: Reyes et al. (2002)

Prioritized MPC

i) Keep Thermomixer temperature: O1 = |u1-u1op
|≤ ɛu1

ii) Maximize extracted oil: O2 = |y-y
op

|≤ ɛy

iii) Keep paste flow: O3 = |u2-u2op
|≤ ɛu2

iv) Reduce water flow: O4 = |u3-u3op
|≤ ɛu3

Objectives are prioritized
• Prioritization problem is formed

• Combining propositional logic using integer variables
details at Tayler and Morari (1998)

• Due to integer: Mixed Integer Problem is formed.

Reduced priority of the
objective functions

Application: MPC, Olive oil extraction

Ref: Reyes et al. (2002), Tyler and Morari (1998)

Prioritized MPC

• For each time in the prediction horizon

• Prioritization problem (Mixed Integer) is solved.

• Optimal values from prioritization problem

• Used as desirable setpoints to a MPC controller.

Application: MPC, Olive oil extraction

Ref: Reyes et al. (2002)

Structured MPC:

• Decision list based in a set of if-then statements

• 𝛾 changes according to desirable level of priorities

• Change of function: logic dependent (e.g. comparison of values)

Select current objective function  supply to the MPC

𝐽1 = 𝛿 𝑦 − 𝑦𝑜𝑝
2

+ 𝜆 ∆𝑢 2 + 𝛾1 𝑢 − 𝑢𝑜𝑝
2

𝐽2 = 𝛿 𝑦 − 𝑦𝑜𝑝
2

+ 𝜆 ∆𝑢 2

𝐽3 = 𝛿 𝑦 − 𝑦𝑜𝑝
2

+ 𝜆 ∆𝑢 2 + 𝛾2 𝑢 − 𝑢𝑜𝑝
2

𝐽4 = 𝛿 𝑦 − 𝑦𝑜𝑝
2

+ 𝜆 ∆𝑢 2 + 𝛾3 𝑢 − 𝑢𝑜𝑝
2

Application: MPC, Olive oil extraction

Comparison:

Ref: Reyes et al. (2002)

Highest Priority

Lowest Priority

Application: MPC, Olive oil extraction

Comparison:

Ref: Reyes et al. (2002)

Highest Priority

Lowest Priority

Application: MPC, Olive oil extraction

Comparison:

Ref: Reyes et al. (2002)

Highest Priority

Lowest Priority

Utopia Tracking MPC

Application: Utopia Tracking MPC
• Multi-Objective problem

min 𝝓 𝑥, 𝑢 = [𝜙1 𝑥, 𝑢 , 𝜙2(𝑥, 𝑢), … , 𝜙𝑀(𝑥, 𝑢)]

𝑠. 𝑡. 𝑥+ = 𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢 ≤ 0

𝑥 ℇ 𝑋, 𝑢 ℇ 𝑈

• Utopia Point (steady state)

𝜙𝑖
𝐿 = min 𝜙𝑖 𝑥, 𝑢

𝑠. 𝑡. 𝑥 = 𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢 ≤ 0

𝑥 ℇ 𝑋, 𝑢 ℇ 𝑈

𝝓𝑳,𝒔 = [𝜙1
𝐿, 𝜙2

𝐿, … , 𝜙𝑀
𝐿]

𝑖 = 1,2, … , 𝑀

𝑥, 𝑢

𝑥, 𝑢

Dynamic process model

Steady state process model

Refs: Zavala and Tlacuahuac (2012), Tlacuahuac et al. (2011)

• Utopia point: The point where each
objective function 𝜙𝑖 𝑥, 𝑢 is minimum
individually.

• Utopia point is an ideal point. It cannot be
reached when you consider all the
objectives of the given problem at the
same time. This is because objectives
functions are conflicting each other.

Find the minimum of each individual objective
separately using steady state optimization.

Application: Utopia Tracking MPC
MAIN IDEA:
• If you cannot reach to utopia point, then try to be as close as possible.
• Minimize directly the distance to the steady state utopia point from the pareto front.

𝐽𝑠 𝑥, 𝑢 = ෍

𝑘=0

𝑁−1

𝝓 𝑥𝑘 , 𝑢𝑘 − 𝝓𝑳,𝒔
𝑝

• MPC optimal control problem

min 𝐽𝑠(𝑥, 𝑢)

𝑥, 𝑢

Normally norm 2 is used

𝑠. 𝑡. 𝑥+ = 𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢 ≤ 0

𝑥 ℇ 𝑋, 𝑢 ℇ 𝑈

Refs: Zavala and Tlacuahuac (2012)
Tlacuahuac et al. (2011)

N = prediction horizon

Application: Utopia Tracking MPC

For non steady operation (e.g. Cyclic, periodic)

• Sub-optimal

• Average cyclic (dynamic) performance is better

• Steady state Utopia-point impose limitation

Refs: Maree and Imsland (2013)

Advantage:

• No need to generate pareto front

Trade off: handled dynamically

Some Comments:

Application: Dynamic Utopia Tracking MPC

• Utopia Point (Dynamic)

𝑖 = 1,2, … , 𝑀

𝑥, 𝑢

Refs: Maree and Imsland (2013, 2014)

𝝓𝒅
𝑳 = [𝜙𝑑,1

𝐿 , 𝜙𝑑,2
𝐿 , … , 𝜙𝑑,𝑀

𝐿]

𝜙𝑑,𝑖
𝐿 = min

1

𝑁𝐿 ෍

𝑖=0

𝑁𝐿−1

𝜙𝑖(𝑥, 𝑢) NL is optimal
period

𝑥+ = 𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢 ≤ 0

𝑥 ℇ 𝑋, 𝑢 ℇ 𝑈

𝑠. 𝑡.

Find the dynamic mean utopia point

Application: Dynamic Utopia Tracking MPC

• Minimize directly the distance to the dynamic utopia point

𝐽𝑑 𝑥, 𝑢 =
1

𝑁
෍

𝑘=0

𝑁

𝝓 𝑥𝑘 , 𝑢𝑘 − 𝝓𝒅
𝑳

𝑝

• MPC optimal control problem
min 𝐽𝑑(𝑥, 𝑢)

𝑥, 𝑢

Normally norm 2 is used

𝑠. 𝑡. 𝑥+ = 𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢 ≤ 0

Refs: Maree and Imsland (2013, 2014)

N = prediction horizon

𝑥 0 = 𝑓𝑟𝑒𝑒, 𝑥 0 = 𝑥 𝑁
𝑥 ℇ 𝑋, 𝑢 ℇ 𝑈

Application: Utopia Tracking MPC

Thin oil-rim reservoir

Refs: Maree and Imsland (2014)

Courtesy: IO-Center (www.iocenter.no)

• Objectives

• Maximize oil production rate

• Minimize Gas Oil Ratio (GOR)

GOC = Gas Oil Contact

• Gas Coning after
prolonged period of
time

• Gas breakthrough

• Temporary shutdown

• Cyclic operation

Application: Utopia Tracking MPC

Thin oil-rim reservoir

Maree and Imsland (2014)

Exp.1 = Steady UT MPC

Exp.2 = Dynamic UT MPC

References:
Adam (2009). World Nearing Peak Oil – Eventually peak Water. The Adam Lee Commentary, Information and Opinion about current events. Online: www. damrlee.org,
Accessed: 24th Sep. 2014.

Andersson, J. (2000). A survey of multiobjective optimization in engineering design, Technical Report LiTH-IKP-R-1097, Department of Mechanical Engineering, Linköping
University, Linköping, Sweden.

Essen, Van G. M., Hof, Den J. V. and Jansen, J. D. (2009). Hierarchical Long-Term and Short-Term Production Optimization, SPE 124332, Annual Technical Conference and
Exhibition, New Orleans, Lousisiana, USA.

Fronseca, R. M., Leeuwenburgh O. and Jansen, J.D. (2012). Ensemble basd multi-objective production optimization of smart wells, 13th European Conference on the
Mathematics of Oil Recovery, Biarritz, France, 10-13 September 2012.

Gambier, A. (2008). MPC and PID Control Based On Multi-Objective Optimization, 2008 American Control Conference, Westlin Seattle, Washington, USA, June 11-13,pp.
4727-4732.

Hof, P. V. D. (2013). Model based optimization and control of subsurface flow in oil reservoirs. Plenary Lecture, 32nd Chinese Control Conference, 26-28 July, Xian, China.

Isebor. O.J. and Durlofsky L.J. (2014). Biobjective optimization for general oil field development. Journal of Petroleum Science and Engineering, Vol. 119, pp. 123-138.

Kim, N. H. (2014). Approximation and Optimization in Engineering, Lecture notes, University of Florida, Gainesville, Florida.

Maree, J.P. and Imsland, L. (2013). Multi-objective predictive control for non steady state operation, 2013 European Control Conference, Zurich, Switzerland, 17-19 July.

Marler, R. T. and Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering, Struct Multidisc Optim, Vol. 26, pp. 369-395.

Reyes, A.N., Dutra, C.B.S. and Bordons, C. (2002). Comparison of different predictive controllers with multi-objective optimization. Application to an Olive oil mill, Proceedings
of the 2002 IEEE International Conference on Control Applications, Glasgow, Scotland, UK, 18-20 September.

Tlacuahuac. A.F., Morales, P. and Toledo, M.R. (2011). Multiobjective nonlinear model predictive control of a class of chemical reactors, I&EC research, Special Issue: AMIDIQ
2011, pp. 5891-5899.

Tyler, M.L. and Morari, M. (1998). Propositional logic in control and monitoring problems, Automatica, 35:565-582.

Wang, P. (2003). Development and applications of production optimization techniques for petroleum fields. PhD Thesis, Stanford University.

Zavla, V. M. and Tlacuahuac, A.F. (2012). Stability of multiobjective predictive control: A utopia-tracking approach, Automatica, 48(10):2627-2632.

